Advances in Computational Technologies in Sciences and Engineering

Advances in Computational Technologies in Sciences and Engineering

Edited by

Pawan Singh, Sachin Kumar, Kamlesh Kumar Singh, Bramah Hazela, O. P. Singh and Anil Kumar

Cambridge Scholars Publishing

Advances in Computational Technologies in Sciences and Engineering

Edited by Pawan Singh, Sachin Kumar, Kamlesh Kumar Singh, Bramah Hazela, O. P. Singh and Anil Kumar

This book first published 2024

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2024 by Pawan Singh, Sachin Kumar, Kamlesh Kumar Singh, Bramah Hazela, O. P. Singh, Anil Kumar and contributors

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-0364-0309-2 ISBN (13): 978-1-0364-0309-6

TABLE OF CONTENT

Chapter 1: Building ERP Software using Oracle Apex 19.1: Web and Mobile Application		1
	l Arif, Deepshikha Agarwal	
1.1	Introduction	1
1.2	Features of Oracle Apex	2
1.3	Terms to Understand	3
1.4	The Project	4
1.5	Conclusion	6
Chap	ter 2: Design of Multicast Cross Bar Switch Elements	8
	Quantum Dot Cellular Automata	
	a Asthana, Anil Kumar, Preeta Sharan, Sumita Mishra	
2.1	Introduction	8
2.2	Quantum Dot Cellular Automata	9
2.3	Proposed DCS	10
2.4	Power and Energy Calculations	15
2.5	Conclusion	16
Chap	ter 3: Demagnetization Detection of PMSM Motor by	18
Signa	ll Processing Technique	
	im Moin Siddiqui, Amit Dubey, Rajan Yadav,	
	Alam Ansari	
3.1	Introduction	18
3.2	Time Domain Analysis	21
3.3	Demagnetization Assessment by Advance Signal	28
	Processing Technique	
3.4	Conclusion	31
	ter 4: Comparative Analysis of OFDM System using	34
	rent Modulation Techniques	
	eshwari Yadav, Som Pal Gangwar	
4.1	Introduction	35
4.2	Conventional OFDM System	36
4.3	DCT Based OFDM System	38
4.4	Discrete Wavelet Based OFDM System	39
4.5	Result and Discussion	41
4.6	Conclusion	49

Chap	ter 5: Applications of WSN in Smart Grid	52
Tech	nologies Particular to Wind Farms	
Deep	shikha Agarwal, L.C. Agarwal, Anjani Agarwal	
5.1	Introduction	52
5.2	Components of Smart Grid	53
5.3	Wireless Sensor Networks	54
5.4	Application of WSN in Wind Farms	55
5.5	Conclusions	57
Chap	ter 6: Adopting an Optimistic Attitude towards Crime	60
Dete	ction and Digital Forensic Techniques	
Arpit	a Singh, Sanjay K. Singh, Nilu Singh	
6.1	Introduction	61
6.2	Digital Forensic Techniques in Crime Detection	62
6.3	Digital Forensic Investigation	63
6.4	Categories of Digital Forensic	64
6.5	Continuous Development in Digital Forensic	65
6.6	Latest Algorithms in Digital Forensic	71
6.7	Conclusion	72
Chap	eter 7: Effect of Length Variation on Vibration	76
Char	acteristics of Boron Nitride Nano-Ribbon Resonator	
Saum	il H Desai, Mitesh B Panchal, Ankur Pandya	
7.1	Introduction	77
7.2	Methodology	78
7.3	Results	80
7.4	Conclusion	81
Chap	ter 8: Safeguarding Cyber-Security and Energy	87
Effici	iency Solutions for Environmental Sustainability	
	igh Green Energy Paradigm-Li-Fi	
Saum	itra Vatsal, Dr. Shalini Agarwal	
8.1	Introduction	88
8.2	Related Work	89
8.3	Analytical Model	90
8.4	Proposed Scheme with Li-Fi	93
8.5	Experimental Setup, Results and Analysis	95
8.6	Suggestions for Industrial Networking	99
8.7	Conclusions	100

or Per	er 9: AI Ethics in a Multicultural India: Ethnocentric plexed? Analysis of the Socio-Cultural Elements Democracy	103	
	ardhan, Dr Ritu Agarwal		
9.1	Introduction	104	
9.2	The Challenges to the Ethical Model of AI: Hypothesis and Modalities	105	
9.3	Analysis of the Sociological and Multilithic Characteristics of Democracy in India	108	
9.4	Conclusion	111	
	ter 10: Comparative Study on Range Based and Range	114	
	zation Techniques in Wireless Sensor Network		
	i Sengar, Satish Kumar		
10.1	Introduction	115	
10.2	Related Works	116	
10.3	Localization Techniques	117	
10.4	Conclusion and Future Work	124	
	er 11: An Analysis on the Selection Criteria of	128	
	S for the Development of High Speed Computing		
Systems at the High Energy Physics Experiments			
Fahad Khan, Atiya Fatima Usmani, Humera Parveen,			
Md. Taslim Arif, Seerat, Jubin Mitra, Shuaib Ahmad Khan			
11.1	Introduction	129	
11.2	Data Acquisition and Computing Systems for HEP Experiments and the Role of FPGAS	130	
11.3	Analysis for Selection of FPGAS	132	
11.4	Results	132	
11.5	Summary	133	
11.6	Acknowledgment	134	
Chapter 12: Detection of Epilepsy through EEG Wave		137	
	Patterns using Artificial Neural Network		
	Kumari, Som Pal Gangwar		
12.1	Introduction	137	
12.2	Proposed Methodology	138	
12.3	Result & Discussion	141	
12.4	Conclusion	149	

Chap	ter 13: Computer Aided Analysis of an Aircraft Wing	152
	Murtaza, Sumit Krishnan, Ashwani Sharma	
13.1	Introduction	152
13.2	Structure of the Wing	153
13.3	Design of Wing	154
13.4	Material	154
13.5	Discussion of Analysis	155
13.6	Conclusions	159
Chap	ter 14 : Statiscal Evaluation of Genetic Alorithm Based	161
Soluti	on to State Estimation Problem in Power System	
Pankh	uri Kishore, Stuti Shukla Datta, Seethalekshmi K	
14.1	Introduction	162
14.2	State Estimation Problem Fomulation	164
14.3	Case Studies	168
14.4	Results and Discussion	172
14.5	Conclusion	174
Chap	ter 15: Numerical Simulation of Micro-Channel Heat	177
Sink t	ısing Al ₂ O ₃ -Water and TiO ₂ -Water Nanofluids	
Nama	n Jain, Keshav Aggarwal, Gaurav Kumar, Raj Kumar	
Singh	, Mrityunjay Kumar Singh	
15.1	Introduction	178
15.2	Methodology	179
15.3	Results and Discussion	188
15.4	Conclusion	191
Chap	ter 16: Methods Based on SVM for the Classification	194
of EC	G Arrhythmia	
Sumai	nta Kuila, Namrata Dhanda, Subhankar Joardar	
16.1	Introduction	195
16.2	Support Vector Machine	196
16.3	Multiclass Classification	198
16.4	Use of Genetic Algorithm with SVM	199
16.5	Conclusion	202
Chap	ter 17: Electronics System Design of a Formula	205
Stude	nt Electric Car	
Aniru	dh Sivakumar, Pratik Mohanty	
17.1	Introduction	205
17.2	Data Acquisition system	207
17.3	Battery Management System	210
17.4	Safety Circuits for Electric Car	215
17.6	Conclusion	218

	ter 18: Study of Reinforcement Learning Based Call	222
	ssion Control (CAC) Protocol in Wireless/Cellular	
Netwo		
	alpana Saha (Roy), Raktim Mukhopadhyay	
18.1	Introduction	223
18.2	Related Works	223
18.3	Proposed Works	225
	Discussion with Simulated Results	228
18.5	Conclusion	229
	ter 19: A Survey on Power Quality Issues of	234
	buted Generation Integrated Systems	
	d Khan, Diksha Singh, Sakshi Rai, Rafik Ahmad,	
Bhave	sh Kr. Chauhan	
19.1	Introduction	235
19.2	Distributed Generation Integrated System	236
19.3	PQ Issues Due to Integration of DG Integrated Grid	237
19.4	Review of Existing Techniques for Controlling PQ	238
19.4	Issues	238
19.5	Impact of Power Quality Issues	241
19.6	Conclusion	242
Chap	ter 20: A Review: Issues Challenges in Various Fake	245
News	Detection Mechanism	
Pritee	Yadav, Muzammil Hasan	
20.1	Introduction	245
20.2	Data Types of News	247
20.3	Mechanism of Fake News Detection	248
20.4	News Content Analysis	249
20.5	Social Context Analysis	252
20.6	Datasets	253
20.7	The Present Works Assessment Analysis	256
20.0	Pros and Cons of Previous Research Techniques to the	256
20.8	Fake News	256
20.9	Conclusion	258
Chap	ter 21: Performance Analysis of Variable Speed	262
	tion Motor by Modulation Techniques	
	m Moin Siddiqui, Rekhaditya Pal, Vinay Kr. Chaurasia,	
	Verma, Pulkit Trivedi	
21.1	Introduction	263
	Performance Evaluation of SPWM Inverter Fed	
21.2	Induction Motor	264

21.3	Performance Evaluation of SVPWM Inverter Fed	269
21.3	Induction Motor	269
21.4	Performance Comparison of the Motor Application	273
	Through Modulation Control Methods	
21.5	Conclusions	274
	er 22: A Survey of Community Detection Techniques	276
	ial Network	
	Kesrwani, Dr. Ashutosh Singh	
22.1	Introduction	277
22.2	Some Definition Used in Community Detection	278
22.3	Representative Techniques of Community Detection	279
22.4	A Comparative Analysis of Community Detection Methods	285
22.5	Conclusions	286
Chapt	er 23: Status of Groundwater Pollution in Uttar	290
	sh: A Review	
Arohi	Jain, Upasana Yadav	
23.1	Introduction	291
23.2	Major Routes of Groundwater Degradation	292
23.3	Major Pollutants in Groundwater	295
23.4	Conclusion	298
Chapter 24: Recent Advances in Novel Synthetic Methods of		302
Chromenes		
Aayushi Pandey, Jaya Pandey		
24.1	Introduction	302
24.2	Reduction	304
24.3	Synthesis of Chromene derivatives	306
24.4	Conclusion	309
24.5	Future Aspects	310
24.6	Acknowledgements	310
Chapter 25: A Novel Study of Multi Gate MOSFET		313
Kamlesh Kumar Singh, Nilesh Yadav		
25.1	Introduction	314
25.2	Multi Gate MOSFET	314
25.3	Dual Gate	314
25.4	MOSFET on a Nanowire	315
25.5	Gate All Around Multi Gate MOSFET	316
25.6	Nano Wire MOSFET	316
25.7	Conclusion	317

Chap	ter 26: Assessment of Ground Water Quality in Idleb	319
City t	ising GIS	
Musta	fa Gunal, Ilham Khateeb, Ayse y. Gunal	
26.1	Introduction	320
26.2	Study Area and Data Collection	321
26.3	Methodology	322
26.4	Result and Discussions	324
26.5	Conclusion and Recommendation	334
Chap	ter 27: Study on Blended Natural Sand with Iron Slag	353
in Co	ncrete	
Rishal	oh Mahure, Isha Chandra, Bhawna Sahay, Shipra Bhatia	
27.1	Introduction	354
27.2	Materials and Methodology	354
27.3	Experimental Studies	359
27.4	Discussion of Test Results	361
27.5	Conclusions	364
27.6	Acknowledgment	365
Chap	ter 28: A Review on Seismic Analysis of Base Isolated	367
	ar and Irregular Multi-Storey Buildings	
Abhis	hek Mishra, Faheem Ahmad Khan	
28.1	Introduction	368
28.2	Literature Review	371
28.3	Conclusions	378
Chapter 29: Rigid Pavement Design Methods		381
	yşe Yeter Günal, Prof. Dr. Mustafa Günal,	
Gul R	ahim Akhtar	
29.1	Introduction	382
	Literature Review	384
29.3	Methodology	389
29.4	Conclusion	394
	Chapter 30: Investigation of Concrete Slab Crack when	
	d Directly on Clay	
	yşe Yeter Günal, Ahmed A. Abdullah	
30.1	Introduction	398
30.2	Literature Review	398
30.3	Materials and Experimental Works	400
30.4	Results and Discussions	406
30.5	Conclusion	408

Chapter 31: Investigating the Climate Change in the Van		412
Lake Basin of Turkey by Trend Analysis Techniques		
Desh 1	Desh Deepak Tewari, Garima Misra, U. D. Misra	
31.1	Introduction	413
31.2	Van Lake Basin	414
31.3	Trend Analysis Techniques	417
31.4	Results	419
31.5	Conclusion	424
Chap	ter 32: Facial Emotion Recognition through Deep	426
Learning and Convolutional Neural Networks		
Syed '	Wajahat Abbas Rizvi	
32.1	Introduction	426
32.2	Facial Databases	427
32.3	Deep Learning	428
32.4	Deep Learning Applications for Facial Emotions	429
32.5	Conclusion	433
Chapter 33: High Energy Satellites Accompanying Lα _{1,2}		436
Diagram Line in X-ray Spectra for $38 \ge Z \ge 31$		
Desh Deepak Tewari, Garima Misra, U. D. Misra		
33.1	Introduction	436
33.2	Procedure	438
33.3	Results	439
33.4	Discussion	439

CHAPTER 1

BUILDING ERP SOFTWARE USING ORACLE APEX 19.1: WEB AND MOBILE APPLICATION

MOHD ARIF¹, DEEPSHIKHA AGARWAL²

Abstract

Oracle Application Express, also known as APEX, is a Rapid Application Development (RAD) tool utilised for developing web applications. In this project, I have developed several ERP modules designed for use in the banking sector. All the project modules are thoroughly described below. I utilised Oracle APEX (Application Express) software version 19.1 for this purpose. A concise description of each module is provided.

Keywords: Oracle APEX, Web Applications, ERP.

1. Introduction

APEX was created by Mike Hichwa, an engineer at Oracle, after his previous venture, Web DB, started to deviate from his original vision [2]. Despite APEX sharing some functionality with Web DB, it was built from scratch, and there is no upgrade path from Web DB to APEX [1]. When entrusted with designing an internal web schedule, Hichwa enlisted the assistance of Joel Kallman and started development on a project called Flows. Hichwa and Kallman co-developed the Web Calendar and Flows, adding features to Flows as needed to develop the schedule [3]. Early versions of Flows had no front-end, so all changes to an application had to be made in SQL*Plus through inserts, updates, and deletes.

¹ Amity University Uttar Pradesh, India

² IIIT Lucknow, Uttar Pradesh, India

Oracle uses APEX internally to build some of its support sites (Ashwin Agarwal, 2015). The AskTom knowledge base and online store are both still running on APEX. The Metalink support site ran on APEX for quite some time before eventually being replaced by an Oracle ADF solution [2]. Since APEX was initially promoted as a RAD tool, this transition is a logical one. APEX allows for the easy construction of web applications with no code. While APEX has existed since 2004 in some form, it has recently been included in the new category of application development platforms called Low Code.

2. Features of Oracle Apex

A. REST ENABLED SQL SUPPORT:

Oracle ORDS (Oracle REST Data Services) is a technology that allows the execution of SQL queries in remote Oracle databases via HTTP and REST [2]. You can submit SQL statements to the service, and it will then process the SQL statement against the Oracle database and return the result to the client in a JSON format.

B. VERSATILE UI:

APEX 19.1 introduces several new UI components to facilitate the creation of user-friendly applications. Three new fragment types, List View, Column Toggle, and Re-flow Report are integral parts that can be utilized within the Universal Theme and are commonly employed in responsive applications. Finally, APEX 19.1 includes comprehensive support for touch-based interactions such as tap and double-tap, press, swipe, and pan, enabling the development of feature-rich and user-friendly mobile applications [3].

C. WEB SOURCE MODULES:

APEX currently supports accessing data from a variety of REST endpoints, including standard REST data services, REST Services from Oracle REST Data Services, and Oracle Cloud Applications REST Services [1]. In addition to supporting intelligent caching mechanisms for remote REST data, APEX also offers the unique ability to directly manipulate the results of REST data sources using industry-standard SQL. The data representation engine of Oracle Application Express is powered by Oracle JET (JavaScript Extension Toolkit) [2].

3. Terms to Understand

Before delving into the topic, we need to understand some important terms that will be used later. Below are descriptions of some of the important terms:

A. ORACLE DATABASE 10G:

Oracle Database 10g is the primary database designed for large business framework computing [4]. It reduces the costs of management while providing the highest possible level of service. Despite numerous quality and performance improvements, Oracle Database 10g significantly reduces the costs of managing the IT environment, with an improved installation, substantially reduced configuration and requirements, automatic performance detection, and SQL tuning. These and other automated capabilities help to enhance DBA and developer productivity and efficiency.

B. DYNAMIC ACTIONS:

In APEX, Dynamic Actions provide designers with a way to define client-side behavior definitively without the need to know JavaScript [1]. Using a simple wizard, designers can select a page item, a condition, enter a value, and choose an action (for example, Show, Hide, Enable, and Disable). These actions are for client-side conditions [3].

Dynamic actions reside on the client-side and enable the user to change the look, feel, or content of a page. In most cases, they achieve this without the application needing to interact with the server or the database. Everything happens in the background without requiring a page reload, providing a seamless user experience [2].

Dynamic Actions are a way to help designers enable more complex clientside behavior. They can assist beginner developers who are not familiar with JavaScript to incorporate greater functionality into their pages. They are also beneficial for back-end developers, who can use them to enhance usability on the front-end when required.

C. PROCESS:

The process takes place an action at a predetermined point during the rendering or submission of the page. For instance, you can create a page process to execute a logic or to make a call to the Application Express

engine [1]. A page process is a unit of events that is executed when a specific event occurs, such as loading or submitting a page. The difference between these two process types is where the process is defined, that is, at the page-level or at the application level.

D. VALIDATIONS:

A validation is a server-side condition or check. Page items are specific validations for a single item. Validations that apply to a whole page will be page validations [2]. Validations for forbidden structures specific to a solitary section are section-level validations. Validations for forbidden structures that don't apply to a single section are global. You can precisely define a validation by selecting a validation method. You enter the actual validation custom check in the Validation Messages field. If a validation fails, subsequent page processes or calculations won't occur. Also, remember that the validation you enter must be consistent with the validation type you selected.

4. The Project

The main idea behind this framework is that the institute acknowledges the students and then works on different processes, such as enrolling them, assigning them hostels, providing them with adequate study material through the library, and managing their feedback into the institution. To make all these processes easy and readily available without compromising their efficiency or approach, we developed four modules on the Oracle Apex Cloud and combined them to create a Mobile Application [2].

The Administrator can easily read and modify the content of the database using this application, and any user can use it to store their data on the cloud, which is beneficial to the institute. Since the Administrator has the ability to modify the content, he can remove unwanted entries from the registration module if some mischievous individuals attempt to tamper with the workings of the system. Now, I will discuss each module in detail. The modules are described as follows:

A. MODULE 1: REGISTRATION OF TRAINEES:

The very first module of our framework is the "Enrolment of Trainees." This module can be accessed and edited by both users and administrators. This module consists of three pages—information about the student, information about the training, and hostel allocation. The students can fill

in the form providing their details and submit it [4,5]. It includes: trainee information; training details; and hostel allocation.

B. MODULE 2: LIBRARY MANAGEMENT SYSTEM:

This module consists of three pages that, together, provide the Institute with a well-established, sophisticated, and accurate library system on the cloud server of our system [2]. This module aims to cover all aspects of a library system and its maintenance, endeavoring to incorporate as many features as possible so that the user does not need to access any other software or portal for library management [1]. One significant feature of this module is that it is accessible only by the admin. For instance, all the pages of this module are accessible exclusively by the admin, and the learners cannot, in any way, access any of the three pages. The three pages include registering a new book, issuing a book, and returning a book.

C. MODULE 3: HELPDESK:

This module consists of three distinct pages and provides a neat, efficient, and user-friendly complaint handling portal [2]. It incorporates both the complaint registration interface and the complaint status tracking interface. The three pages are: lodging a complaint, problem resolution, and status of your problem.

D. MODULE 4: FEEDBACK:

The fourth and final module of our framework is the Feedback Module, which the learner utilizes after their training group sessions are completed or about to be completed [4]. It provides a simple, clean, well-organized, and accurate feedback system for the learners, where they can clearly understand what is being asked and what they need to do according to their assessment. It is the only module in our framework that is accessed entirely by the learners, and the administrator cannot fill out the form for anyone. This feature sets it apart from the other three modules [2]. This module consists of only one page - Feedback Response.

The procedures for this module are as follows:

➤ Step 1: The learner accesses the main page of this module from the Home Screen of our Mobile Application and enters the form.

- > Step 2: The learner reads each section title (which is the parameter) and selects the appropriate Radio Button against it to provide a score according to their view.
- ➤ Step 3: (if necessary) the student writes their suggestion if, in any section, the lowest scoring Radio Button is selected by them. This suggestion is a must, and the form will not be submitted with an invalid suggestion field.
- ➤ Step 4: The submit button is pressed, and the form is finally submitted, displaying a Success Message acknowledging the page's submission along with a Thank You note to the student.

This module is highly significant as it is the last module in the framework and serves as a departure point for a particular batch. The information stored in this module is of high value to the institution, and it is the data that is assessed later on to better understand what the institution provides effectively and where it needs to improvise. It allows the institute to see the students' perspectives regarding various aspects ranging from the organization's structure to the quality of training provided in accommodations and meals, etc. [1]. These insights help the institution improve plans for future batches wherever there is a need for improvement and maintain the quality of service where students have expressed satisfaction. Hence, this module provides valuable data for future internal studies and reviews of the institute. As the last module, it is not invoked elsewhere.

5. Conclusion

As stated, the working of each module has been explained in all four modules, which are well described in this report. The working of each module is also explained. Oracle APEX is a method of developing a Web application, sorting data on the Web, and running reports on the Web, but you may not need much knowledge of the Web. From a technical standpoint, APEX is exceptionally well-suited to bringing your FORM applications into the twenty-first century [2]. However, if you don't manage change management appropriately, this is for nothing. Honestly, we've never experienced a technical issue we couldn't solve. Virtually, all the issues we've faced have concerned people's ability to adapt to a new way of doing things. This is why change management is so significant.

References

This project was made by gaining knowledge from various sources, such as, research papers, training center (PNBIIT), YouTube videos, etc. Some of the references are given below:

- [1] Ashwin Agarwal and Anjani Pothula, "Oracle Application Expess Student Guide", Oracle University, Edition 2.0, September 2015.
- [2] Riaz Ahmed, "Oracle Application Express Basics & Beyond", Edition 5.1, 2017.
- [3] https://oraclefoundation.org/index.html
- [4] https://apex.oracle.com/pls/apex/f?p=411:13
- [5] https://apex.oracle.com/en/learn/tutorials/
- [6] https://www.oracle.com/technetwork/articles/apex/index.htm

CHAPTER 2

DESIGN OF MULTICAST CROSS BAR SWITCH ELEMENTS USING QUANTUM DOT CELLULAR AUTOMATA

AMITA ASTHANA¹, ANIL KUMAR¹, PREETA SHARAN², SUMITA MISHRA¹

Abstract

Applications involving a single sender and multiple users, such as audio, video, Internet Protocol television, and teleconferencing, supported by the Internet, have heightened the essential need for a high-speed switch matrix [1]. This paper proposes a digital cross-connect switch architecture to facilitate various multicasting modes using quantum cellular automata (QCA) within the framework of the United Kingdom format.

The digital cross-connect switch represents a crossbar architecture, known for its cost-effectiveness and low power consumption, particularly when implemented through QCA technology. The multicast switch matrix can be devised using 2x1 multiplexers. The design's scope can be expanded through the integration of reversible logic in QCA, enhancing adaptability and flexibility [2].

Keywords: QCA; multicast mode; crossbar architecture.

1. Introduction

Significant multicast switching applications across the Internet have led to an escalation in traffic loads, necessitating the implementation of high-

¹ Amity University Uttar Pradesh, India.

² Oxford College of Engineering, Bangalore, India.

speed switches to efficiently manage such substantial multicast application loads. These switches are essential for facilitating point-to-point communication.

The Digital Cross-Connect Switch (DCS) finds diverse applications, including mobile communication switching networks, Local Area Network connections, and internet hubs, among others. Various switch architectures have been proposed for deployment at different hubs, routers, and data communication nodes.

The switch architecture outlined in this paper offers heightened flexibility at a reduced cost for handling datagrams destined for multiple destinations. The DCS proposed in this study boasts the capability to support diverse applications, including information dissemination, teleconferencing, access to distributed databases, video and audio transmission, and distance learning.

Quantum Dot Cellular Automata (QCA), a nanoscale technology, calculates the Coulombic repulsion between two quantum dots. QCA technology boasts primary advantages such as reduced power consumption and significantly smaller physical footprint when compared to Cadence. Circuit components designed using quantum dots are nanosized, contributing to area minimization.

2. Quantum Dot Cellular Automata

Quantum dot cellular automata (QCA) represent an alternative technology to CMOS VLSI circuits. QCA offers several advantages, including a smaller physical footprint, rapid switching speeds, and low power requirements. This technology refrains from utilizing transistors in logical computations, focusing instead on the propagation and processing of digital information [3].

In a QCA cell, four quantum dots are positioned at the corners of a square. The operation of a QCA device doesn't require a current source for logic computations; it relies on the inherent charge properties of electrons. These devices are designed with precise placement of QCA cells to create a diverse array of digital circuits. Each quantum dot acts as a potential well capable of trapping electrons, which necessitate a substantial amount of energy to exit the well. Fig. 1 illustrates a QCA cell consisting of four quantum dots.

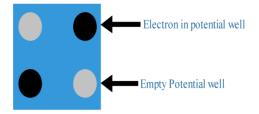


Figure 1. Cell structure QCA

The polarization of the cells is determined by the Coulombic repulsion among the quantum dots, as depicted in Fig. 2 [5].

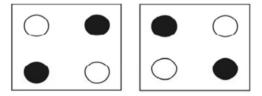


Figure 2. QCA cell polarization – right alignment for representation of binary '0' & and left binary '1'

The Majority Voter (MV) gate stands as a critical and potent logical device in quantum computing. The MV gate's operation (MV(X, Y, Z) = XY+YZ+Z) of a three-input gate can be accomplished using only five QCA cells. QCA employs a four-phase clocking scheme, namely switch, hold, release, and relax [4].

3. Proposed DCS

A Digital Cross-Connect System (DCS or DXC) constitutes a component of circuit-switched network equipment capable of interconnecting low-level DS0 bit streams with DS1 bit streams using the Time Division Multiplexing technique. DCS units are extensively accessible and can function with legacy T-carrier and E-carrier bit streams. Additionally, these switches can also accommodate SONET/SDH bit streams [1].

(A) MULTICAST MODE:

Defining Data Communication networks involves multicasting, wherein a single source communicates with a group of destinations [5][6]. This communication pattern primarily entails one-to-many or many-to-many data transmission. The multicast router is capable of sending duplicate copies of the same datagram through multiple interfaces. Consequently, within this form of group communication, datagrams traverse diverse routes. This concept is applicable to both multicast and network-assisted multicast scenarios, enabling the efficient transmission of information from one point within the group to various points in a single transmission [7].

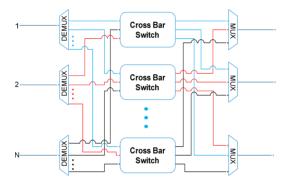


Figure 3. The design of the multicast crossbar switch

In Fig. 3 block diagram of the multicast x-bar switch, there is M number of DE multiplexers and N no. of multiplexers [8].

(B) 2:1 Mux:

The Multiplexer, also referred to as a data selector digital switch, features multiple input lines, a single output line, and more than one select line. Depending on the input to the select lines, the input lines are chosen and the selected input transmits information to the output line. Figure 4 illustrates two input lines and one output line, with the select line designated as S0, responsible for determining which input line's data is transmitted to the output.

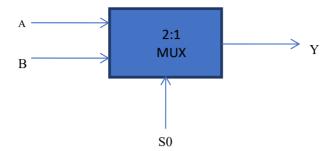


Figure 4. Design of 2:1 Mux

Figure 5 showcases the design of a 2:1 Multiplexer using quantum cellular automata (QCA) technology. This QCA-based design is executed to assess the area and power consumption of the 2:1 MUX. The quantum-dot circuit realization of the 2:1 Multiplexer is depicted in Fig. 5. Within Quantum-Dot technology, the 2:1 MUX is implemented, and simulation results are presented in Fig. 6. This implementation yields an area of 23,495.6568 nm², with a power consumption of 29.37 * 10⁻⁹ Watts. By implementing the circuit at the gate level using Quantum Dot technology, significantly reduced values are achieved in terms of both area and power. Opting for the realization of the 2:1 Multiplexer on QCA proves superior to the CMOS approach.

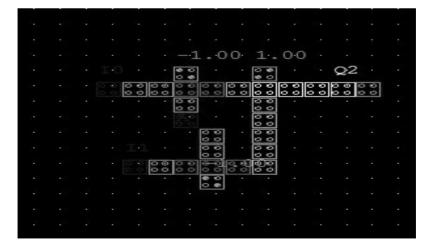


Figure 5. The layout of 2:1 MUX

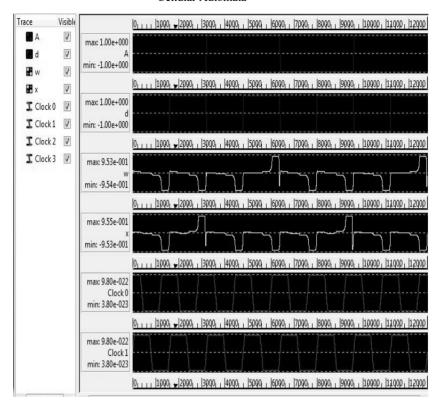


Figure 6. Simulation result of 2:1 Mux

The implementation employs a four-phase clocking scheme, comprising the switch phase, hold phase, release phase, and relax phase. These four phases are separated by 90 degrees. Polarization solely occurs during the switching phase, with the polarization state sustained during the hold phase and subsequently released during the release phase.

(C) 1:2 DEMUX:

The Demultiplexer (DEMUX) is a combinational logic circuit that receives information or data from a single input and directs it to a designated output line specified by the input to the select lines. If the A-line is set to 0, the data is directed to output line W; conversely, if the A-line is set to 1, the input data is routed to the X output line. Fig. 7

illustrates a 1:2 Demultiplexer, where data from input D is distributed to either the W or X output lines.

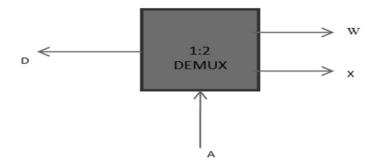


Figure 7. design of 1:2 DEMUX

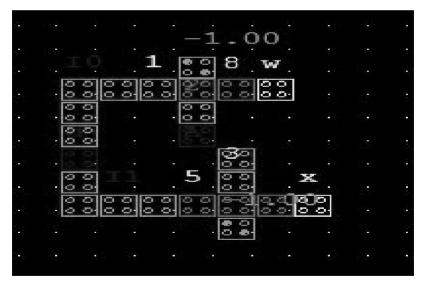


Figure 8. The layout of 1:2 DEMUX

The 1:2 Demultiplexer (D-mux) has been implemented using Quantum Cellular Automata (QCA), as depicted in Fig. 8. Simulation outcomes are presented in Fig. 9. From this implementation, an area of 148.9698 nm² is calculated, and the power consumption is measured at 35.762 * 10⁻⁹ W.



Figure 9. Simulation result of 1:2 DEMUX

4. Power and Energy Calculations

The power and energy can be calculated as demonstrated in equations (1) and (2) [10]:

$$Ediss \leq \left[\frac{2\check{Y}new}{Ek} \left(\frac{P0}{Pold}\check{Y}old \frac{P0}{Pnew}\check{Y}new\right) + Ek \frac{Pnew}{2} * (P0 - Pn)\right]$$
(1)

$$Ek = no \ of \ cells * kink \ energy$$
 (2)

Where Kink energy=1.811*10⁻²⁹ Joules

```
\begin{split} &P0 = Pn = 1,\\ &Pold = -1,\\ &Pnew = 1,\\ &\check{Y}new = 9.8*10^{-23},\\ &\check{Y}old = 3.8*10^{-23} \text{ , Ek} = 1510.374*10^{-29} \text{J}\\ &Edits < 0.9*10^{-18} \text{ J} \end{split}
```

5. Conclusion

The design proposed in this paper is founded on crossbar switch architecture. The DCS switch is proficient in managing multicast traffic loads. Simulation results indicate a power consumption of 35.762 * 10^(-9) W for a 1:2 Demultiplexer (DE MUX). QCA serves as a superior tool for crafting area and power-efficient reversible logic gates [9]. Additionally, the design can be translated into practical implementation using reversible logic within the QCA designer tool. This approach enhances flexibility and scalability, rendering it applicable to multimedia applications that frequently rely on multicasting.

References

- [1] Thakur, G., Sarvagya, M., & Sharan, P. (2015, September). Digital x-Connect Systems a Technological Survey, Key Challenges, Architectural overview & Applications, International Conf. on Signal Processing and Communications Advancements.
- [2] Mishra, N.K., Wairya, S., Sen, B., (2018, December). Design of Conservative, Reversible Sequential Logic for Cost Efficient Emerging Nano Circuits with Enhanced Testability, Ain Shams Engineering Journal, 9(4).
- [3] Das, C. D. & De, D., (2018). Design of Single Layer Banyan Network Using Quantum Dot Cellular Automata for Nanocommunication, Optik, International Journal of Light and Electron Optics.
- [4] Bahar, A.N. & Khan A. W., (January, 2020), Design of an Efficient NxN Butterfly Switching Network in Quantum-dot Cellular Automata (QCA), IEEE Transactions on Nanotechnology.

- [5] Asthana, A., Kumar, A. Sharan, P & Mishra S. (2K18). Design of ARM Processor's Elements Using QCA, International Journal of Engineering & Technologies UAE.
- [6] Liu, K., Yan, J., Lu, J.& Chen, X. (2K16, March), Predictive Uni-cast and Multi-cast scheduling in Onboard buffered x-bar Switches, IEEE Communications Society, 20(3).
- [7] Thakur, G., Sarvagya, M., & Sharan, P. (2K16), Wireless Digital Cross Connect System on Chip for Optical Networks using Fixed Programmable Logic Array, International Conference on computing for sustainable global development (IndiaCom).
- [8] Navaz, K., &Balasubramanian, K. (February 2016), Multicast Due Date Round-Robin Scheduling Algorithm for Input-Queued Switches, I. J. Computer Network, and Information Security.
- [9] Sasamal, T. M., Singh, A.K. & Ghanekar, U. (December 2017), Toward Efficient Design of Reversible Logic Gates in Quantum Dot Cellular Automata with Power Dissipation Analysis, International Journal of Theoretical Physics.
- [10] Wang, L. & Xie, G, (April, 2019), A power Efficient Single Layer Full Adder Design in Field Coupled QCA Nanocomputing, International Journal of Theoretical Physics.

CHAPTER 3

DEMAGNETIZATION DETECTION OF PMSM MOTOR BY SIGNAL PROCESSING TECHNIQUE

KHADIM MOIN SIDDIQUI¹, AMIT DUBEY², RAJAN YADAV³, AMAN ALAM ANSARI⁴

Abstract

Nowadays, the PMSM machines attain popularity in the industries because of its excellent dynamic performance. This motor is very suitable for automotive and high power traction applications. The main problem in this motor is magnetic demagnetization; if this problem is not detected in the early stages then drastic consequence is taken place in the industries due to motor failure. Therefore, in this paper, magnetic demagnetization has been detected in the early stages by advanced signal processing technique. The detailed signal associated with high frequency band of Wavelet transfigure has been cast off in early magnetic demagnetization culpability detection impetus. In the future, the proposed technique may be implemented for diagnosing of magnetic faults in the efficient way.

Keywords: Permanent Magnet Synchronous Motor (PMSM); Demagnetization Fault Identification; Time Domain Analysis; Advance Signal Processing Technique; Discrete Wavelet Algorithm

1. Introduction

The rotor employed in the Permanent Magnet Synchronous Motor (PMSM) comprises permanent magnetic material. This attribute simplifies and enhances the control of PMSM, resulting in improved power factor.

^{1,2,3,4} Electrical Engineering Department, Babu Banarasi Das National Institute of Technology and Management, Lucknow (BBDNITM)