Data Science in Theory and Practice

Data Science in Theory and Practice

Edited by

Jaydip Sen and Sayantani Roy Choudhury

Cambridge Scholars Publishing

Data Science in Theory and Practice

Edited by Jaydip Sen and Sayantani Roy Choudhury

This book first published 2024

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2024 by Jaydip Sen, Sayantani Roy Choudhury and contributors

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN: 978-1-0364-0898-5

ISBN (Ebook): 978-1-0364-0899-2

TABLE OF CONTENTS

Preface vii
ist of Figuresxi
ist of Tablesxxiii
Chapter 1
A Comparative Study of Portfolio Optimization Methods for the Indian Stock Market
laydip Sen, Arup Dasgupta and Sayantani Roy Choudhury
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

Chapter 7	249
Ethical Practices in the Banking Sector: A Comparative Analysis of the	
State Bank of India and HDFC Bank	
Sumee Dastidar and Minhaz Sabiha Osmani	
Chapter 8	258
A Comparative Study of Hyperparameter Tuning Methods Subhasis Dasgupta and Jaydip Sen	
Chapter 9	
Kankana Mukhopadhyay Chapter 10	206
Cloud Cover Forecasting for Solar Power Plants Using	300
Sequential Sky Images	
Gourab Nath, Kandarp Chaudhary, Kurumaddali Sakhet, Sahil Gupta, Anjita Merin Alex and Adarsh Srivastava	
Chapter 11	333
Enhancing Crop Health Monitoring: The Use of Convolutional Neural	
Networks for Early Blight and Late Blight Identification	
Subasish Roy, Rahul P and Hitaishi Roy	
Chapter 12	345
Use of Artificial Intelligence for Detection of Data Mining Errors	
in Real Time Customer Databases	
Sandeep Bhattacharjee	

PREFACE

The volume titled *Data Science in Theory and Practice* serves as a comprehensive exploration of the dynamic and rapidly evolving field of data science. In today's digital age, the proliferation of data from various sources has led to unprecedented opportunities and challenges. Organizations across industries are increasingly relying on data-driven insights to inform decision-making, drive innovation, and gain a competitive edge in the marketplace. At the heart of this data revolution lies the interdisciplinary field of data science, which combines principles from statistics, computer science, machine learning, and domain expertise to extract meaningful insights from vast and complex datasets. From financial markets to social dynamics, from agricultural landscapes to technological advancements, data science plays a pivotal role in unraveling insights and driving informed decision-making.

This edited volume aims to provide readers with a comprehensive understanding of both the theoretical foundations and practical applications of data science. Through a collection of chapters authored by experts in the field, the volume covers a wide range of topics, spanning from fundamental concepts to advanced methodologies and emerging trends. Each chapter offers a unique perspective on various aspects of data science, providing readers with valuable insights, practical guidance, and cutting-edge research findings. The book is organized into twelve chapters, each addressing various domains, techniques, and applications of data science.

In Chapter 1 titled A Comparative Study of Portfolio Optimization Methods for the Indian Stock Market Sector Index, Sen, Dasgupta, and Roy Choudhury present a comparative analysis of three portfolio optimization methods, mean-variance portfolio (MVP), hierarchical risk parity (HRP) portfolio, and hierarchical equal risk contribution (HERC) portfolio, in the Indian stock market across 15 sectors of stocks listed on the National Stock Exchange (NSE) of India. Top stocks in each sector are chosen based on their free-float market capitalization. Three portfolios per sector are constructed using data from July 1, 2019, to June 30, 2022, and evaluated from July 1, 2022, to June 30, 2023. Performance metrics include cumulative returns, volatility, and Sharpe ratios, identifying the portfolios with superior performance characteristics.

In Chapter 2 titled A Portfolio Rebalancing Approach for the Indian Stock Market, Sen, Dasgupta, Dasgupta, and Roy Choudhury introduce a

viii Preface

calendar-based rebalancing approach to stock portfolios in the Indian market across ten sectors listed on the NSE of India. It selects the top ten stocks from each sector based on their market capitalization values. Using historical stock data from January 4, 2021, to September 20, 2023, portfolios are constructed and trained from January 4, 2021, to June 30, 2022. Performance evaluation is done from July 1, 2022, to September 20, 2023, with a focus on analyzing the effectiveness of the calendar rebalancing method across sectors.

In Chapter 3 titled *Technical Analysis of Indian Stocks: A Triad of Bollinger Bands, MACD, and RSI Strategies,* Sen, Roy Choudhury, and Pathak explore three widely-used technical indicators - Bollinger Bands, Moving Average Convergence Divergence (MACD), and Relative Strength Index (RSI) - and their efficacy in the Indian stock market. The proposed approach of the authors involves selecting 14 sectors listed on the National Stock Exchange (NSE) and identifying 10 top stocks from each sector based on their market capitalization. Trading activities are conducted from July 1, 2022, to June 30, 2023, with an initial capital of INR 100,000, using the three technical indicators. The performance of each indicator is evaluated, and a comparative analysis across all sectors is conducted to assess their effectiveness.

In Chapter 4 Marital Status and Workforce Participation Decision of Indian Women, Guha, Ghosh, Kapat, and Roy Choudhury examine the statistical significance of 'marital status' and several other associated factors influencing female workforce participation, with the Worker Population Ratio (WPR) serving as the primary variable of interest. Additionally, this study seeks to identify factors contributing to the proportion of NEET (Not in Employment, Education, and Training). The work shows that an analysis of these aspects provides insights into the factors affecting the employment status of women, encompassing both participation in the workforce and unemployment.

In Chapter 5 Interstate Inequalities in LPG Consumption: A Study in Indian Context, Koley and Majumdar present a study that focuses on focus on the state-wise LPG consumption status in India from 1955 until now. According to the authors, the state-wise LPG consumption trend in India reveals a massive inequality. While some states exhibit higher per capita consumption, there are states where the per capita LPG consumption has been significantly low. The work attempts to identify and focus on the factors responsible for interstate differences in LPG consumption in India over the last twenty years.

In Chapter 6 MGNREGP of India and the Poor States: A Quest for Reality, Tiwary and Khuntia examine the effectiveness of the social welfare

scheme, Mahatma Gandhi National Rural Employment Guarantee Program (MGNREGP) in terms of person-days created and funding distributed to the states in India by the central government based on the needs of the states. The study also investigates how much benefits this scheme has been able to bring to the poorest in society.

In Chapter 7 Ethical Practices in the Banking Sector: A Comparative Analysis of State Bank of India and HDFC Bank, Dastidar and Osmani carry out a study on a comparative analysis of the perceptions of bank employees regarding ethical issues at two of the largest banks in India, the State Bank of India and the HDFC Bank. The authors investigate whether employees at these banks adhere to their respective codes of ethics in their job performance and analyze potential strategies for enhancing the ethical standards of the banks.

In Chapter 8 A Comparative Study of Hyperparameter Tuning Methods, Dasgupta and Sen present three well-known algorithms for hyperparameter tuning of models. Linear and non-linear models for regression and classification tasks based on some public datasets are built and their performances are evaluated. The non-linear models are found to outperform the linear models if their hyperparameters are tuned accurately.

In Chapter 9 *The Backpropagation Algorithm in Employee Competency Assessment*, Mukhopadhyay presents an implementation of the backpropagation algorithm for employee competency assessment. Competencies are categorized into various areas and defined in a way that job incumbents could easily relate to them. Positional competencies, comprising intrinsic and extrinsic elements are also considered and benchmark levels are established for positional competencies.

In Chapter 10 Cloud Cover Forecasting for Solar Plants Using Sequential Sky Images, Nath, Chaudhary, Sakhet, Gupta, Alex, and Srivastava investigate image forecasting using both classical time series models and deep learning methods. The study finds VAR model is effective in predicting pixel values based on nearby pixels, and it outperforms models that incorporate weather variables as exogenous, and a deep learning-based LSTM model in image population forecasting. Additionally, an unsupervised technique utilizing the K-means algorithm with RB-ratios is proposed that is proven superior to grayscale image analysis.

In Chapter 11 Enhancing Crop Health Monitoring: The Use of Convolutional Neural Networks for Early Blight and Late Blight Identification, Roy, Rahul, and Roy examine the utilization of Convolutional Neural Networks (CNNs) to detect late and early blight diseases in potato crops via leaf optical images. The work assesses CNN's capability in accurately identifying various blight syndromes and healthy

x Preface

potato leaves. Employing a dataset of potato leaf images, the study applies deep learning techniques for model training. Evaluation of the model's performance focuses on its accuracy in distinguishing between different blight diseases and healthy foliage.

In Chapter 12 Use of Artificial Intelligence for Detection of Data Mining Errors in Real-Time Customer Databases, Bhattacharjee presents two error detection techniques, namely Isolation Forest and one-class SVM, each applied to measure distinct types of errors. The work compares the performance of these techniques using sixteen parameters. Additionally, it explores two application areas for each method.

Although the chapters in this volume do not delve into the fundamental theories of the discussed topics, they provide concise discussions of relevant principles and basics to ensure comprehensive coverage. Therefore, while some background knowledge in data science may be beneficial, readers are not required to possess advanced expertise in these areas. We anticipate that this volume will serve as a valuable resource for individuals interested in exploring various applications of data science across diverse domains. The primary audience for this book includes advanced postgraduate and doctoral students in finance, econometrics, management, data science, computer science, and information technology. Additionally, faculty members at graduate schools and universities, as well as data science practitioners in the industry, are likely to find the content highly beneficial.

We extend our heartfelt gratitude to all the contributors who have dedicated their time and expertise to the chapters included in this volume. Their invaluable contributions have been instrumental in making this project a success. We would also like to express our sincere appreciation to Cambridge Scholars Publishing for granting us the opportunity to publish our work under their esteemed publishing banner. Special recognition is owed to Adam Rummens and Sophie Edminson from Cambridge Scholars Publishing for their unwavering patience, collaboration, and support throughout the extensive publishing process. Additionally, we would like to acknowledge the indispensable support and cooperation received from our esteemed faculty colleagues at Praxis Business School, Kolkata, India. Their cooperation has been indispensable, and without their involvement, the publication of this volume would not have been achievable. We extend our heartfelt thanks to every one of them for their invaluable contributions and support.

LIST OF FIGURES

Fig. 1-1 The efficient frontier of 10,000 candidate portfolios
Fig. 1-2 The dendrogram of the agglomerative clustering is created by the
hierarchical risk parity method
Fig. 1-3 The dendrogram of the agglomerative clustering of the stocks
from the auto sector
Fig. 1-4 The allocation of weights done by the MVP, HRP, and HERC
algorithms for the auto sector stocks
Fig. 1-5 The cumulative returns yielded by the MVP, HRP, and HERC
portfolios for the auto sector stocks on training data
Fig. 1-6 The cumulative returns yielded by the MVP, HRP, and HERC
portfolios for the auto sector stocks on the test data
Fig. 1-7 The dendrogram of the agglomerative clustering of the banking
sector stocks
Fig. 1-8 The allocation of weights done by the MVP, HRP, and HERC
algorithms for the banking sector stocks
Fig. 1-9 The cumulative returns yielded by the MVP, HRP, and HERC
portfolios for the banking sector stocks on the training data
Fig. 1-10 The cumulative returns yielded by the MVP, HRP, and HERC
portfolios for the banking sector stocks on
the test data
Fig. 1-11 The dendrogram of the agglomerative clustering of the financial
services sector stocks
Fig. 1-12 The allocation of weights done by the MVP, HRP, and HERC
algorithms for the financial services sector stocks
Fig. 1-13 The cumulative returns yielded by the MVP, HRP, and HERC
portfolios for the financial services sector stocks on the training data 20
Fig. 1-14 The cumulative returns yielded by the MVP, HRP, and HERC
portfolios for the financial services sector stocks on the test data 21
Fig. 1-15 The dendrogram of the agglomerative clustering of the consumer
durables sector stocks
Fig. 1-16 The allocation of weights done by the MVP, HRP, and HERC
algorithms for the consumer durables sector stocks
Fig. 1-17 The cumulative returns yielded by the MVP, HRP,
and HERC portfolios for the consumer durables sector stocks
•
on the training data

Fig. 1-18 The cumulative returns yielded by the MVP, HRP,	
and HERC portfolios for the consumer durables sector stocks	
<u>.</u>	24
Fig. 1-19 The dendrogram of the agglomerative clustering of the FMCG	
sector stocks	25
Fig. 1-20 The allocation of weights done by the MVP, HRP, and HERC	
algorithms for the FMCG sector stocks	25
Fig. 1-21 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the FMCG sector stocks on the training data	
Fig. 1-22 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the FMCG sector stocks on	
the test data	27
Fig. 1-23 The dendrogram of the agglomerative clustering of the IT sector	or
stocks	28
Fig. 1-24 The allocation of weights done by the MVP, HRP, and HERC	
algorithms for the IT sector stocks	28
Fig. 1-25 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the IT sector stocks on the training data	29
Fig. 1-26 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the IT sector stocks on the test data	30
Fig. 1-27 The dendrogram of the agglomerative clustering of the media	
sector stocks	31
Fig. 1-28 The allocation of weights done by the MVP, HRP, and HERC	
algorithms for the media sector stocks	31
Fig. 1-29 The cumulative returns yielded by the MVP, HRP,	
and HERC portfolios for the media sector stocks	
on the training data	32
Fig. 1-30 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the media sector stocks on the test data	33
Fig. 1-31 The dendrogram of the agglomerative clustering of the metal	
sector stocks	34
Fig. 1-32 The allocation of weights done by the MVP, HRP, and HERC	
algorithms for the metal sector stocks	34
Fig. 1-33 The cumulative returns yielded by the MVP, HRP,	
and HERC portfolios for the metal sector stocks	
on the training data	
Fig. 1-34 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the metal sector stocks on the test data	36
Fig. 1-35 The dendrogram of the agglomerative clustering of the mid-	
small IT & telecom sector stocks	37

Fig. 1-36 The allocation of weights done by the MVP, HRP,	
and HERC algorithms for the mid-small IT & telecom	27
sector stocks	37
Fig. 1-37 The cum. ret. yielded by the MVP, HRP,	
and HERC portfolios for the mid-small IT sector stocks	•
on the training data	
Fig. 1-38 The cum. ret. yielded by the MVP, HRP, and HERC portfolios	S
for the mid-small IT & telecom sector stocks	
on the test data	39
Fig. 1-39 The dendrogram of the agglomerative clustering	
of the oil & gas sector stocks	40
Fig. 1-40 The allocation of weights done by the MVP, HRP,	
and HERC algorithms for the oil & gas sector stocks	40
Fig. 1-41 The cumulative returns yielded by the MVP, HRP,	
and HERC portfolios for the oil & gas sector stocks on the training	
data	41
Fig. 1-42 The cumulative returns yielded by the MVP, HRP,	
and HERC portfolios for the oil & gas sector stocks	
on the test data	42
Fig. 1-43 The dendrogram of the agglomerative clustering	
of the pharma sector stocks	43
Fig. 1-44 The allocation of weights done by the MVP, HRP,	
and HERC algorithms for the pharma sector stocks	43
Fig. 1-45 The cumulative returns yielded by the MVP, HRP,	73
and HERC portfolios for the pharma sector stocks	
on the training data	11
Fig. 1-46 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the pharma sector stocks on	
the test data	15
	43
Fig. 1-47 The dendrogram of the agglomerative clustering	16
of the private banks sector stocks	40
Fig. 1-48 The allocation of weights done by the MVP, HRP,	10
and HERC algorithms for the private banks sector stocks	46
Fig. 1-49 The cumulative returns yielded by the MVP, HRP,	
and HERC portfolios for the private banks sector stocks on	
the training data	
Fig. 1-50 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the private banks sector stocks on	
the test data	48
Fig. 1-51 The dendrogram of the agglomerative clustering of the PSU	
hanks sector stocks	49

Fig. 1-52 The allocation of weights done by the MVP, HRP, and HERC	
algorithms for the PSU banks sector stocks	49
Fig. 1-53 The cum. ret. yielded by the MVP, HRP, and HERC portfolios	3
for the PSU banks sector stocks on	
the training data	
Fig. 1-54 The cum. ret. yielded by the MVP, HRP, and HERC portfolios	3
for the PSU banks sector stocks on the test data	
Fig. 1-55 The dendrogram of the agglomerative clustering of the realty	
sector stocks	52
Fig. 1-56 The allocation of weights done by the MVP, HRP, and HERC	
algorithms for the realty sector stocks	52
Fig. 1-57 The cumulative returns yielded by the MVP, HRP,	
and HERC portfolios for the realty sector stocks	
on the training data	
Fig. 1-58 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the realty sector stocks on	
the test data	
Fig. 1-59 The dendrogram of the agglomerative clustering of the NIFTY	
50 stocks	55
Fig. 1-60 The allocation of weights done by the MVP, HRP,	
and HERC algorithms for the NIFTY 50 stocks	56
Fig. 1-61 The cumulative returns yielded by the MVP, HRP,	
and HERC portfolios for the NIFTY 50 stocks	
on the training data	
Fig. 1-62 The cumulative returns yielded by the MVP, HRP, and HERC	
portfolios for the NIFTY 50 stocks on the test data	5/
Fig. 2-1 The daily number of shares of each stock in the auto	
sector portfolio from January 4, 2021, to September 20, 2023	0.1
Fig. 2-2 The daily allocation of weights to each stock of the auto sector	91
portfolio from January 4, 2021,	
to September 20, 2023	01
Fig. 2-3 The cumulative return of the auto sector portfolio	71
and the cumulative return of the benchmark index	
of NIFTY 50	92
Fig. 2-4 The statistical distribution and box plots of the	12
returns of the rebalanced portfolio of the auto sector	93
Fig. 2-5 The daily number of shares of each stock in the banking sector	
portfolio from January 4, 2021,	
to September 20, 2023	95

Fig. 2-6 The daily allocation of weights to each stock of the	
banking sector portfolio from January 4, 2021,	
to September 20, 2023	5
Fig. 2-7 The cumulative return of the banking sector portfolio	
and the cumulative return of the benchmark	
index of NIFTY 509	6
Fig. 2-8 The statistical distribution and box plots of the	
returns of the rebalanced portfolio of the banking sector	7
Fig. 2-9 The daily number of shares of each stock in the	
consumer durables sector portfolio from January 4, 2021,	
to September 20, 2023	9
Fig. 2-10 The daily allocation of weights to each stock of the consumer	
durables sector portfolio from Jan 4, 2021,	
to Sep 20, 2023	9
Fig. 2-11 The cumulative return of the consumer durables sector portfolio	
and the cumulative return of the benchmark	
index of NIFTY 50	0
Fig. 2-12 The statistical distribution and box plots of the	
returns of the rebalanced portfolio of the consumer durables sector. 10	1
Fig. 2-13 The daily number of shares of each stock in the FMCG sector	
portfolio from January 4, 2021,	
to September 20, 2023	3
Fig. 2-14 The daily allocation of weights to each stock of	
the FMCG sector portfolio from Jan 4, 2021,	
to Sep 20, 2023	3
Fig. 2-15 The cumulative return of the FMCG sector portfolio	
and the cumulative return of the benchmark	
index of NIFTY 50 10	4
Fig. 2-16 The statistical distribution and box plots of the	
returns of the rebalanced portfolio of the FMCG sector	5
Fig. 2-17 The daily number of shares of each stock in the	
IT sector portfolio from January 4, 2021, to	
September 20, 2023	7
Fig. 2-18 The daily allocation of weights to each stock of the	
IT sector portfolio from Jan 4, 2021, to Sep 20, 2023	7
Fig. 2-19 The cumulative return of the IT sector portfolio	
and the cumulative return of the benchmark	
index of NIFTY 50	8
Fig. 2-20 The statistical distribution and box plots of the returns	
of the rebalanced portfolio of the IT sector	9

Fig. 2-21 The daily number of shares of each stock in the metal sector
portfolio from January 4, 2021,
to September 20, 2023
Fig. 2-22 The daily allocation of weights to each stock
of the metal sector portfolio from Jan 4, 2021,
to Sep 20, 2023
Fig. 2-23 The cumulative return of the metal sector portfolio
and the cumulative return of the benchmark index of
NIFTY 50112
Fig. 2-24 The statistical distribution and box plots of the
returns of the rebalanced portfolio of the metal sector
Fig. 2-25 The daily number of shares of each stock in the
pharma sector portfolio from January 4, 2021,
to September 20, 2023
Fig. 2-26 The daily allocation of weights to each stock of the pharma
sector portfolio from Jan 4, 2021,
to Sep 20, 2023
Fig. 2-27 The cumulative return of the pharma sector
portfolio and the cumulative return of the benchmark
index of NIFTY 50
Fig. 2-28 The statistical distribution and box plots of the
returns of the rebalanced portfolio of the pharma sector
Fig. 2-29 The daily number of shares of each stock in the
private banks sector portfolio from January 4, 2021,
to September 20, 2023
Fig. 2-30 The daily allocation of weights to each stock of
the private banks sector portfolio from Jan 4, 2021,
to Sep 20, 2023
Fig. 2-31 The cumulative return of the private banks sector
portfolio and the cumulative return of the benchmark
index of NIFTY 50
Fig. 2-32 The statistical distribution and box plots of the
returns of the rebalanced portfolio of the private
banks sector
Fig. 2-33 The daily number of shares of each stock in
the PSU banks sector portfolio from January 4, 2021,
to September 20, 2023
Fig. 2-34 The daily allocation of weights to each stock of
the PSU banks sector portfolio from Jan 4, 2021,
to Sep 20, 2023

Fig. 2-35 The cumulative return of the PSU banks sector
portfolio and the cumulative return of the benchmark
index of NIFTY 50
Fig. 2-36 The statistical distribution and box plots of the
returns of the rebalanced portfolio of the
PSU banks sector
Fig. 2-37 The daily number of shares of each stock in the realty sector
portfolio from January 4, 2021,
to September 20, 2023
Fig. 2-38 The daily allocation of weights to each stock
of the realty sector portfolio from Jan 4, 2021,
to Sep 20, 2023
Fig. 2-39 The cumulative return of the realty sector
portfolio and the cumulative return of the benchmark
index of NIFTY 50
Fig. 2-40 The statistical distribution and box plots of the
returns of the rebalanced portfolio of the realty sector
Fig. 2-41 A graphical representation of the performance
of the auto sector portfolio
Fig. 2-42 A graphical representation of the performance
of the banking sector portfolio
Fig. 2-43 A graphical representation of the performance
of the consumer durables sector portfolio
Fig. 2-44 A graphical representation of the performance
of the FMCG sector portfolio
Fig. 2-45 A graphical representation of the performance
of the IT sector portfolio
Fig. 2-46 A graphical representation of the performance of
the metal sector portfolio
Fig. 2-47 A graphical representation of the performance
of the pharma sector portfolio
Fig. 2-48 A graphical representation of the performance
of the private banks sector portfolio
Fig. 2-49 A graphical representation of the performance of
the PSU banks sector portfolio
Fig. 2-50 A graphical representation of the performance of
the realty sector portfolio
Fig. 3-1 The Bollinger Bands plot of Mahindar & Mahindra
stock with the trading signal points identified
Fig. 3-2 The MACD plot of Mahindra & Mahindra stock
with the trading signal points identified

Fig. 3-3 The RSI plot of Mahindra & Mahindra stock with the trading	
signal points identified	157
Fig. 3-4 The Bollinger Bands plot of ICICI Bank stock	
with the trading signal points identified	158
Fig. 3-5 The MACD plot of ICICI Bank stock with the	
trading signal points identified	159
Fig. 3-6 The RSI plot of ICICI Bank stock with the trading	
signal points identified	159
Fig. 3-7 The Bollinger Bands plot of Bajaj Finance stock	
with the trading signal points identified	161
Fig. 3-8 The MACD plot of Bajaj Finance stock with the	
trading signal points identified	161
Fig. 3-9 The RSI plot of Bajaj Finance stock with the	
trading signal points identified	162
Fig. 3-10 The Bollinger Bands plot of Titan Company stock	
with the trading signal points identified	163
Fig. 3-11 The MACD plot of Titan Company stock with	
the trading signal points identified	163
Fig. 3-12 The RSI plot of Titan Company stock with	
the trading signal points identified	164
Fig. 3-13 The Bollinger Bands plot of Hindustan Unilever	
stock with the trading signal points identified	165
Fig. 3-14 The MACD plot of Hindustan Unilever stock	
with the trading signal points identified	165
Fig. 3-15 The RSI plot of Hindustan Unilever stock with	
the trading signal points identified	166
Fig. 3-16 The Bollinger Bands plot of Coforge stock	
with the trading signal points identified	167
Fig. 3-17 The MACD plot of Coforge stock with the	
trading signal points identified	167
Fig. 3-18 The RSI plot of Coforge stock with the	
trading signal points identified	168
Fig. 3-19 The Bollinger Bands plot of Zee Ent. Enterprise	
stock with the trading signal points identified	169
Fig. 3-20 The MACD plot of Zee Ent. Enterprise stock	
with the trading signal points identified	170
Fig. 3-21 The RSI plot of Zee Ent. Enterprise stock	
with the trading signal points identified	170
Fig. 3-22 The Bollinger Bands plot of Hindalco Industries	
stock with the trading signal points identified	171

Fig. 3-23 The MACD plot of Hindalco Industries stock	
with the trading signal points identified	172
Fig. 3-24 The RSI plot of Hindalco Industries stock with	
the trading signal points identified	172
Fig. 3-25 The Bollinger Bands plot of L&T Tech. Services	
stock with the trading signal points identified	174
Fig. 3-26 The MACD plot of L&T Tech. Services stock	
with the trading signal points identified	174
Fig. 3-27 The RSI plot of L&T Tech. Services stock with	
the trading signal points identified	175
Fig. 3-28 The Bollinger Bands plot of Hindustan Petroleum	
Corporation stock with the trading signal points identified	176
Fig. 3-29 The MACD plot of Hindustan Petroleum Corporation	
stock with the trading signal points identified	176
Fig. 3-30 The RSI plot of Hindustan Petroleum Corporation	
stock with the trading signal points identified	177
Fig. 3-31 The Bollinger Bands plot of Sun Pharma Industries	
stock with the trading signal points identified	178
Fig. 3-32 The MACD plot of Sun Pharma Industries stock	
with the trading signal points identified	178
Fig. 3-33 The RSI plot of Sun Pharma Industries stock	
with the trading signal points identified	179
Fig. 3-34 The Bollinger Bands plot of Axis Bank stock	
with the trading signal points identified	180
Fig. 3-35 The MACD plot of Axis Bank stock with	
the trading signal points identified	180
Fig. 3-36 The RSI plot of Axis Bank stock with the	
trading signal points identified	181
Fig. 3-37 The Bollinger Bands plot of State Bank of India	
stock with the trading signal points identified	182
Fig. 3-38 The MACD plot of State Bank of India stock	
with the trading signal points identified	183
Fig. 3-39 The RSI plot of State Bank of India stock with	
the trading signal points identified	183
Fig. 3-40 The Bollinger Bands plot of DLF stock with the trading signal points identified	
the trading signal points identified	184
Fig. 3-41 The MACD plot of DLF stock with the trading	
signal points identified	185
Fig. 3-42 The RSI plot of DLF stock with the trading signal	
points identified	185

Fig. 4-1 The decision tree classification model	
for WPR (male)	. 204
Fig. 4-2 The decision tree classification model	
for WPR (female)	. 204
Fig. 4-3 The decision tree classification model	
for NEET (male)	. 206
Fig. 4-4 The decision tree classification model	
for NEET (female)	. 206
Fig. 5-1 The Energy Ladder Model	
Fig. 5-2 The historical pattern of the LPG	
consumption in India	. 215
Fig. 5-3 The phases of the LPG consumption in India	. 216
Fig. 5-4 The map of India showing the intensity of per	
capita LPG consumption in different states	
in 2001 and 2021	. 217
Fig. 5-5 The per capita LPG consumption in India in	
2021, 2011, and 2021	. 218
Fig. 6-1 Number of job cards issued under MGNREGP	
in poor and non-poor states	. 239
Fig. 6-2 Number of person-days generated under MGNREGP	
in poor and non-poor states	. 240
Fig. 6-3 Number of households employed under MGNREGP	
in both poor and non-poor states	. 240
Fig. 6-4 The spread of MGNREGP in both poor and	
non-poor states	. 241
Fig. 6-5 The depth of MGNREGP in both poor and	
non-poor states	
Fig. 8-1 The bias-variance trade-off	. 260
Fig. 8-2 The scatter plot of kWh and other numerical	
variables in the training and the test dataset	. 268
Fig. 8-3 The distribution of data in training and test set	
for the steel industry dataset	. 269
Fig. 8-4 The distribution of the predictor variables of the	
gas turbine data in both training and test data set	. 272
Fig. 8-5 The scatter plot of CO and other numerical variables	27.4
in the training and the test dataset of the gas turbine data	. 274
Fig. 8-6 The distribution of the numerical variables in the	27.5
training and test dataset of the adult data	. 276
Fig. 8-7 The distribution of the categorical variables in the	270
training and test datasets of the adult data	. 278

Fig. 8-8 The distribution of data in the training and test set of	
the dry bean dataset	. 280
Fig. 9-1 Illustration of backpropagation in a neural network	
Fig. 9.2 The training results – Quality competencies (Mgr) I	
Fig. 9.3 The coefficient of correlation: Quality	
competencies (Mgr) I	300
Fig. 9.4 The training results: Quality competencies (Mgr) II	
Fig. 9.5 The coefficient of correlation: Quality	
competencies (Mgr) II	. 301
Fig. 9.6 The competency assessment form (Quality)	
Fig. 10.1 A sample image of the sky was captured using	
a fish-eye lens	. 309
Fig. 10.2 A sketch to represent some neighborhood pixels	
at a given time	. 311
Fig. 10.3 A sample of 6 sky images with different cloud	
coverages	. 315
Fig. 10.4 An illustration of a resized image, data segmentation	
for batch processing, and sliding window	. 319
Fig. 10.5 Actual vs. forecasted pixel values using LSTM	
model with the Adam optimizer	. 321
Fig. 10.6 Actual and forecasted pixel values using the LSTM	
model with the RMSProp optimizer	. 321
Fig. 10-7 K-means clustering on two different images –	
(a) a clear sky, and (b) a cloudy sky	
for different values of K	. 325
Fig. 10-8 K-means clustering for a sky image with a 29%	
cloud cover percentage for different values of K	. 327
Fig. 10-9 K-means clustering for a sky image with a 33%	
cloud cover percentage for different values of K	. 328
Fig. 10-10 K-means clustering for a sky image with a 67%	
cloud cover percentage for different values of K	. 328
Fig. 10-11 K-means clustering for a sky image with a	
71% cloud cover percentage for different values of K	. 329
Fig. 11-1 K-means clustering for a sky image with a 71%	
cloud cover percentage for different values of K	. 337
Fig. 11-2 The stepwise flowchart of the proposed	
methodology	. 338
Fig. 11-3 The architecture of the CNN model	
Fig. 11-4 The training and validation loss and accuracy	
plots for the CNN model	. 341

Fig. 11-5 The figure exhibits various predicted outputs	
for some sample potato leaves and classifies leaf images	
into their classes	. 342
Fig. 12-1 Anomaly detection using an isolation forest	. 350
Fig. 12-2 Anomaly detection using a one-class SVM	. 353

LIST OF TABLES

Table 1.1 The portfolio compositions of the auto sector	
(Period: July 1, 2019 – June 30, 2022)	14
Table 1.2 The performance results of the portfolios of the	
auto sector stocks	15
Table 1.3 The portfolio compositions of the banking	
sector (Period: July 1, 2019 – June 30, 2022)	16
Table 1.4 The performance results of the banking	
sector portfolios	18
Table 1.5 The portfolio compositions of the financial	
services sector (Period: July 1, 2019 – June 30, 2022)	20
Table 1.6 The performance results of the financial services	
sector portfolios	21
Table 1.7 The portfolio compositions of the consumer durables sector	
(Period: July 1, 2019 – June 30, 2022)	23
Table 1.8 The performance results of the consumer durables	
sector portfolios	24
Table 1.9 The portfolio compositions of the FMCG sector	
(Period: July 1, 2019 – June 30, 2022)	26
Table 1.10 The performance results of the FMCG	
sector portfolios	27
Table 1.11 The portfolio compositions of the IT sector	
(Period: July 1, 2019 – June 30, 2022)	29
Table 1.12 The performance results of the portfolios	
of the IT sector	
Table 1.13 The portfolio compositions of the media sector	32
Table 1.14 The performance results of the portfolios of the	
media sector	33
Table 1.15 The portfolio compositions of the metal sector	
(Period: July 1, 2019 – June 30, 2022)	35
Table 1.16 The performance results of the portfolios	
of the metal sector	36
Table 1.17 The portfolio of the mid-small IT & telecom	
sector	38
Table 1.18 The performance results of the mid-small	
IT & telecom portfolios	39

Table 1.19 The portfolio compositions of the oil & gas sector (Period: July 1, 2019 – June 30, 2022)	
Table 1.20 The performance results of the oil & gas	
sector portfolios	42
Table 1.21 The portfolio compositions of the pharma	. 72
sector (Period: July 1, 2019 – June 30, 2022)	11
Table 1.22 The performance results of the pharma	
sector portfolios	15
Table 1.23 The portfolio compositions of the private banks	43
sector (Period: July 1, 2019 – June 30, 2022)	17
Table 1.24 The merfermence regults of the mirror bonks	. 4/
Table 1.24 The performance results of the private banks sector portfolios	10
Table 1.25 The portfolio compositions of the PSU banks	. 40
	50
sector (Period: July 1, 2019 – June 30, 2022)	. 30
Table 1.26 The performance results of the PSU banks	<i>5</i> 1
sector portfolios	. 31
Table 1.27 The portfolio compositions of the realty sector	52
(Period: July 1, 2019 – June 30, 2022)	. 33
Table 1.28 The performance results of the realty sector	<i>-</i> 1
portfolios	. 54
Table 1.29 The portfolio compositions of the NIFTY 50 stocks (Period:	
July 1, 2019 – June 30, 2022)	. 56
Table 1.30 The performance results of the NIFTY 50	7 0
portfolios	. 58
Table 1.31 The summary of the performances of the	
portfolios on the training data	
(Period: July 1, 2019 – June 30, 2022)	. 58
Table 1.32 The summary of the performances of the	
portfolios on the test data	
(Period: July 1, 2022 – June 30, 2023)	. 58
Table 2.1 The performance of the auto sector portfolio	
on the in-sample and out-of-sample data	. 94
Table 2.2 The performance of the banking sector portfolio	
on the in-sample and out-of-sample data	
Table 2.3 The performance of the consumer durables sector portfolio on	
the in-sample and out-of-sample data	102
Table 2.4 The performance of the FMCG sector portfolio	
on the in-sample and out-of-sample data	106
Table 2.5 The performance of the IT sector portfolio	
on the in-sample and out-of-sample data	110

Table 2.6 The performance of the metal sector portfolio	
on the in-sample and out-of-sample data	4
Table 2.7 The performance of the pharma sector portfolio	
on the in-sample and out-of-sample data	8
Table 2.8 The performance of the private banks sector	
portfolio on the in-sample and out-of-sample data	21
Table 2.9 The performance of the PSU banks sector portfolio	
on the in-sample and out-of-sample data	25
Table 2.10 The performance of the realty sector portfolio	
on the in-sample and out-of-sample data	29
Table 2.11 The summary of the performances of the	
portfolios on the in-sample data	
(Period: Jan 1, 2021 – Jun 30, 2022)	30
Table 2.12 The summary of the performances of the portfolios	
on the out-of-sample data	
(Period: Jul 1, 2022 – Sept 20, 2023)	31
Table 2.13 The summary of the performances of the	
portfolios on the overall data	
(Period: Jan 4, 2021 – Sept 20, 2023)	31
Table 3.1 The annual returns yielded by the BB, MACD,	
and RSI methods for the auto sector stocks	
(Period: July1, 2022 – June 30, 2023)	57
Table 3.2 The annual returns yielded by the BB, MACD,	
and RSI methods for the banking sector stocks	
(Period: July1, 2022 – June 30, 2023)	50
Table 3.3 The annual returns yielded by the BB, MACD,	
and RSI methods for the financial services sector stocks	
(Period: July1, 2022 – June 30, 2023)	52
Table 3.4 The annual returns yielded by the BB, MACD,	
and RSI methods for the consumer durables	
sector stocks (Period: July1, 2022 – June 30, 2023)	54
Table 3.5 The annual returns yielded by the BB, MACD,	
and RSI methods for the FMCG sector stocks	
(Period: July1, 2022 – June 30, 2023)	56
Table 3.6 The annual returns yielded by the BB, MACD,	
and RSI methods for the IT sector stocks	
(Period: July1, 2022 – June 30, 2023)	58
Table 3.7 The annual returns yielded by the BB, MACD,	
and RSI methods for the media sector stocks	
(Period: July 1, 2022 – June 30, 2023)	71

Table 3.8 The annual returns yielded by the BB, MACD,	
and RSI methods for the metal sector stocks	
(Period: July1, 2022 – June 30, 2023)	173
Table 3.9 The annual returns yielded by the BB, MACD,	
and RSI methods for the mid-small IT & telecom	
sector stocks (Period: July1, 2022 – June 30, 2023)	175
Table 3.10 The annual returns yielded by the BB, MACD,	
and RSI methods for the oil & gas sector stocks	
(Period: July1, 2022 – June 30, 2023)	177
Table 3.11 The annual returns yielded by the BB, MACD,	
and RSI methods for the pharma sector stocks	
(Period: July1, 2022 – June 30, 2023)	179
Table 3.12 The annual returns yielded by the BB, MACD,	
and RSI methods for the private banks sector stocks	
(Period: July1, 2022 – June 30, 2023)	181
Table 3.13 The annual returns yielded by the BB, MACD,	
and RSI methods for the PSU banks sector stocks	
(Period: July1, 2022 – June 30, 2023)	184
Table 3.14 The annual returns yielded by the BB, MACD,	
and RSI methods for the realty sector stocks	
(Period: July1, 2022 – June 30, 2023)	186
Table 3.15 The summary of the performances of the three	
technical indicators on the stocks from fourteen sectors	186
Table 4.1 The output of the logistic regression model for	
WPR (Male & Female) – Part I	202
Table 4.2 The output of the logistic regression model for	
WPR (Male & Female) – Part II	202
Table 4.3 The codes for marital status	
Table 4.4 The performance results of the decision tree	
classification for WPR (Male & Female)	203
Table 4.5 The output of the logistic regression model for	
NEET (Male & Female) – Part I	205
Table 4.6 The output of the logistic regression model for	
NEET (Male & Female) – Part II	205
Table 4.7 The performance results of the decision tree	
classification for NEET (Male & Female)	205
Table 5.1 The fixed effect panel regression results	
(Period: 2001-2021)	220
Table 5.2 The correlation among the independent variables	220
Table 6.1 The list of determinants	236
Table 6.2 The basic indicators of MGNREGP	238

Table 6.3 The correlation of two important indicators	243
Table 6.4 The regression of two important indicators	
Table 7.1 Employees' perception of banking ethics	
Table 7.2 Employees' opinion in context to the	
importance of ethics in the banking sector	252
Table 7.3 The independent samples t-test for the difference	
between SBI and HDFC Bank in the promotion of ethics	253
Table 7.4 The chi-square test for the association of	
compliance of ethical practices by bank employees	254
Table 7.5 The response to the question: Whether business	
plans are analyzed before loans are sanctioned	254
Table 7.6 Ethical issues in the selected banks	255
Table 7.7 Improving ethics in the selected banks	255
Table 8.1 The description of the basic dataset	265
Table 8.2 The description of the steel industry data	
Table 8.3 The description of the gas turbine data	
Table 8.4 The correlation matrix for the gas turbine data	
Table 8.5 The variable descriptions of the adult dataset	
Table 8.6 A brief description of the variables of the	
dry bean data	279
Table 8.7 The set of hyperparameters of different models	281
Table 8.8 The performance of the fine-tuned models	
on the steel industry dataset (Metric: RMSE)	282
Table 8.9 The performance of the models based on	
fine-tuned hyperparameters on the gas turbine	
dataset (Metric: RMSE)	283
Table 8.10 The performance of the fine-tuned models on	
the adult dataset (Metric: Cohen Kappa)	283
Table 8.11 The performance of the fine-tuned models on	
the bean dataset (Metric: Cohen Kappa)	283
Table 9.1 The quality competencies – input values	297
Table 9.2 The quality competencies (MGR 1)	299
Table 9.3 The quality competencies	
- input/output (MGR II)	300
Table 9.4 The quality competencies	
- benchmark table (MGR)	303
Table 10.1 The descriptions of the variables in the	
weather dataset	
Table 10.2 The results of the VAR (3) model for sky image forecasting:	
Table 10.3 The results of the LSTM model for sky image forecasting	320

Data Science in Theory and Practice

xxvii

xxviii List of Tables

Table 10.4 The VAR (3) model's results in cloud	
cover forecasting	322
Table 10.5 The best K-means results for grey-scaled images	324
Table 10.6 The best K-means results for RB-ratio images	327
Table 11.1 The performance results of the CNN model	342
Table 12.1 A comparative analysis of isolation forest and	
one-class SVM methods for anomaly detection	355

CHAPTER 1

A COMPARATIVE STUDY OF PORTFOLIO OPTIMIZATION METHODS FOR THE INDIAN STOCK MARKET

JAYDIP SEN, ARUP DASGUPTA AND SAYANTANI ROY CHOUDHURY

Introduction

The design of optimized portfolios has remained a research topic of broad and intense interest among researchers of quantitative and statistical finance for a long time. An optimum portfolio allocates the weights to a set of capital assets in a way that optimizes the return and risk of those assets. Markowitz in his seminal work proposed the *mean-variance optimization* approach which is based on the mean and covariance matrix of returns (Markowitz, 1952). The mean-variance portfolio (MVP) design works on an algorithm, known as the critical line algorithm (CLA). The CLA algorithm, despite the elegance of its theoretical framework, has some major limitations. One of the major problems is the adverse effects of the estimation errors in its expected returns and covariance matrix on the performance of the portfolio. Since it is extremely challenging to accurately estimate the expected returns of an asset from its historical prices, it is a popular practice to use either a minimum variance portfolio or an optimized risk portfolio with the maximum Sharpe ratio as better proxies for the expected returns. However, due to the inherent complexity, several factors have been used to explain the expected returns.

The hierarchical risk parity (HRP) algorithm attempts to address three major shortcomings of quadratic optimization methods which are particularly relevant to the CLA used in the MVP approach to portfolio design (de Prado, 2016). These problems are instability, concentration, and underperformance. Unlike the CLA, the HRP algorithm does not require the

2 Chapter 1

covariance matrix of return values to be invertible. Hence, the HRP portfolios can deliver good results even if the covariance matrices are ill-degenerated or singular, which is an impossibility for a quadratic optimizer like CLA. Interestingly, even though MVP's objective is to minimize the variance, HRP is proven to have a lower probability of yielding lower out-of-sample variance than MVP. Given the fact that future returns cannot be forecasted with sufficient accuracy, many researchers have proposed risk-based asset allocation using the covariance matrix of the returns. However, this approach brings in another problem of instability that arises because the quadratic programming methods require the inversion of a covariance matrix whose all eigenvalues must be positive (Baily & de Prado, 2012). HRP is a new portfolio design method that addresses the pitfalls of the quadratic optimization-based MVP approach using techniques of graph theory and machine learning (de Prado, 2016). This method exploits the features of the covariance matrix without the requirement of its invertibility.

The HERC portfolio optimization uses an integrated approach to machine learning and a top-down recursive bisection method of the HRP portfolio method (Raffinot, 2018). The proponents of the HERC method identified several shortcomings of the HRP portfolio optimization. The single linkage-based cluster trees constructed in the HRP method usually led to deep and wide trees and suboptimal allocation of weights to the clusters. The HRP algorithm usually involves higher computations. Finally, the recursive bijection approach used in HRP bisects the cluster tree before the weight allocation instead of directly allocating the weights based on the dendrogram of clustering. This makes the computed weights inaccurate. The HERC algorithm avoids these problems using a top-down recursive bisection and a naive risk parity within the clusters.

This chapter presents a comparative study of the three portfolio optimization methods, MVP, HRP, and HERC, on the Indian stock market, particularly focusing on the stocks chosen from 15 sectors listed on the National Stock Exchange (NSE) of India. The top stocks of each cluster are identified based on their free-float market capitalization from the NSE's report published on July 1, 2022 (NSE Website). For each sector, three portfolios are designed on stock prices from July 1, 2019, to June 30, 2022, following three portfolio optimization approaches. The portfolios are tested over the period from July 1, 2022, to June 30, 2023. For evaluation of the performances of the portfolios, three metrics are used (i) cumulative returns, (ii) annual volatilities, and (iii) Sharpe ratios. based on their cumulative returns. For each sector, the portfolios that yield the highest cumulative return, the lowest volatility, and the maximum Sharpe Ratio over the training and the test periods are identified.