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Chapter 1

The Atom

“Daher ist die Aufgabe nicht sowohl zu sehen, was
noch Keiner gesehen hat, als, bei Dem, was jeder
sieht, zu denken, was noch Keiner gedacht hat.”

Arthur Schopenhauer

This chapter explains the basic building blocks of all matter in our universe,
the atoms of the chemical elements, and focuses on the concepts and physics
involved to better understand the neutron-induced fission processes that take
place in nuclear reactors. It begins with a brief explanation of the structure
of the cloud of electrons that surrounds the atomic nucleus and continues
with the structure of the nucleus itself. The importance of knowing the in-
teractions of the subatomic particles involved in the structure of the nucleus,
known as nucleons, is directly related to the analysis of the energy released
in the physical processes that take place during the operation of nuclear re-
actors, i.e. nuclear fission. To this end, a practical calculation of the binding
energy of the nucleons is explained, based on the masses of the constituent
nucleons and the mass of the nucleus formed, followed by the basics of
a rather more elaborate theory, the Weizsidcker formula, where its physi-
cal concepts are explained. A very useful approximation for estimating the



2 CHAPTER 1. THE ATOM

binding energy of nucleons in reactor physics calculations is also presented.

1.1 The chemical elements

1.1.1 Introduction

All the constituents of the universe are made up of one or a mixture of dif-
ferent substances, the basic building blocks of which are called molecules.
Molecules are the smallest part of a substance that retains the same chemical
properties as the substance from which it is made. All existing molecules
in the universe are made up of a relatively small number of basic building
blocks called elements. Many of these elements were already known in an-
cient times, such as iron, cooper, gold, silver and lead, although at that time
the concepts of element and substance were ignored and the elements them-
selves (such as those mentioned above) were confused with alloys, mixtures
and also with the product of chemical reactions (such as fire). Many years
later, this knowledge was the source of alchemy.

From the 8th century onwards, alchemists managed to advance in the
knowledge of materials by discovering new elements, substances and com-
pounds, but without a scientific basis. The first scientific discovery of an
element took place in 1669 when Hennig Brand' discovered phosphorus.
In the 17th century, with the development of chemistry, the properties of
the substances discovered by the alchemists were studied, but now using
the scientific method. In this stage of chemistry the concepts of substance,
mixture, chemical reactions, etc. began to be better understood.

lHennig Brand (*Hamburg, Germany, c. 1630 - fibid., c. 1692 or c. 1710) German mer-
chant, glassblower, pharmacist and amateur alchemist, best remembered for his discovery of
phosphorus around 1669.
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1.1.2 Atom and molecule concepts

Many years later, when chemistry was already established as a science, a
much clearer idea of the structure of substances (molecules and atoms) was
developed. On 6 March 1869, the Russian chemist Mendeleev? published
the periodic table of the elements in his work “Principles of Chemistry”
under the title “The Correlation of the Properties and Atomic Weights of the
Elements™>. In this work, the 63 elements known at that time were arranged
in increasing order of atomic weight into seven groups with similar chemical
properties. In 1871, Mendeleev was able to determine the properties of the
previously undiscovered elements gallium, scandium and germanium.

~ i 10-n5

oy Liepyy #orsy

&\t Lzaty X
X

29

~N

D&

] x:
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bini Ve P

Vs s poits e,

feribing e(x..',/;c.. 7l %
71 PR T

S IJ,F 89.

tp.lo £ woi V& SR //4/7 <

Figure 1.1: Mendeleev’s 1869 handwritten draft of the periodic table.

2Dml’triy Ivanovich Mendeléyev (*Tobolsk, Russia, 27.Jan.1834 - 7Saint Petersburg, Rus-
sia, 20.Jan.1907) Russian chemist, famous for having discovered the underlying pattern in what
is now known as the periodic table of the elements.

3Mendeleev D. 1869. Sootnoshenie svoistv s atomnym vesom elementov. Zh. Russ. Khim.
Obshch., 1(2/3): 60-77 and Z. Chem., 1(5):405-406.
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Ueber die

Elemente. Von D. Mendele‘]eﬁ' — Oninut m:m Elemeuu nach
zunchmenden Atomgewichten in verticale Reihen so, dass die Horizontal-
reihen analoge Elemente enthalten, wieder nach lnnehmondm Aum -

wicht geordnet, so erhiilt man folgende Zusammenstellung, aus der
einige lllgmnehmru Folgerungen ableiten lassen.

V=51 Nb = 94 Ta =182

H=1 Cu=634 Ag=1i08 Hg =200
Bo= 94 Mg=24 Zn=652 Cd=112
B=11 Al=214 =68 Ur—=116 Au=1971
C—=12  Simm28 ?=170  Sn=118
N=14 P=3l As=175 8Sb=122 Bi=210?
0=16 S=32 Se=1794 Te—1287
F=19 Cl=355 Br=80 J =127
Li=17Na=23 K=3) Rb=854 Cs=133 TI=204
Ca=40 Sr—87,6 Ba=137 Pb=207
? 0 = 02

TEr = 56 La=%
t—60 Di=95
Mn==15,6] Th=118?

1. Die nach der Grisse des Atomgewichts geordneten Elemente n
fer O o Al ngewichts geo zeige!

Chemlseb—nnucge Elemente haben entweder libereinstimmende Atom-
gawiahfa (Pt, Ir, Os), oder lmtore nehmen gleichviel za (K, Rb, Ce),
Anordnen nach den A der W
der Elemunh und bis zu einem gewissen Grade der Vnuehledenh;f’ it im
chemischen Verhalten, z. B. Li, Be, B, C, N, O, F.
4. Die in der Natur verbreitetsten Elemente haben kleine Atomgewichte

Figure 1.2: Mendeleev’s scientific article in Zeitschrift fiir Chemie, 1869.

A few years later his thesis was confirmed: the element germanium was
discovered in 1871, gallium in 1875 and scandium in 1879. Figure 1.3
shows the periodic table of the elements of the [IUPAC (International Union
of Pure and Applied Chemistry).

IUPAC Periodic Table of the Elements

INTERNATIONAL UNION OF
PURE AND APPLIED CHEMISTRY

Figure 1.3: Periodic table of the elements of the IUPAC, 4 May 2022.



