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PREFACE 

 
 
 

The objective of this book is to analyze surface waves in absorbing layers 
used for the purpose of reducing the radar cross sections (RCS). These 
waves are originally generated by radars at geometrical or material 
discontinuities on the target surface. They propagate into absorbing 
coatings where they are transformed into heat energy. In accordance with 
the reciprocity principle, they can also turn into radiation when 
encountering such inhomogeneities in the target surface. Thus, surface 
waves represent a constitutive part of the complex scattering and 
absorption process. However, their physical properties have not been 
studied in detail despite the fact that absorbing coatings have widely been 
used since the Second World War. They have now been investigated in 
detail by the authors. We have discovered some new physical phenomena, 
such as upper frequency cutoff limits, the shifting of these cutoff limits to 
higher frequencies in material with smaller losses, and the merging of high 
order modes. These and other new results are presented and analyzed in 
this book. They are useful for electrical engineers and scientists interested 
in surface waves phenomena and in microwave absorbing material, as well 
as in lossy microwave circuits. 

 
 





ABSTRACT 

 
 
 

Surface waves are well investigated in problems related to propagation of 
elastic, acoustic, radio, and optics waves. But this is not the case with 
surface waves in microwave absorbing materials. In spite of the fact that 
radar absorbing coatings have been widely used since the Second World 
War, the properties of surface waves, which can exist in such materials, 
have not been studied in detail. Currently available books provide a 
general description of surface and other types of guided waves and focus 
mostly on the problems which do not relate directly to surface waves in 
microwave coatings. Analysis of radar absorbing materials (RAM) in 
technical books is usually based on the evaluation of the reflection 
coefficient only. However, surface waves play an important role in the 
absorption of radar waves. These waves also can provide an appreciable 
contribution to a fine structure of the scattered field when they transform 
into radiated waves at edges and material discontinuities. It was the 
authors’ intention to fill in the gap in the existing theory of surface waves 
by investigating their properties in microwave absorbing materials. In this 
book, the authors present new results for surface waves in actual absorbing 
layers. 

It has been shown that the traditional notions of the phase velocity and 
group velocity widely used in the theory of transmission lines are 
inappropriate for surface waves in absorbing layers. New, more general 
and appropriate definitions based on a physical view point for the phase 
velocity and energy velocity have been introduced. Physical phenomena 
hitherto unknown have been discovered and described. These include the 
upper frequency cutoff of surface waves, shifting of this cutoff to higher 
frequencies in materials with lower losses, and merging of high order 
surface waves / modes. These and other new results are presented and 
analyzed in this book. They can be of interest to the designers of radar 
absorbing coatings, microwave transmission lines and microwave devices. 





INTRODUCTION 

 
 
 
Surface waves represent a special class of guided waves. A distinctive 
feature of these waves is an exponential decrease of their amplitude in the 
direction normal to and away from the guiding structure. These waves 
were first discovered theoretically by Sommerfeld [1, 2] and Zenneck [3]. 
Sommerfeld investigated surface waves supported by thin imperfect 
cylindrical conductors. Zenneck studied surface waves near a flat interface 
between two homogeneous media. Goubau demonstrated experimentally 
surface waves propagating along metallic wires [4]. Since then, numerous 
articles were published about surface waves and now they have become a 
classic subject in the theory of guided waves [5-10, 15-18]. However, in 
this theory, transmission lines are usually considered without losses. Small 
losses are treated sometimes by the perturbation technique [18, 20]. 

As far as we know, properties of surface waves in actual absorbing 
structures with high losses were not well known. They were investigated 
by these authors in [21-25]. The results of these investigations, their 
analysis in detail and some other new results are presented in this book. 

The first chapter contains the description of general properties of 
surface waves in absorbing layers. They include the physical structure of 
surface waves, the interpretation of them as inhomogeneous plane waves 
incident on the layer under the complex Brewster angles, and 
interpretations of dispersion equations as zeroes of the numerator or 
denominator of the reflection coefficient for the incident plane wave. It is 
also shown that the conventional notions of the phase and group velocities 
traditionally used in the theory of guided waves are not applicable in the 
case of actual absorbing material. Instead, we have introduced new 
physically reasonable and more general definitions for the phase velocity 
and the energy velocity. 

Chapter 2 contains analysis of numerical results for attenuation and 
propagation constants of surface waves. It describes new physical 
phenomena discovered in [21-25] which do not exist in layers without 
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losses. These are the upper frequency cutoff, the shifting of this cutoff to 
higher frequencies in layers with lower losses, and the merging of high 
order modes. 

 
Absorbing layers can support different types of guided waves. Special 

wave diagrams convenient for classification and analysis of guided waves 
are suggested in Chapter 3. Transformation of surface waves into other 
guided waves is investigated. In particular, it is shown that continuous 
transformation of surface waves into growing and leaky waves is 
forbidden. 

In a single-mode frequency band, thin absorbing layers with 
appropriate parameters can be considered approximately as a plane with 
the standard impedance boundary condition. This approach is used in 
Chapter 3 to analyze the excitation of absorbing layers by an aperture-
limited plane wave. An exact analytical solution of this problem is 
provided and analyzed. Numerical data for the launching efficiency of 
surface waves are presented. 

In this book, we investigate surface waves in a homogeneous 
absorbing layer placed on a perfectly conducting plane (Fig. 1-1). Though 
this two-dimensional model is simple, it allows one to study some general 
properties of surface waves. Some results of this study are also valid for 
any stratified coatings. It should be noted that all numerical results were 
performed for an actual commercially available material with constitutive 
parameters shown in Fig. 1-2. 

Such materials are widely used as microwave absorbing coatings. The 
Debye model-fit (A.1) for these experimental data was developed by Dr. 
A.D. Varvatsis and is presented in the Appendix. It is consistent with the 
Kramers-Kronig relations [19] and confirms the validity of experimental 
data. This material is ceramic in nature and it is embedded with small 
spherical metallic particles. Such materials are widely used as microwave 
absorbing coatings. Electromagnetic design and application of radar 
absorbing materials are presented in the Handbooks [27, 39]. 

In Fig. 1-1, the thickness of the layer is denoted by the letter a . Its 
relative permittivity and permeability are   and  , respectively. A free 
space ( 1   ) is assumed to be above the layer. The wave number in 
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free space is denoted as 0 0 0 02 /k       ,   is the angular 

frequency of harmonic oscillations and 0  is the free space wavelength. 
The time dependence exp( )i t  is assumed and suppressed below. 





CHAPTER ONE 

GENERAL PROPERTIES OF SURFACE WAVES 

 
 
 

1.1 Basic field equations 

The geometry of the problem is shown in Fig. 1-1. Here,   and   are the 
relative permittivity and permeability, respectively. It follows from 
Maxwell’s equations that two types of surface waves can exist in 
absorbing layers: the transverse magnetic (TM) and transverse electric 
(TE) waves. In TM-waves, the magnetic vector H


 contains only the x-

component ( xH ), while in TE-waves only the x-component ( xE ) of the 

electric vector E


 can exist. 
 

 
 
Fig. 1-1. Absorbing layer (0 )y a   backed up by a perfectly conducting plane 
( 0)y  . 
 

The TM-waves are described by equations 
 

 1 ( )e eik y a i z
xH  ,  
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 0
0

y xE Z H
k


  , 1

0
0

z x

k
E Z H

k
 , (1.1) 

 
0 0 0/k c      in the free space (Region 1), y a , and by equations 

 

 2

2

cos( ) e
cos( )

i z
x

k y
H

k a
 ,  

 

 0
0

y xE Z H
k




  , 2
0 2

0

tan( )z x

k
E i Z H k y

k 
  (1.2) 

 
inside the layer (Region 2), 0 y a  . In these equations, 0 0 0/Z    

is the impedance of the free space. The complex quantities 2 2 2k k ik     

and 1 1 1k k ik    are the transverse wave numbers of the wave field 
inside and outside the layer, respectively. The complex quantity 

i      is the longitudinal wave number or the propagation constant. 
These wave numbers are connected by the relations 
 
 2 2 2

1 0k k  , 2 2 2
2 0k k    (1.3) 

 
through the Helmholtz wave equation. It follows that 

 
 2 2 2

2 1 0 ( 1)k k k    . (1.4) 
 
The xH -components from eqs. (1.1) and (1.2) are continuous on top of the 
layer ( y a ). The zE -component satisfies the boundary condition on the 
perfectly conducting plane ( 0zE   at 0y  ) and its continuity on top of 
the layer, y a  leads to a transcendental equation 
 
 1 2 2tan( )k ik k a  . (1.5) 
 
This transforms into the dispersion equation 
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  TM 2 2 2 2 2 2
0 0 0 0( , ) tan 0D k k a k i k             (1.6) 

 
with the substitutions of 1k  and 2k  from eq. (1.3).  

The TE-waves are described by similar equations. Their field 
components above the layer ( y a ) are  

 
 1 ( )e eik y a i z

xE  ,  
 

 0
0

y xH Y E
k


 , 1

0
0

z x

k
H Y E

k
  , (1.7) 

 
and inside the layer ( 0 y a  ), they are  

 

 2

2

sin( ) e
sin( )

i z
x

k y
E

k a
 , 

 

  0
0

y xH Y E
k




 , 2
0 2

0

cot( )z x

k
H i Y E k y

k 
 , (1.8) 

 
where 0 01/Y Z  is the admittance of free space. 

The wave numbers 1k , 2k ,   of TE-waves also obey eqs. (1.3) and 
(1.4). But instead of eq. (1.5) for TM-waves, they satisfy the dispersion 
equation 

 
 1 2 2cot( )k ik k a    (1.9) 

 
which can be written as 
 
  TE 2 2 2 2 2 2

0 0 0 0( , ) cot 0D k k a k i k            (1.10) 
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Fig. 1-2. Constitutive properties of sample material (constant relative permittivity: 
ε' = 20.45, ε" = 0.73). 

 
All numerical data presented in this book were obtained with the 

solutions of dispersion equations (1.6) and (1.10) using the Muller's 
method [28]. Constitutive parameters of a sample material are shown in 
Fig. 1-2. 

For surface waves, the imaginary part of the transverse wave number 
1k  is always positive thus ensuring an exponential decay of the field in the 

direction away from the layer. One should note that a tight connection 
exists between the dispersion equations (1.6), (1.10), and the reflection 
coefficients of plane waves incident on the layer. This connection is 
demonstrated in the next section. 

1.2 Dispersion equations as zeroes or  
poles of reflection coefficients 

First, consider the reflection of the TM plane wave  
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 0 ( cos sin )inc eik z y
xH    (1.11) 

 
from the homogeneous absorbing layer (Fig. 1-3). This is a classic 
problem considered in handbooks on Electromagnetics. We present here 
only the final expression for the reflected wave 
 

 
 
Fig. 1-3. Reflection of the plane wave by the layer. 

 
 0 0( cos sin ) 2 sinref ( ) e eik z y i k a

x hH        (1.12) 
 
where the reflection coefficient ( )h   is given by 

 
 
 

2 2
0

2 2
0

sin cos tan cos
( )

sin cos tan cos
h

i k a

i k a

     
 

     

  


  
. (1.13) 
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By setting 0cos / k   and 2
0 1 0sin 1 ( / ) /k k k       with 

complex   determined by eq. (l.6), the incident plane wave given by eq. 
(1.11) transforms into eq. (1.1) for the surface wave. Here the angle   can 
be recognized as the complement of the Brewster angle B  defined in the 
next section. The reflection coefficient changes into 

 

 
 
 

2 2 2 2 2 2
0 0 0

2 2 2 2 2 2
0 0 0

tan

tan
h

i k k a k

i k k a k

     


     

   


   
. (1.14) 

 
The numerator of this expression is exactly the left-hand side of the 
dispersion equation (1.6) and, therefore, it is equal to zero. This confirms 
the observations [5, 29], that the surface wave can be interpreted as an 
inhomogeneous plane wave incident on the guiding structure under the 
complex Brewster angle without reflection. 

We also can transform the reflected wave (1.12) into the surface wave 

(1.1) by setting 0cos / k   and 2
0 1 0sin 1 ( / ) /k k k    .  

In this case, the reflection coefficient changes to 
 

 
 
 

2 2 2 2 2 2
0 0 0

2 2 2 2 2 2
0 0 0

tan

tan
h

i k k a k

i k k a k

     


     

   


   
. (1.15) 

 
The denominator of this expression equals zero due to the dispersion 
equation (1.6). This pole of the reflection coefficient can be interpreted as 
the existence of the reflected wave (i.e. surface wave) in the absence of the 
incident wave. 

Now let us consider the reflection of TE plane wave 
 

 0 ( cos sin )inc eik z y
xE    (1.16) 

 
from the same layer. The reflected wave is determined as 
 
 0 0( cos sin ) 2 sinref ( ) e eik z y i k a

x eE        (1.17) 



General Properties of Surface Waves 11 

with the reflection coefficient  
 

 
 
 

2 2
0

2 2
0

sin cos cot cos
( )

sin cos cot cos
e

i k a

i k a

     
 

     

  


  
. (1.18) 

 

By setting 0cos / k   and 2
0 1 0sin 1 ( / ) /k k k       with 

complex   determined by eq. (1.10), the incident plane wave (1.16) 
transforms into eq. (1.7) for the surface wave and the reflection coefficient 
changes into 

 

 
 
 

2 2 2 2 2 2
0 0 0

2 2 2 2 2 2
0 0 0

cot

cot
e

i k k a k

i k k a k

     


     

   


   
. (1.19) 

 
The numerator of this coefficient equals zero due to the dispersion 

equation (1.10). This means that the surface wave can be interpreted as the 
inhomogeneous plane wave incident on the layer under a complex Brewster 
angle. Again, the reflected wave (1.17) also can be considered as the surface 

wave by setting 0cos / k   and 2
0 1 0sin 1 ( / ) /k k k    .  

In this case, the reflection coefficient changes into 
 

 
 
 

2 2 2 2 2 2
0 0 0

2 2 2 2 2 2
0 0 0

cot

cot
e

i k k a k

i k k a k

     


     

   


   
. (1.20) 

 
According to the dispersion equation (1.10), the denominator here equals 
zero. The infinite reflection coefficient means the existence of the 
reflected wave (i.e. the surface wave) in the absence of the incident wave. 
Thus, we see that dispersion equations can be interpreted as zeroes or 
poles of the reflection coefficients. This property of the reflection 
coefficients is used sometimes to derive dispersion equations. 
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1.3 Phase and amplitude fronts of surface waves 

Equations (1.1) describe a spatial distribution of the surface wave outside 
the layer ( y a ) with a factor 

 
 ( )p aie    where 1p z k y     , 1a z k y     . (1.21) 
 
For physically allowed solutions above the lower cutoff frequency, the 
dispersion equations provide the following values: 0   , 0   , and 

1 0k   , 1 0k  . Therefore, the surface wave outside the absorbing layer is 
an inhomogeneous plane wave incident on the layer without reflection. 
Due to the losses inside the layer this wave undergoes the exponential 
attenuation in the z-direction and its amplitude decreases exponentially 
along the normal to the layer (in the y-direction). 

Setting p const   and a const   determines the phase and amplitude 

fronts, respectively: 
 

 tanp p py z const  , tana a ay z const  , (1.22) 
 
where 

  

 
1

tan p k




 


, 
1

tan a k




 


. (1.23) 

 
According to eq. (1.3), the quantity 2 2

1k   is purely real. It follows that  
 

 1 1 0k k      , (1.24.1) 
 

 1

1

tan cota p

k

k

 



    
 

. (1.24.2) 

 

Therefore, 
2a p

   , i.e., outside the layer, the phase and amplitude 

fronts of the surface wave are perpendicular to each other (Fig. 1-4). This 
is in agreement with the well-known property of inhomogeneous plane 
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waves propagating in lossless media. The angles p  and a  are shown in 

Figs. 1-5 and 1-6 as functions of frequency. 
 

 
 
Fig. 1-4. Amplitude and phase fronts of the surface wave above the layer. 
 

 
 
Fig. 1-5. Phase front angles of TM-waves outside the layers. 
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Fig. 1-6. Amplitude front angles of TM-waves outside the layers. 
 

It is interesting to note a close connection between the angle p  and 

the complex Brewster angle B B Bi     . The latter is introduced by the 
relation 

 
 01 ( sin cos )( )e e B Bik z yi z k y      (1.25) 
 
where 

  
 0sin /B k  , 1 0cos /B k k   . (1.26) 
 
From these equations it follows that 0sin cosh /B B k     , 

0cos sinh /B B k     , 1 0cos cosh /B B k k     , 1 0sin sinh /B B k k    , 
and 

 
 1 1tan / /B k k         , (1.27) 

 


