The Complexities, Key Concepts and Mechanisms of Immunology

The Complexities, Key Concepts and Mechanisms of Immunology

By

Seema Tripathy and Rashmi Rekha Sahu

Cambridge Scholars Publishing

The Complexities, Key Concepts and Mechanisms of Immunology

By Seema Tripathy and Rashmi Rekha Sahu

This book first published 2024

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2024 by Seema Tripathy and Rashmi Rekha Sahu

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-0364-0466-8 ISBN (13): 978-1-0364-0466-6

CONTENTS

About the Authorsxxiii
List of Illustrationsxxv
List of Tablesxxxiii
Forewordxxxv
Prefacexxxvi
Acknowledgementsxliv
Abbreviationsxlvi
Unit I: Structural Organization of Immune Systems
1
2

vi Contents

2.2.1.1. Neutrophils
2.2.1.2. Basophils
2.2.1.3. Eosinophils
2.2.1.4. Mast cells
2.2.2. Agranulocytes
2.2.2.1. Monocytes
2.2.2.2. Macrophages
2.2.2.3. Dendritic cells (DCs)
2.2.2.3.1. Follicular dendritic cells (FDCs)
2.2.2.4. Megakaryocytes
2.3. Lymphoid progenitors
2.3.1. Lymphocytes
2.3.1.1. T-lymphocytes
2.3.1.1.1. CD4 ⁺ T-cells (T-helper cells, Th or T _H cells)
2.3.1.1.2. CD8 ⁺ T-cells (Cytotoxic T-cells, CTL)
2.3.1.1.3. γδ T-cells
2.3.1.1.4. MAIT cells
2.3.1.1.5. Natural Killer T-Cells (NKT cells)
2.3.1.2. B-lymphocytes
2.3.2. NK cells
2.4. Antigen-presenting cells
2.5. Erythroid progenitors
2.6. Conclusion
2.7. References
2.8. Questions and answers
3
Organs of the immune system
3.1. Introduction
3.2. Primary lymphoid organs
3.2.1. Bone marrow
3.2.2. Thymus
3.3. Secondary lymphoid organs
3.3.1. Spleen
3.3.2. Lymph nodes
3.3.3. Mucosa-associated lymphoid tissue (MALT)
3.3.3.1. Bronchus-associated lymphoid tissue (BALT)
3.3.3.2. Gut-associated lymphoid tissue (GALT)
3.3.3. Nasal-associated lymphoid tissue (NALT)
3.3.3.4. Skin-associated lymphoid tissue (SALT)
3.3.3.5. Conjunctival-associated lymphoid tissue (CALT)

3.3.3.6. Larynx-associated lymphoid tissue (LALT)3.3.3.7. Vulvo-vaginal-associated lymphoid tissue (VALT)
3.3.3.8. Testis-associated lymphoid tissue (TALT)
3.3.4. M cells
3.4. Conclusion
3.5. References
3.6. Questions and answers
Unit II: Functional Aspects of the Immune System
464
Recognition of antigen: antigenicity and immunogenicity
4.1. Introduction
4.2. Antigens
4.3. Antigenicity
4.4. Chemical nature of antigens4.5. Classification of antigens
4.5.1 According to their origin or source:
4.5.2 Immunogenicity
4.5.3 Help of T-cells for the activation of B-cells
4.6. Immunogen
4.6.1 Immunogenicity
4.6.1.1. Types of immunogenicity
4.6.1.1.1. Wanted immunogenicity
4.6.1.1.2. Unwanted immunogenicity
4.6.2 Specifications for immunogenicity
4.6.2.1 Nature of immunogen
4.6.2.2 Contribution of the biological factors.
4.6.2.3 Method of administration
4.7. Some related terms
4.7.1 Superantigens
4.7.2 Allergens
4.7.3 Tolerogen
4.8. Epitope
4.8.1 Categories of epitopes
4.8.1.1 Linear epitope
4.8.1.2 Conformational epitope
4.9. Antigen–antibody interactions
4.9.1 Common features of antigen—antibody interactions
4.9.2 Properties of antigen—antibody interactions
4.9.2.1 Specificity

viii Contents

4.9.2.2 Valency
4.9.2.3 Affinity
4.9.2.4 Avidity
4.9.2.5 Cross-reactivity
4.10 Conclusion
4.11 References
4.12 Questions and answers
1112 Questions and answers
583
Types of Immunity: innate and adaptive immunity
5.1. Introduction
5.2. Types of immunity
5.2.1. Innate immunity (Natural immunity/ nonspecific immunity)
5.2.1.1. First line of defense
5.2.1.1.1 Intact skin
5.2.1.1.2 Mucous membranes
5.2.1.1.2.1 Nose
5.2.1.1.2.2 Ears
5.2.1.1.2.3 Eyes: Lacrimal apparatus
5.2.1.1.2.4. Saliva
5.2.1.1.2.5 Epiglottis of larynx
5.2.1.1.2.6. Gastric juice
5.2.1.1.2.7. Urinary tract
5.2.1.1.2.8. Reproductive tract
5.2.1.1.2.9. Normal microbiota
5.2.1.2. Second line of defense
5.2.1.2.1. Antimicrobial substances
5.2.1.2.1.1. AMPs
5.2.1.2.1.2. IBPs
5.2.1.2.1.3. Interferons
5.2.1.2.1.4. Complement proteins
5.2.1.2.2. Phagocytes
5.2.1.2.3. NK cells
5.2.1.2.4. Inflammation and fever
5.2.1.2.5. Pathogen-associated molecular patterns
(PAMPs) and pattern-recognition receptors (PRRs)
5.2.1.2.5.1. Examples of PAMPs
5.2.1.2.5.2. Recognition of PAMPs
5.2.1.2.5.2.1. TLRs
5.2.1.2.5.2.2. CLRs
5212523 RLRs

5.2.1.2.5.2.4. NLRs 5.2.1.2.6. Acute-phase proteins 5.2.2 Adaptive immunity (Acquired Immunity/Specific Immunity) 5.2.2.1. Active immunity 5.2.2.2. Passive immunity 5.2.2.3 Characteristics of adaptive immunity 5.2.2.3 Characteristics of expecificity 5.2.2.3.1. Antigenic specificity 5.2.2.3.2. Diversity 5.2.2.3.3. Immunogenic memory 5.2.2.3.4. Distinction between self and nonself 5.3. Innate and adaptive immunity are highly interrelated
5.4. Conclusion
5.5. References
5.6. Questions and answers
6
6
6.1. Introduction
6.2. Humoral and cellular components of innate and adaptive immune
systems
6.3. Effector mechanisms of humoral immunity
6.3.1. Functions of antibodies
6.3.1.1. Fab-mediated functions
6.3.1.1.1. Fc receptors
6.3.1.1.2. Fey receptors
6.3.1.2. Fc-mediated functions
6.4. Effector mechanisms of cell-mediated immunity
6.4.1. Functions of Th1 lymphocytes
6.4.1.1. Chronic Th1 cell-dependent macrophage activation (DTH response)
6.4.2. Functions of Th2 lymphocytes
6.4.3. Functions of CD8 ⁺ cytotoxic T-lymphocytes
6.4.3.1. Granule exocytosis pathway
6.4.3.2. Fas–FasL-mediated cytolysis pathway
6.5. Nonspecific cell-mediated cytotoxicity by NK cells
6.6. Conclusion
6.7. References
6.8. Questions and answers

x Contents

Unit III: Immunobiology

7
Immunoglobulins: structure and functions
7.1. Introduction
7.2. Antibody
7.2.1. Soluble and membrane-bound form of antibodies
7.2.2. Immunoglobulin Structure
7.2.3. Immunoglobulin domains
7.2.3.1. Immunoglobulin folds
7.2.3.2. Heavy and light chains
7.2.3.3. Immunoglobulin fragments
7.2.3.4. Complementarity-determining regions
7.3. Immunoglobulin classes
7.3.1. Immunoglobulin G (IgG)
7.3.1.1. Structure
7.3.1.2. Function
7.3.2. IgA
7.3.2.2. Structure
7.3.2.3. Function
7.3.3. IgM
7.3.3.1. Structure
7.3.3.2. Function
7.3.4. IgD
7.3.4.1. Structure
7.3.4.2 Function
7.3.5 IgE
7.3.5.1. Structure
7.3.5.2. Function
7.4. Paratope
7.5. Antibody variants
7.5.1. Isotypes
7.5.2. Allotypes
7.5.3 Idiotypes
7.6. Immunoglobulin superfamily
7.7. Conclusion
7.8. References
7.9. Questions and answers

8
Gene arrangements and class switching of immunoglobulins
8.1. Introduction
8.2. Arrangement of immunoglobulin genes
8.3. Somatic hypermutation
8.3.1. Recombination at the light-chain locus
8.3.1.1. RSSs
8.4. Mechanism of recombination
8.5. Class-switching recombination of antibodies
8.6. Conclusion
8.7. References
8.8. Questions and answers
9
Activation and regulation of T and B-lymphocytes
9.1. Introduction
9.2. Note on reservoirs of immune cells and proteins
9.3. Thymus-derived cells or T-cells, or T-lymphocytes
9.3.1. Thymus
9.3.1.1. Subcapsular region
9.3.1.2. Cortex
9.3.1.3. Cortico-medullary junction
9.3.1.4. Medulla
9.3.2. TCRs
9.3.2.1. αβ TCR
9.3.2.2. γδ TCR
9.4. Characteristics of different developmental stages of T-cells
9.4.1. Gene rearrangement of TCR
9.4.2. Selection of T cells
9.4.2.1. Positive selection
9.5. T-cell activation and maturation
9.5.1. Activation of naive CD4+ T-cells
9.5.2. Activation of naive CD8+ T-cells
9.6. Subset of CD4 ⁺ T-cells or T-helper (Th) cells
9.6.1. Importance of diverse types of helper T-cells
9.7. Development and Regulation of B-lymphocytes or bone marrow-
derived cells or B-cells
9.7.1. Development of B-lymphocytes
9.7.2. Why is IL-7 important?
9.7.3. B-cell receptor
9.7.4. Activation and differentiation of B-cells

xii Contents

9.7.4.1. T-cell-independent B-cell activation
9.7.4.2. T-cell-dependent B-cell activation
9.8. B-1 and B-2 B-lymphocytes
9.9. Clonal selection
9.9.1. Clonal selection theory
9.10. Kinetics of immune response
9.10.1. Primary response
9.10.1.1. Lag or latent phase
9.10.1.2. Log or exponential phase
9.10.1.3. Plateau or steady phase
9.10.1.4. Decline or decay phase
9.10.2. Secondary response
9.11. Conclusion
9.12. References
9.13. Questions and answers
,
Unit-IV: Establishment of Immune Responses
•
10
Major histocompatibility complex
10.1. Introduction
10.2. Major histocompatible complex (MHC) domain
10.3. Types and location of MHC
10.3.1. Polymorphism of MHC gene
10.4. Structure and functions of MHC molecules
10.4.1. MHC class I
10.4.1.1. α chain
10.4.1.2. β2 microglobulin (β2m)
10.4.1.3. Significance of MHC class I
10.4.2. MHC class II
10.4.2.1. Structure of MHC class II molecules
10.4.2.2. Significance of MHC class II
10.5. Antigen processing and presentation
10.5.1. Endogenous pathway of antigen presentation
10.5.2. Exogenous pathway of antigen presentation
10.6. Processing and presentation of endogenous and intracellular
antigens
10.6.1. T-cell activation
10.6.1.1. Activation of cytotoxic T-cells (CD8 ⁺ cells)
10.7. Processing and presentation of extracellular or exogenous
antigens

10.7.1. Activation of Th cells (CD4 ⁺ cells)
10.8. Conclusion
10.9. References
10.10. Questions and answers
11221
Complement system activation
11.1. Introduction
11.2. Complement proteins
11.3. Nomenclature of complement proteins
11.4. Complement-activation pathways
11.4.1. Classical pathway of complement activation
11.4.2. MBL pathway of complement-activation
11.4.3. Alternative pathway of complement activation
11.5. Effect of complement products on immune responses
11.5.1. Opsonization
11.5.2. Cytolysis
11.5.3. Chemotaxis
11.6. Regulation of complement activation
11.7. Conclusion
11.8. References
11.9. Questions and answers
12237
Cytokines and their role in immune regulation
12.1. Introduction
12.2. Cells concerned with cytokine production
12.3. Common features of cytokines
12.4. Modes of action of cytokines
12.4.1. Autocrine action
12.4.2. Paracrine action
12.4.3. Endocrine action
12.5. Activity of cytokines
12.5.1. Pleotropic function
12.5.2. Redundancy
12.5.3. Synergy
12.5.4. Antagonistic
12.6. Types of cytokines
12.6.1. The hematopoietin or interleukin (IL) family
12.6.2. The interferon (IFN) family
12.6.3. The TNF family

xiv Contents

12.6.4. The chemokine family
12.7 Cytokines involved in inflammation
12.7.1 Acute inflammation
12.7.1.1. Cytokines involved in acute inflammation
12.7.1.2. Role of TNF and IL-1 in local effects of inflammation
12.7.1.3. Effects of TNF and IL-1 on endothelial cells
12.7.1.4. Effects of TNF and IL-1 on leukocytes
12.7.1.5. Effects of TNF and IL-1 on fibroblasts
12.7.1.6. Role of TNF and IL-1 in systemic effects of
inflammation
12.7.1.7. Mechanism of fever
12.7.1.8. Leukocytosis
12.7.1.9. Production of acute-phase proteins (APPs)
12.7.1.10. Other effects
12.7.1.11. Other cytokines participating in acute inflammation
12.7.2 Chronic inflammation
12.7.2.1. Cytokines involved in chronic inflammation
12.8 Functions of cytokines in elevating immune response
12.8.1 Roles of cytokines in innate immune response
12.8.2 Roles of cytokines in adaptive immune response
12.9. Role of cytokines in hematopoiesis
12.10 Cytokines as therapeutic medicine
12.11 Cytokine receptors
12.11.1 Type I cytokine receptors
12.11.2 Type II cytokine receptors
12.11.3 Immunoglobulin (Ig) receptor superfamily
12.11.4 Chemokine receptors
12.11.5 TNFR superfamily
12.12. Cytokine receptor-mediated signal transduction
12.13 Conclusion
12.14 References
12.15 Questions and answers
Unit V: Immune Dysfunction
13
Autoimmunity
13.1. Introduction
13.2. Central tolerance
13.2.1. Central B-cell tolerance
13.2.2. Central T-cell tolerance

xvi Contents

14.3.1.1. Type I hypersensitivity reactions
14.3.1.2. Type II hypersensitivity reactions
14.3.1.3. Type III hypersensitivity reactions
14.3.1.4. Type IV hypersensitivity reactions
14.4. Mechanisms behind hypersensitivity reactions
14.4.1. Type I hypersensitivity
14.4.1.1. Pathogenesis of type I hypersensitivity
14.4.2. Type II hypersensitivity
14.4.2.1. Pathogenesis of type II hypersensitivity reaction
14.4.2.1.1. Intrinsic antigens
14.2.1.1.1. Proteins that are part of the cell membrane
14.4.2.1.1.2. Antigens present on the matrix in between
cells
14.4.2.1.1.3. Receptor antigens of cells
14.4.2.1.2. Extrinsic antigens
14.4.2.1.2.1. Blood transfusion reaction
14.4.2.1.2.2. Deposition of drug metabolites
14.4.2.2. Regulation of type II hypersensitivity
14.4.2.2.1. Opsonization and phagocytosis
14.4.2.2.2. Complement activation
14.4.2.2.3. ADCC
14.4.3. Type III hypersensitivity
14.4.3.1. Pathogenesis of type III hypersensitivity
14.4.3.1.1. Phase of immune complex formation
14.4.3.1.2. Phase of immune complex deposition
14.4.3.1.3. Phase of immune complex-mediated
inflammation and tissue injuries
14.4.4. Type IV hypersensitivity
14.4.4.1. Pathogenesis of type IV hypersensitivity
14.5. Conclusion
14.6. References
14.7. Questions and answers
15 200
15
Immunodeficiency and transplantation biology 15.1. Introduction
15.2. Immunodeficiencies
15.2.1.1 Impairment of T cell functions
15.2.1.1. Impairment of T-cell functions
15.2.1.2. Impairment of B-cell functions
15.2.1.3. Complement deficiency

15.2.1.4. Primary phagocytic disorders
15.2.1.5. Diagnosis of PIDs
15.2.2. Secondary Immunodeficiency (SIDs)
15.3. Transplantation biology
15.3.1. Immunology of graft rejection
15.3.1.1. Mechanisms mediate direct and indirect
allorecognition pathway
15.3.1.2. Isolation of HSCs for transplantation
15.3.1.3. Acute GVHD
15.3.1.4. Chronic GVHD
15.3.2. Management of GVHD
15.3.2.1. Immunosuppressive mechanisms to circumvent graft
rejection
15.4. Conclusion
15.5. References
15.6. Questions and answers
Unit VI: Immunization
16
Development of vaccine technology
16.1. Introduction
16.2. Development of vaccines
16.2.1. Preparation of vaccines
16.2.2. Characteristics of vaccines
16.2.3. Routes of administration
16.2.4. Efficiency of vaccine
16.2.5. Vaccines boost immunity level
16.3. Immunization schedule followed in India
16.4. Herd immunity
16.6. References
16.7. Questions and answers
17355
Types of vaccines and vaccination
17.1 Introduction
17.2. Different types of vaccines
17.2.1. Live attenuated vaccines
17.2.2. Inactivated or killed vaccines
17.2.3. Toxoid vaccines
17.2.4. Subunit vaccines

xviii Contents

17.2.5. Conjugated vaccines	
17.2.6. DNA vaccines	
17.2.7. Recombinant vector vaccines	
17.2.8. Cellular vaccines	
17.3. Conclusion	
17.4. References	
17.5. Questions and answers	
17101 Questions und uns 11015	
18	372
Vaccine design based on clinical requirements	
18.1. Introduction	
18.2. Design of vaccines	
18.3. Components of a vaccine	
18.3.1. Antigens	
18.3.2. Adjuvants	
18.3.3. Stabilizers	
18.3.4. Antibiotics	
18.3.5. Preservatives	
18.3.6. Administration route	
18.3.7. Doses	
18.4. Clinical trial of vaccines	
18.4.1. Phase I clinical trial (first in humans)	
18.4.2. Phase II clinical trial	
18.4.3. Phase III (pivotal studies)	
18.4.4. Phase IV (post-marketing examination)	
18.5. Conclusion	
18.6. References	
18.7. Questions and answers	
Unit VII: Immunotechniques	
·	
19	390
Immunoreactions: antibody and antigen interaction	
19.1. Introduction	
19.2. Immunoreactions	
19.2.1. Properties of antigen–antibody interaction	
19.2.2. Factors affecting antigen—antibody interaction	
19.3. Conventional and advance immunotechniques	
19.3.1. Precipitation reaction	
19.3.1.1. Direct antigen-capture method	
19.3.1.2 Indirect antigen-capture method	

- 19.3.2. Immunoprecipitation
 - 19.3.2.1. Immunoprecipitation reaction in solution
 - 19.3.2.1.1. Ring test
 - 19.3.2.1.2. Flocculation test
 - 19.3.2.2. Immunoprecipitation reaction in gels
- 19.3.3. Immunodiffusion reactions
 - 19.3.3.1. Single diffusion in one dimension (Oudin procedure)
 - 19.3.3.2. Single diffusion in two dimensions (radial immunodiffusion or Mancini method)
 - 19.3.3.3 Double diffusion in one dimension (Oakley–Fulthorpe procedure)
 - 19.3.3.4 Double diffusion in two dimensions (Ouchterlony double immunodiffusion)
 - 19.3.3.5 Applications of double diffusion in two dimensions
 - 19.3.3.5.1 Precipitation in agar with an electric field
 - 19.3.3.5.2 Types of immunoprecipitation
 - 19.3.3.5.3 Individual protein immunoprecipitation (IP)
 - 19.3.3.5.2.2. Co-Immunoprecipitation (Co-IP)
 - 19.3.3.5.2.3. Chromatin immunoprecipitation (ChIP)
 - 19.3.3.5.2.4 Ribonuclear protein immunoprecipitation (RNP-RIP)
 - 19.3.3.6 Application of immunoprecipitation
- 19.3.4 Agglutination
 - 19.3.4.1. Mechanism of agglutination reaction
 - 19.3.4.2 Primary or sensitization phase
 - 19.3.4.3 Secondary phase
 - 19.3.4.4. Types of agglutination reaction
 - 19.3.4.4.1 Direct agglutination or active agglutination
 - 19.3.4.4.2 Indirect agglutination or passive agglutination
 - 19.3.4.4.3 Reverse passive agglutination
 - 19.3.4.4.4Factors influencing agglutination reaction
- 19.3.5. Hemagglutination
 - 19.3.5.1. Direct hemagglutination test
 - 19.3.5.1.1. Blood grouping
 - 19.3.5.1.1.1. The ABO system
 - 19.3.5.1.2. Coombs or antiglobulin test
 - 19.3.5.1.2.1. Preparation of Coombs reagent
 - 19.3.5.1.2.2. Direct Coombs test
 - 19.3.5.1.2.3. Indirect coombs test
 - 19.3.5.2. Indirect hemagglutination test

xx Contents

19.3.5.2.1. Viral hemagglutination
19.3.5.3. Agglutination inhibition test
19.3.6. Complement fixation tests (CFT)
19.3.7. Immunoelectrophoresis
19.3.7.1. Types of Immunoelectrophoresis
19.3.7.1.1. Classical immunoelectrophoresis
19.3.7.1.2. Crossed Immunoelectrophoresis
19.3.7.1.3. Rocket immunoelectrophoresis
19.3.7.1.4. Immunofixation electrophoresis
19.3.7.2. Application of immunoelectrophoresis
19.3.8. Immunoblotting
19.3.9. Immunofluorescence microscopy
19.3.9.1. Applications of immunofluorescence microscopy
19.3.10. Flow cytometry
19.3.10.1. Immunophenotyping
19.3.10.2. Single cell stimuli response
19.3.10.3. Determining immune competence
19.3.10.4. Diagnosing immunodeficiency
19.3.10.5. Tracking cell proliferation
19.3.11. Fluorescence-activated cell sorting (FACS)
19.4. Conclusion
19.5. References
19.6. Questions and answers
20
Immunoassays: Types and applications
20.1. Introduction
20.2. Homogenous and heterogeneous immunoassay
20.3. Radioimmunoassay (RIA)
20.4. Enzyme immunoassay (EIA)
20.5. Enzyme linked immunosorbent assay (ELISA)
20.5.1. Direct ELISA
20.5.2. Indirect ELISA
20.5.3. Sandwich ELISA
20.5.4. Major applications of ELISA
20.6. Liposome immunoassay (LIA)
20.7. Counting immunoassay (CIA)
20.8. Fluoroimmunoassay
20.9. Chemiluminescence immunoassay (CLIA)
20.10. Flow-injection immunoassay (FIIA)
20.11. Cloned enzyme donor immunoassay (CEDIA)

20.12. Conclusion 20.13. References
20.14. Questions and answers
21443
Making of antibodies: polyclonal and monoclonal
21.1. Introduction
21.2. Polyclonal antibodies
21.2.1. Preparation of Polyclonal antibodies
21.2.1.1. Antigen preparation
21.2.1.2. Selection of the animal
21.2. 1.3. Selection and preparation of the adjuvant
21.2.1.4. Injection protocol
21.2.1.5. Post-injection observation
21.2.1.6. Collection of the polyclonal antibodies
21.2.2. Characteristics of polyclonal antibodies
21.2.3. Applications
21.2.4. Advantages
21.2.5. Disadvantages
21.3. Need for preparation of monoclonal antibodies
21.3.1. Monoclonal antibodies
21.3.1.1. Production of monoclonal antibody
21.3.1.1.1. Preparation of antigen
21.3.1.1.2. Immunization of animal
21.3.1.1.3. Isolation of antibody-producing B-cells from the
mouse spleen
21.3.1.1.4. Fusion of B-cells and myeloma cells mediated by
polyethylene glycol (PEG)
21.3.1.1.5. Selection of hybridoma cells
21.3.1.1.6. Screening of products
21.3.2. Engineered monoclonal antibodies
21.3.2.1. Immunotoxins
21.3.2.2. Chimeric antibodies
21.3.2.3. Humanized antibodies
21.3.2.4. Heteroconjugated and bispecific antibodies
21.3.3. Advantages
21.3.4. Disadvantages
21.3.5. Applications
21.3.5.1 Diagnostic uses
21.3.5.2 Analytical uses
21.3.5.3 Therapeutic uses

xxii Contents

21.3.5.4 Autoimmune diseases
21.3.5.5 Abzyme (catalytic monoclonal antibody)
21.3.6. Note on cancer
21.4 Conclusion
21.5 References
21.6 Questions and answers
Suggested Books for Reading
Index
111dCA

ABOUT THE AUTHORS

Dr. Seema Tripathy, the author of this book, worked as a research scientist in the field of Biotechnology. Her research career involved working as a postdoctoral fellow (PDF) in the School of Biological Sciences at the National Institute of Science Education and Research (NISER), Bhubaneswar, and Women Scientist-A (Department of Science and Technology, Government of India) at Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar. She obtained her postgraduate degree from the

University of Hyderabad and pursues her Ph.D. in Biotechnology from Utkal University, Bhubaneswar. Her doctoral research was focused on the derivation, differentiation, and cryopreservation of fish embryonic stem cells. She utilized her expertise in stem cell isolation and developed a pipeline to isolate stem cells from unconventional resources like breastmilk and urine, which can be obtained via non-invasive procedures. She developed a cost-effective and simple protocol for the culture of breastmilkderived mesenchymal stem cells (BmDMSCs) which have a huge potential in biomedical applications involving the regeneration of injured tissues and repair of impaired organs. She is very passionate to develop stem cell technologies for use in biomedical practices toward human welfare. She authored the book on human anatomical and physiological systems published by VIVA publication house, India. She has high number of publications in reputed peer-reviewed journals and also filed a couple of patents. She felt the lack of a good quality, quick grasping and simple book on immunology during her tenure as a postgraduate student lecturer at Ravenshaw University. This need has eventually motivated her to write this book for undergraduate and postgraduate level students.

Ms. Rashmi Rekha Sahu, the second author of this book has obtained her post-graduation degree in Biochemistry from Ravenshaw Autonomous University, Cuttack. She is an excellent student having in-depth knowledge of science, particularly biochemistry and chemistry. The need of a book describing concepts and mechanisms of immunology in simple manner inspired her to write this book on immunology.

LIST OF ILLUSTRATIONS

- Figure 1.1. Sites at which haematopoiesis occurs in different stages of life
- Figure 1.2. Hierarchy of haematopoiesis process
- Figure 1.3. CD markers to identify different cell lineages
- Figure 1.4. Types of stem cells
- Figure 1.5. HSC niche present within the bone marrow comprises multiple cell types that act cooperatively in an integrated manner to regulate hematopoietic stem cell fate decisions.
- Figure 1.6. Involvement of endosteal vascular niche and supporting cells present in bone marrow niche in carrying out haematopoiesis.
- Figure 1.7. Key growth factors and cytokines involved in different stages of the hematopoietic hierarchy
- Figure 2.1. Haematopoiesis: The process of origin of cells of the immune system
- Figure 2.2. Neutrophils
- Figure 2.3. Basophils
- Figure 2.4. Eosinophils
- Figure 2.5. Mast cells
- Figure 2.6. Monocyte
- Figure 2.7. Macrophages
- Figure 2.8. Dendritic cells
- Figure 2.9. Megakaryocyte
- Figure 2.10. T lymphocytes
- Figure 2.11. B lymphocytes Figure 2.12. Natural killer cells
- Figure 2.13. RBCs
- Figure 3.1. Types of lymphoid organs
- Figure 3.2. Many immune cells arise from precursor cells located in the bone marrow. Both T and B cells having mature receptors then migrate through lymphatic vessels to lymph nodes where they wait for activation signals to become functional. Large organ systems also have specialized immune sites that harbor immune cells such as the spleen for the circulatory system or Peyer's patches for the gut.
- Figure 3.3. Bone marrow
- Figure 3.4. Thymus
- Figure 3.5. Spleen
- Figure 3.6. Lymph node

Figure 3.7. M cells function to take up endocytose antigens from the intestinal lumen and transport them to the underlying lymphoid tissue

Figure 4.1. Classification of antigens

Figure 4.2: Hapten (incomplete antigen)

Figure 4.3. Specifications for immunogenicity

Figure 4.4. Superantigen-mediated cross linkage of TCR and MHC class II molecules

Figure 4.5. Epitope: The part of the antigen recognized by an antibody

Figure 4.6. Types of epitopes

Figure 4.7. Affinity is the strength with which a monovalent antigen interacts with a binding site

Figure 4.8. Avidity is the total strength of all interactions combined

Figure 4.9. When two antigens share similar epitopes, cross-reactivity occurs

Figure 5.1. Skin prevents the entry of foreign substances into the body

Figure 5.2. Tear contains lysozyme, which attacks the bacterial cell wall

Figure 5.3. IFNs act to limit the viral spread and make adjacent cells resistant to viral infection

Figure 5.4. Phagocytosis

Figure 5.5. A typical TLR

Figure 5.6. Systemic acute-phase response

Figure 5.7. Various components of innate and adaptive immunity. Both innate and adaptive immunity include humoral aspects (e.g., antibodies) and cell-mediated aspects (e.g., cytokines)

Figure 6.1. Different components of humoral and cellular response in innate and adaptive immunity

Figure 6.2. Costimulatory signals from the interaction of CD40 (receptor protein present on macrophages) and CD40L (CD40 ligand expressed on T_H1 cells) and IFN-γ binding to receptors on macrophages, leading to macrophage activation

Figure 6.3. Functions of Th2 cells

Figure 6.4. Granule exocytosis pathway

Figure 6.5. Fas-FasL mediated cytolysis pathway

Figure 7.1. Functions of B cells

Figure 7.2. Structure of an immunoglobulin

Figure 7.3. Fragments produced by papain treatment of an antibody

Figure 7.4. CDRs

Figure 7.5. Structure of IgG

Figure 7.6. Structure of IgA

Figure 7.7. Structure of IgM

Figure 7.8 Structure of IgD

Figure 7.9. Structure of IgE

Figure 7.10. Paratope - Part of an antibody to which the antigen binds

Figure 7.11. Members of the Ig superfamily

Figure 8.1. Gene arrangements of immunoglobulins

Figure 8.2. Deletion mutation

Figure 8.3. Overview of V(D)J recombination. Diversity (D) and joining (J) gene segments in the germline DNA are joined together through somatic recombination at the heavy-chain locus. The V gene segment is then joined to the recombined D-J gene to produce the fully recombined heavy-chain exon. The recombined DNA is transcribed, and the primary RNA transcript is then spliced, bringing together the V and constant (C) regions. The spliced mRNA molecule is translated to produce the immunoglobulin protein. H, hinge

Figure 8.4. Recombination at light-chain locus

Figure 8.5. Position of RSSs at \overline{V} , D, and J gene segments at the κ chain, λ chain, and H chain locus

Figure 8.6. Types of RSSs

Figure 8.7. Type of spacers present at V, D and J gene segments

Figure 8.8. Mechanism of V(D)J recombination. RAG endonucleases consist of RAG1 and RAG2 initiate DSBs between the participating V(D)J gene segments and their flanking RSS. RAG cleavage generates a pair of blunt signal ends (SEs) and a pair of covalently sealed hairpinned coding ends (CEs). While SEs are directly and precisely ligated by the enzyme Ligase IV/XRCC4/XLF to form a signal joint (SJ), the hairpin CEs have to first be opened by DNA-PKcs/Artemis and then add nucleotides TdT and join by ligase to form a coding joint.

Figure 8.9. Formation of specific class of immunoglobulin

Figure 9.1. The humoral and cell-mediated branches of the immune response. The humoral branch comprises lymphocytes of the B-cell lineage. Antibodies are the effector molecules produced by this response. The process begins with the interaction of B-cell receptors (BCRs) with antigens Binding of the antigen promotes differentiation into antibody-secreting cells (plasma cells). The cell-mediated branch comprises lymphocytes of the T-cell lineage. T-helper cells (Th cells) and cytotoxic T cell (CTL). Antibody production depends on cytokines released by Th cells; thus, T h cells is intercellular bridge between cell mediated immune response and humoral response.

Figure 9.2. Bone marrow niches. In the marrow, osteoblasts and endothelial cells comprise the major cellular components that contribute to the both endosteal and vascular niches. The involvement of MSCs along with HSCs and other cellular fractions are responsible to maintain "HSC niche

Figure 9.3. Hierarchy of HSC differentiation

Figure 9.4. Different regions of the thymus

Figure 9.5. Molecular arrangement of TCR. A TCR αβ, B. TCR γδ

Figure 9.6. The process of thymocyte development. Schematic representation showing the different cell surface markers expressed in key stages of T-cell development thymus, including double negative (DN), double positive (DP), and CD4 and CD8 single positive (SP) stages BM, bone marrow; ETP, early T lineage precursor.

Figure 9.7. T-cell receptor α - and β -chain gene rearrangement

Figure 9.8. Selection of T cells in thymus. CD4+CD8+ double positive (DP) T cells express an unselected repertoire of αβ T-cell receptors (TCRs). DP cells that express TCRs that recognize self-peptide–MHC ligands with high affinity undergo apoptosis (negative selection), whereas DP T cells that are bound to an MHC-associated peptide with low affinity differentiate into either CD4+ or CD8+ single positive (SP) thymocytes (positive selection). SP thymocytes are exported from the thymus and populate the peripheral lymphoid organs. The repertoire of peripheral T cells that has survived both positive and negative selection is both self-MHC restricted and self-tolerant.

Figure 9.9. Activation of CD⁴⁺T cells

Figure 9.10. Activation and differentiation of CD8⁺ T cells

Figure 9.11. TCR and CD3 protein complex

Figure 9.12. Subtypes of T helper (Th) cells

Figure 9.13. Organization of molecules. A. Secreted antibody. B. BCR

Figure 9.14. BCR complex

Figure 9.15. B cell co-receptor complex: The co-receptor complex serves to enhance signals from the BCR.

Figure 9.16. T cell-dependent B cell activation

Figure 9.17. Selection, propagation, and differentiation of B and T lymphocytes

Figure 9.18. Differences in the primary and secondary response to antigen reproduces the phenomenon of

immunologic memory

Figure 10. 1. Distribution of MHC molecules on chromosome in human.

Figure 10. 2. Structure of MHC class I molecule

Figure 10. 3. Different kinds of APCs

Figure 10. 4. Structure of an MHC class II molecule

Figure 10. 5. MHC class I antigen presentation

Figure 10. 6. MHC class II antigen presentation pathway

- Figure 10. 7. Interaction between APCs and CD4+ cells to activate T helper cells
- Figure 11. 1. Schematic representation of a cascade reaction
- Figure 11. 2. Cleavage of complement proteins. A. C3 complement protein, B. C2 complement
- Figure 11. 3. Structural components of C1
- Figure 11. 4. Classical pathway of complement activation.
- Figure 11. 5. MBL complex
- Figure 11. 6. MBL pathway of complement activation
- Figure 11. 7. Alternative pathway of complement activation
- Figure 11.8. Effect of complement-activation pathways on immunoresponses
- Figure 12. 1. List of cells responsible for cytokine production
- Figure 12. 2. Mode of action of cytokines
- Figure 12. 3. Different functions of cytokines IL-1 and TNF
- Figure 12. 4. Mechanism of occurrence of fever.
- Figure 12. 5. Receptors for different cytokines are classified into families based on the conserved extracellular domain structures. WSXWS, tryptophan-serine-X-tryptophan-serine
- Figure 13.1. Major lines of defence of our immune system
- Figure 13. 2. When the lymphocyte does not react with the self-antigen, it is promoted to the subsequent step. However, if it reacts with the self-antigen then it is deleted
- Figure 13. 3. Mechanisms to combat response against self antigens
- Figure 13. 4. Outline of the development of autoimmune diseases
- Figure 13. 5. Diagnostic programme for autoimmune diseases
- Figure 14. 1. Antigens inducing hypersensitivity
- Figure 14. 2. Hypersensitivity I reaction
- Figure 14. 3. Mechanisms behind type II hypersensitivity reaction
- Figure 14. 4. Mechanism mediated in type III hypersensitivity
- Figure 14.5. Mechanism behind delayed-type hypersensitivity
- Figure 14. 6. Mechanism behind CD8⁺ T cell-mediated hypersensitivity reaction
- Figure 15.1. Innate and adaptive immune mechanisms work together to allow a full range of responses that provide appropriate strength and specificity to eliminate antigens
- Figure 15. 2. Primary immune deficiencies mediated via cells during their development
- Figure 15. 3. Causes of SIDs
- Figure 15.4. Two distinct pathways of allorecognition. A. Direct pathway of allo-recognition. Donor APCs like dendritic cells holding

alloantigens migrate from the graft to secondary lymphoid organs to activate T cells, provoking an immune response. B. Indirect pathway of allo-recognition. Graft proteins are collected and processed by recipient dendritic cells and presented to T cells and facilitate immune response. APCs: antigen-presenting cells, TCR: T cell receptor, MHC: major histocompatibility complex

Figure 15.5. HSCs can be isolated from bone marrow, peripheral blood, or umbilical cord blood and then transplanted into an immunocompromised host

Figure 15. 6. Mechanism of GVHD

Figure 16. 1. Generation of memory B cells. Naive B cells upon stimulated by antigen, undergo clonal expansion and form clusters of activated B cells known as extrafollicular foci. These activated B cells either differentiate into short-lived plasma cells, or they can migrate back into the follicle and initiate a germinal center reaction. After expansion and maturation, germinal center B cells differentiate to both long-lived plasma cells that produce high affinity antibodies and memory B cells that have high affinity B cell receptors. Memory B cells most likely self-renew themselves by homeostatic proliferation. Memory B cells may also regularly differentiate, in an antigen-dependent or antigen-independent manner, into long-lived plasma cells to maintain long-term antibody production

Figure 16. 2. Generation of memory T cells. When naive T cells encounter a pathogen, they proliferate, giving rise to many effector T cells that fight infection and die when the infection is over. Pathogen infection also results in the formation of long-lived memory T cells that rapidly respond to a previously encountered antigen. A, One model for memory-T-cell formation proposes that the precursor cells that give rise to memory T cells and effector T cells both arise independently from naive T cells. B, In another model, a subset of effector cells gives rise to memory T cells

Figure 16.3. Essential factors to be taken care of in the developmental process of a vaccine are efficacy, safety, feasibility, and cost along with combined efforts of the manufacturer, regulatory authorities and public health administrators

Figure 16.4. Vaccines favour adaptive immune response

Figure 17.1. Preparation of live attenuated vaccine

Figure 17.2. Preparation of inactivated vaccine

Figure 17.3. The steps involved in preparation and production of toxoids vaccines

Figure 17.4. Preparation of subunit vaccine