Efficient Coating Materials for Magnetite Nanoparticles

Efficient Coating Materials for Magnetite Nanoparticles

By

Noorashikin Md Saleh, Tanusha Devi, Nik Nur Atiqah Nik Wee, Beh Shiuan Yih, Siti Khalijah Mahmad Rozi and Nasuha Mohamad Nasrol

Cambridge Scholars Publishing

Efficient Coating Materials for Magnetite Nanoparticles

By Noorashikin Md Saleh, Tanusha Devi, Nik Nur Atiqah Nik Wee, Beh Shiuan Yih, Siti Khalijah Mahmad Rozi and Nasuha Mohamad Nasrol

This book first published 2024

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright \odot 2024 by Noorashikin Md Saleh, Tanusha Devi, Nik Nur Atiqah Nik Wee, Beh Shiuan Yih, Siti Khalijah Mahmad Rozi and Nasuha Mohamad Nasrol

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN: 978-1-0364-1200-5

ISBN (Ebook): 978-1-0364-1201-2

TABLE OF CONTENTS

List of Tables		
List of Figures		
Acknowledgements		xvi
Abstract		xvii
List of Abbreviations		xviii
Chapter 1	Synthesis of Magnetic Nanoparticles Functionalized with Surfactant	1
	1.1 Magnetic nanoparticles (MNPs)	1
	1.2 Surfactants 1.2.1 Properties of surfactants	2 2 2 2 3
	1.2.2 Types of surfactants	2
	1.2.2.1 Anionic Surfactants	2
	1.2.2.2 Cationic surfactants	3
	1.2.2.3 Zwitterionic surfactants	4 5
1.2.2.4 Non-ionic surfactants		
	1.3 Surfactant modified magnetic	5
	nanoparticles 1.3.1 Synthesis of MNP with ferum oxide and surfactant Slygard	6
	1.4 Characterization of MNP with ferum oxide and surfactant Sylgard	7
	1.4.1 Morphological analysis	8
	1.4.2 Elemental analysis	11
	1.4.3 Functional group analysis	13
	1.4.4 Crystallinity properties	14
	1.4.5 Magnetic behavior	16
	1.5 Optimization of parameters to extract	17
	pollutants in water	
	1.5.1 Effect of pH	17 19
	1.5.2 Effects of amount of adsorbent	
	1.5.3 Effect of desorption solvent	
1.5.4 Effect of volume of desorption solvent		21
	1.5.5 Effect of extraction time	22

	1.5.6 Effect of desorption time	23
	1.5.7 Effect of volume of solution	24
	1.6 Optimum conditions using response	25
	surface methodology	
	1.6.1 Selection of lower, middle and upper	25
	levels of the design variables	
	1.6.2 Fitting the model	26
	1.6.3 Analytical figures of merits	33
	1.7 Application on real water samples	33
Chapter 2	Synthesis of Magnetic Nanoparticles	36
_	Functionalized with Amine	
	2.1 Synthesis of amine-functionalized	36
	magnetite nanoparticles	
	2.2 Characterization of amine-functionalized	39
	magnetite nanoparticles	
	2.2.1 Functional group analysis	39
	2.2.2 Morphological analysis	42
	2.2.3 Elemental analysis	44
	2.3 Application of amine-functionalized	46
	magnetite nanoparticles	
	2.4 Optimization of adsorption studies	47
	2.4.1 Effect of dosage of adsorbent	47
	2.4.2 Effect of contact time	49
	2.4.3 Effect of initial phenol concentration	50
	2.4.4 Effect of pH of phenol solution	52
	2.5 Adsorption kinetics model	53
	2.6 Adsorption isotherm models	56
	2.7 Reusability of adsorbent	58
	2.8 Comparison of amine-functionalized	59
	magnetite nanoparticles with other reported	
	adsorbents	

Chapter 3	Synthesis of Magnetic Nanoparticles	61
	Functionalized with Silica	
	3.1 Biological background of silica	61
	3.2 Method of silica synthesis from rice husk	63
	3.3 Silica	64
	3.3.1 Properties of Silica	65
	3.3.2 General procedure for silica extraction	66
	3.3.2.1 Sample Preparation	66
	3.3.2.2 Alkali dissolution	67
	3.3.2.3 Deposition method	68
	3.3.2.4 Stöber's method	68
	3.3.2.5 Sol-gel method	69
	3.3.2.6 Acid nitration for the production of	69
	gel deposits	
	3.4 Coating of silica with magnetic	71
	nanoparticles (SiO ₂ -MNP)	
	3.5 Characterization of silica-functionalized	71
	magnetite nanoparticles	
	3.5.1 Functional Group Analysis	71
	3.5.2 X-Ray Diffraction Analysis (XRD)	73
	3.5.3 Morphology Analysis	74
	3.5.4 Element Analysis (EDX)	77
	3.6 Optimum parameters for extraction of	79
	pollutant in water	
	3.6.1 Effect of pH	79
	3.6.2 Effect of adsorbent weight	80
	3.6.3 Effect of sorbent type	81
	3.6.4 Volume of acetonitrile (ACN) solvent	81
	3.6.5 Extraction time	82
	3.6.6 Desorption time	83
	3.7 Mechanism interaction between	84
	magnetic silica nanoparticles with phenol in	
	water	

Chapter 4	Adsorption of Heavy Metal from	87
_	Wastewater by Bioadsorbent Modified	
	Azolla Microphylla Lemna Minor	
	4.1 Types and Sources of Heavy Metals	87
	4.1.1 Cadmium (Cd (II))	88
	4.1.2 Copper (Cu (II))	88
	4.1.3 Zinc (Zn (II))	89
	4.2 The importance of Water to Human	89
	4.3 River Water Pollution in Malaysia	90
	4.4 Biosorbent Adsorption Techniques for	91
	Heavy Metal Detection	
	4.4.1 Microorganism as Adsorbent	91
	4.4.2 Terminalia Catappa as Adsorbent	95
	4.4.3 Azolla as Adsorbent	97
	4.5 Methodology	99
	4.5.1 List of Chemicals	101
	4.5.2 Synthesis of Azolla Microphylla	101
	Lemna Minor Adsorbent	
	4.5.3 Adsorbent Material Characterization	102
	Analysis	
	4.5.3.1 Fourier-Transform Infrared	103
	Spectroscopy (FTIR)	
	4.5.3.2 Scanning Electron Microscopy with	103
	Energy Dispersive X-ray Spectroscopy	
	(SEM-EDX)	
	4.5.3.3 'Brunanuer-Emmett-Teller' (BET)	104
	4.5.3.4 X-ray Diffraction (XRD) Analysis	105
	4.5.4 Preparation of Calibration Curve	106
	4.5.5 Optimization Parameters	106
	4.5.5.1 Contact Time	107
	4.5.5.2 Adsorbent Dose	107
	4.5.5.3 pH of the Sample Solution	107
	4.5.6 River Water Sampling	108
	4.5.7 Extraction of Heavy Metal Cu (II) In	109
	River Water	110
	4.6 Fourier Transform Infrared (FTIR)	110
	Characterization Analysis	110
	4.7 BET Characterization Analysis	112
	4.8 Scanning Electron Microscopy (SEM)	113
	4.9 Energy Dispersive X-Ray (EDX)	114

	4.10 X-Ray Diffraction (XRD) Analysis	117
	4.11 Quantitative Analysis	120
	4.12 Optimization Parameters for	122
	Adsorption of Copper in Water	
	4.13 Method Validation of Develop Method for Extraction of Copper in Real Water	126
	4.14 Mechanism of Interaction between Functional Groups in the Extraction of Copper (II)	129
	4.15 Comparison of Developed Method for Adsorption of Copper in Real Water	130
Chapter 5	Pollutant Phenol in Water	133
Chapter 5	Pollutant Phenol in Water 5.1 Phenolic pollutants	133 133
Chapter 5		
Chapter 5	5.1 Phenolic pollutants 5.2 Phenols 5.2.1 Properties of Phenols	133
Chapter 5	5.1 Phenolic pollutants 5.2 Phenols	133 133
Chapter 5	5.1 Phenolic pollutants 5.2 Phenols 5.2.1 Properties of Phenols	133 133 133
Chapter 5	5.1 Phenolic pollutants 5.2 Phenols 5.2.1 Properties of Phenols 5.2.2 Applications of Phenols 5.3 Effects of Phenol to Human Body and	133 133 133 136
Chapter 5	5.1 Phenolic pollutants 5.2 Phenols 5.2.1 Properties of Phenols 5.2.2 Applications of Phenols 5.3 Effects of Phenol to Human Body and Environment 5.4 Phenol removal methods 5.5 Adsorption of phenol	133 133 133 136 136
Chapter 5	5.1 Phenolic pollutants 5.2 Phenols 5.2.1 Properties of Phenols 5.2.2 Applications of Phenols 5.3 Effects of Phenol to Human Body and Environment 5.4 Phenol removal methods	133 133 133 136 136

LIST OF TABLES

Table 1.1	:	Independent variables and their coded and actual
Table 1.2	:	values used for optimization Three-factor, three-level central composite design (CCD) used for RSM and its response peak area of chromatogram under different extraction conditions
Table 1.3	:	Summary of ANOVA analysis for the extraction procedure
Table 1.4	:	Analytical figures of merit of the proposed method for the extraction of phenol
Table 1.5	:	Analysis of phenol in environmental water samples
Table 2.1	:	The physical properties of the series of amines used in this present research (Liu et al., 2015)
Table 2.2	:	The kinetic parameters of the adsorption of phenol by TETA@MNP
Table 2.3	:	The adsorption isotherm parameters of phenol by TETA@MNP
Table 2.4	:	Comparison of the developed adsorbent with another reported adsorbent
Table 3.1	:	Fraction of organic matter in rice husk
Table 3.2	:	Physical properties of nanosilica
Table 4.1	:	Heavy metal biosorption using various fungal biomass
Table 4.2	:	Biosorption of heavy metals using various bacterial biosorbents
Table 4.3	:	Biosorption of heavy metals using various algal biosorbents
Table 4.4	:	Heavy metal biosorption using various fungal biomass
Table 4.5	:	List of Chemicals
Table 4.6	:	Parameters for SEM-EDX Analysis
Table 4.7	:	Locations of the river water sample collection for each river
Table 4.8	:	Characteristics of Azolla through XRD Analysis

 Table 4.9
 : Information of calibration curve for copper analyte

Table 4.10 : Concentration of Copper in Selangor River
 Table 4.11 : Concentration of Copper in Petani River

 Table 4.12
 : Concentration of Copper in Langat River

 Table 4.13
 : Comparison of adsorbent application in another

research

Table 5.1 : Physical properties of various phenols

Table 5.2: Physical properties of phenol

Table 5.3 : The benefits and drawbacks of various phenol

removal methods

LIST OF FIGURES

Figure 1.1	:	Structure of anionic surfactant
Figure 1.2	:	Structure of cationic surfactant
Figure 1.3	:	Structure of zwitterionic surfactant
Figure 1.4	:	Structure of non-ionic surfactant
Figure 1.5	:	TEM image of MNPs
Figure 1.6	:	TEM image of MNP-APTES
Figure 1.7	:	TEM image for MNP-Sylgard 309
Figure 1.8	:	EDX spectra for MNP-Sylgard 309
Figure 1.9	:	EDX spectra for MNP-APTES
Figure 1.10	:	EDX spectra of MNP-Sylgard 309
Figure 1.11	:	FTIR spectra of MNP
Figure 1.12	:	FTIR spectra of MNP-APTES
Figure 1.13	:	FTIR spectra of MNP-Sylgard 309
Figure 1.14	:	XRD pattern of MNP, MNP-APTES and MNP-Sylgard 309
Figure 1.15	:	The magnetization hysteresis loops of MNPs, MNP-APTES and MNP-Sylgard
Figure 1.16	:	The effect of solution pH on the extraction efficiency of phenol
Figure 1.17	:	The effect of adsorbent dosage on the extraction efficiency of phenol
Figure 1.18	:	The effect of desorption solvents on the extraction efficiency of phenol
Figure 1.19	:	The effect of volume of eluent on the extraction efficiency of phenol
Figure 1.20	:	The effect of extraction time on the extraction efficiency of phenol
Figure 1.21	:	The effect of desorption time on the extraction efficiency of phenol
Figure 1.22	:	The effect of sample volume on the extraction efficiency of phenol

Figure 1.23	: Response surface for the adsorbent and volume of	e effects of the amount of
Figure 1.24		e effects of the amount of
Figure 1.25	: Response surface for the desorption solvent and e	
Figure 1.26	: HPLC-DAD chromatogram 2.136s)	
Figure 2.1	: The schematic diagram of functionalized magnetite	of the synthesis of amine- e nanoparticles chemical co-precipitation
Figure 2.2	: The FTIR spectra of the	
Figure 2.3		of (A) bare MNPs and (B) @MNP (D) TETA@MNP D PEHA@MNP
Figure 2.4	: The EDX spectra of (A) (B)EDA@MNP (C) DE TETA@MNP (E) TEPA PEHA@MNP	bare MNPs TA@MNP (D)
Figure 2.5		
Figure 2.6	: The effect of adsorbent of	dosage on (A) percentage sorption capacity (mg/g) of he removal of phenol.
Figure 2.7	: The effect of contact time removal (%) and (B) add TETA@MNP towards the	sorption capacity (mg/g) of
Figure 2.8	: The effect of initial cond percentage removal (%) capacity (mg/g) of TETA removal of phenol.	and (B) adsorption
Figure 2.9		
Figure 2.10	: (A) The graph of kinetic plot (B) The graph of kinetic second-order plot	model pseudo-first-order
Figure 2.11		odels of (A) Freundlich's plot

Figure 2.12	:	The graph of the reusability of TETA@MNP for adsorption of phenol
Figure 3.1	:	Raw rice husk
Figure 3.2	:	Rice husks that are burned and cause high environmental pollution (Mihsen et al., 2017)
Figure 3.3	:	Sequence of rice husk washing process
Figure 3.4	:	The result of combustion deposits from sodium silicate to a white powder of silica
Figure 3.5	:	FTIR silica spectrum
Figure 3.6	:	FTIR silica magnetite nanoparticle spectrum
Figure 3.7	:	XRD spectrum of silica
Figure 3.8	:	XRD spectrum of magnetic silica nanoparticles
Figure 3.9	:	FESEM analysis results of silica
Figure 3.10	:	Results of FESEM analysis of magnetic silica nanoparticles
Figure 3.11	:	TEM analysis results of silica
Figure 3.12	:	Results of TEM analysis of magnetic silica nanoparticles
Figure 3.13	:	EDX spectrum of silica
Figure 3.14	:	EDX spectrum of magnetic silica nanoparticles
Figure 3.15	:	Effect of pH on adsorption of phenol
Figure 3.16	:	Effect of adsorbent mass on adsorption of phenol
Figure 3.17	:	UV-vis graph of absorption against the wave for acetonitrile solvent
Figure 3.18	:	Effect of solvent volume on phenol extraction efficiency
Figure 3.19	:	Effect of extraction time on phenol extraction efficiency
Figure 3.20	:	Effect of adsorption time on phenol extraction efficiency
Figure 4.1	:	(a) Terminalia catappa tree (b) Terminalia catappa fruit (c) Terminalia catappa shell and seed (d) Terminalia catappa Shell Powder in 180 μm
Figure 4.2	:	Azolla Microphylla Lemna Minor cultivated in plastic containers
Figure 4.3	:	Overall Methodology Flowchart
Figure 4.4	:	Synthesis technique for the sorbent material

Figure 4.5	:	Photo of a Fourier-transform infrared spectroscopy
rigure ive	·	(FTIR) instrument
Figure 4.6	:	Photo of Scanning Electron Microscope (SEM-
		EDX)
Figure 4.7	:	Photo of 'Brunanuer-Emmett-Teller' (BET)
Figure 4.8	:	Photo of X-ray Diffraction (XRD)
Figure 4.9	:	Flowchart of heavy metal extraction in water
8		samples.
Figure 4.10	:	The FTIR spectrum of the Azolla adsorbent
Figure 4.11	:	Chemical structure of cellulose
Figure 4.12	:	Chemical Structure of lignin
Figure 4.13		SEM micrograph images of the adsorbent material
	:	at a magnification of 10 Kx with a scale of 10 μm.
		(a) Before use (b) After use
Figure 4.14	:	EDX spectrum of Azolla before use.
Figure 4.15	:	EDX spectrum of Azolla after use
Figure 4.16	:	XRD pattern of the synthesized Azolla before the
		biosorption process
Figure 4.17	:	XRD pattern of the synthesized Azolla after the
		biosorption process
Figure 4.18	:	Absorption of copper from 10 ppm to 50 ppm
		using UV-Vis Spectroscopy
Figure 4.19	:	Calibration curve for series of stock solutions of
		copper from 2 ppm to 10 ppm using UV-Vis
E. 100		Spectroscopy
Figure 4.20	:	Effect of time for the adsorption of copper.
Figure 4.21	:	Effect of adsorbent dosage for the adsorption of
E: 1 22		copper
Figure 4.22	:	Effect of sample solution pH on the adsorption of
Figure 4 22		copper. The spectrum of UV-Vis spectroscopy for the
Figure 4.23	:	analysis sample in SP3
Figure 4.24	:	The spectrum of UV-Vis spectroscopy for the
1 1gui C 7.27	•	analysis sample in SL1
Figure 4.25	:	Mechanism of biosorption
Figure 5.1	:	Adsorption process mechanism
8	•	

ACKNOWLEDGMENTS

With a sincere heart and a wreath of appreciation, we extend our deepest thanks to all the writers who contributed their wisdom, effort, and dedication to the creation of this book. We are profoundly grateful to Universiti Kebangsaan Malaysia (UKM) and the Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, for affording us the invaluable opportunity to bring this project to fruition.

Our heartfelt gratitude goes to our family members and friends for their unwavering support, patience in sharing our burdens, and encouragement throughout this journey. Your belief in us has been a guiding light. We also wish to acknowledge the contributions of all individuals involved in the success of this endeavour—your efforts, whether directly or indirectly, have been instrumental in bringing this book to life. Thank you to everyone who played a role in this remarkable achievement.

ABSTRACT

The book explores the critical role of magnetite nanoparticles coated with efficient materials as exceptional adsorbents for organic pollutants in water. This book comprehensively delves into the significance of leveraging magnetite nanoparticles in the extraction of pollutants to address the escalating concerns of water pollution worldwide. The research investigates various coating materials and their effectiveness in enhancing the adsorption capabilities of magnetite nanoparticles. The study not only assesses the extraction methods but also evaluates the potential applications of these coated nanoparticles in tackling the pressing issue of water contamination. With a focus on achieving optimal results in pollutant removal, this book provides valuable insights into developing and utilising advanced materials for sustainable water purification.

LIST OF ABBREVIATIONS

AELB Atomic Energy Licensing Board IAEA International Atomic Energy Agency UKM Universiti Kebangsaan Malaysia

CHAPTER 1

SYNTHESIS OF MAGNETIC NANOPARTICLES FUNCTIONALIZED WITH SURFACTANT

1.1 Magnetic nanoparticles (MNPs)

Magnetic nanoparticles (MNPs) is a type of nanoparticles that can be manipulated using magnetic fields (Soloveva et al., 2016). An iron atom possesses a robust magnetic moment because of the four unpaired electrons in the 3d shell. Fe²⁺ ions have 4 unpaired electrons in their 3d shell, and Fe³⁺ ions have 5 unpaired electrons in their 3d shell. Thus, the formed crystals from iron ions of Fe²⁺ or Fe³⁺ can be in ferromagnetic or ferrimagnetic states. MNP are vulnerable to air oxidation and can be easily aggregated in aqueous systems (Teymourian et al., 2013). Among the various types of MNPs, magnetite (Fe₃O₄) is commonly studied due to its advantages, such as superior high surface area, low toxicity, small particle size, ease of dispersion in water and high magnetic properties (Bui et al., 2018)

Magnetic field-based separation using magnetic nano and microparticles has received significant attention for their superior characteristics, such as good dispersion, rapid and effective binding of targets and reversible and controllable flocculation (Su et al., 2015). Due to the large surface area, MNPs guarantee high extraction efficiency when dealing with small sample volumes (Karimi et al., 2016).

The main issue in applying MNPs in these fields is their chemical stability and level of dispersion in the solution. Due to van der Waals forces and high surface energy, these nanoparticles tend to agglomerate easily in an aqueous medium due to van der Waals forces (Laurent et al., 2008). In addition, they are highly reactive and susceptible to oxidation by air, resulting in a loss in magnetism and dispersibility (Shahriman et al., 2018).

These problems can be solved by surface modification of MNPs with appropriate organic coating. Recently, organic compounds such as silane, octadecylsilane, triphenylamine and polymers are often used to coat the surface of MNPs to maintain their chemical stability in various media.

Among these, silicone non-ionic surfactants are potential modification agents for MNPs. Using this surfactant as a coating agent aids in obtaining the desired colloidal dispersion, which also provides a large surface area, high stability, and applicability in harsh chemical media.

For many applications, surface modification of MNPs is a crucial challenge. MNP, with some surface modifications, can be used to separate and concentrate chemicals conveniently using an external magnetic field. Therefore, integrating magnetic separation and surface modification would provide a powerful analytical tool with simplicity, flexibility and selectivity (Su et al., 2015).

1.2 Surfactants

1.2.1 Properties of Surfactants

Surfactants are organic compounds of polar head and non-polar tail groups in natural and synthetic forms. They form self- assembled aggregates like micelles in the presence of water. Surfactants are added as wetting agents to lower the liquids' surface tension. They are also used to spread and lower the interfacial tension of the liquids readily.

The surfactants' polar head and non-polar tail are always organic compounds which contain hydrophilic and hydrophobic groups, respectively. Hydrophilic molecules comprise ions like sulphate and carboxylate from polar groups such as primary amines, amine oxides, and non-polar groups, with electronegative atoms like oxygen atoms and aldehydes or amides. The hydrophilic group gives solubility characteristics in polar solvents, while the hydrophobic group enhances solubility characteristics in non-polar solvents such as oil. The hydrophilic and hydrophobic determine the size and shape of surfactants (Nkadi et al., 2009). Surfactants can be classified using charged groups in their head. Four groups in surfactants are anionic, cationic, zwitterionic and non-ionic.

1.2.2 Types of Surfactants

1.2.2.1 Anionic Surfactants

The anionic surfactant contains a negatively charged head group. The negative charge causes repelling because of the slightly negative surface. High amounts of anionic surfactant are causing foaming in the solution. An example of an anionic surfactant is sodium lauryl sulphate, which has high

solubility in water at room temperature (Johansson & Somasundaran, 2007). Their water solubility depends on the double bond of the structure. They are stable under a pH of more than 10 and sensitive to acids. Figure 1.1 shows the structure of anionic surfactant, which contains a hydrophilic head (negative charge head group) and a long hydrophobic tail.

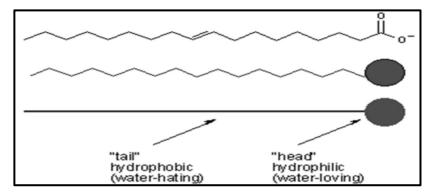


Figure 1.1 Structure of anionic surfactant
Source: Formulation of Carpet Cleaners. In Handbook for Cleaning/Decontamination of Surfaces

Anionic surfactant is widely used in pharmaceutical and cosmetic applications. They are usually used in cleaning applications. For example, they have been used to emulsify oily soils and lift soils from surfaces (Johansson & Somasundaran, 2007). In addition, they are also one of the ingredients in shampoo used for cleaning and hair conditioning. Moreover, oil removal also could be achieved by using this surfactant. Typical anionic surfactants are alkyl sulphates, alkyl ethoxylate sulphates, soaps, carboxylate, sulfate and sulfonate ions.

1.2.2.2 Cationic surfactants

Cationic surfactant is a positively charged head group surfactant (Gelardi et al., 2016). They are hydrophilic, which is water-loving and contain positively charged ions. Examples of cationic surfactants include trimethyl alkylammonium chlorides and the chlorides or bromides of benzalkonium and alkylpyridinium ions. They are quarternary ammonium compounds and good as emulsifying agents and do not form insoluble scums. Figure 1.2 shows the cationic surfactant structure with a positively charged group in its head

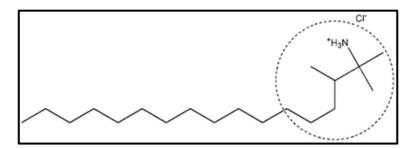


Figure 1.2 Structure of cationic surfactant

Cationic surfactants are widely used in applications involving preservation and disinfection from bacteria. They are good bactericides and can be used as antiseptics to clean wounds or burns. They have bactericidal activity against some positive or negative organisms, so they are heavily used in bathrooms and hand sanitisers. Cationic surfactants such as quaternary ammonium and pyridinium are essential for pharmaceutical use (Tadros, 2009).

1.2.2.3 Zwitterionic surfactants

Zwitterionics is a mild surfactant. They can be present as anionic (negatively charged), cationic (positively charged) or non-ionic (no charge) in solution, which depends on the pH of the water. They contain groups of two different charges. The positive charge group is ammonium, while the negative is carboxylate or sulphate. Figure 1.3 shows the zwitterionic surfactant structure containing the same group's negative charge and positive charge.

Figure 1.3 Structure of zwitterionic surfactant

This type of surfactant is widely used in personal care products for sensitive skin. This surfactant has effective dermatological properties and is commonly used in shampoos, detergents and other cosmetic products (Fernley, 1978).

1.2.2.4 Non-ionic surfactants

Non-ionic surfactants are known as derivatives of ethylene oxide and/or propylene oxide with an alcohol which contains an active hydrogen atom. Non-ionic surfactants do not have positive or negative charges on their head groups (Sonia & Sharma, 2014), preventing them from dissolving in the aqueous solution group (Figure 1.4). Examples of non-ionic surfactants are polyglycerol alkyl ethers, glucosyl dialkyl ethers, and crown ethers.

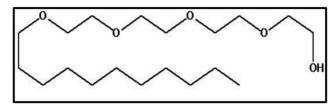


Figure 1.4 Structure of non-ionic surfactant

This non-ionic surfactant is very difficult to maintain and create the emulsion so it is known as emulsifying agent (Zhang et al., 2012). They can effectively remove oil and emulsifiers. They are widely used in industry as they are low cost, biodegradable, high chemical stability (Manosroi et al., 2003) and less irritant than other surfactant (Sonia & Sharma, 2014). These unique properties allow surfactants to be a potential coating agent for modifying MNPs' surfaces. The combination of magnetic properties of MNPs with surfactant offers the development of a new adsorbent with high chemical stability and efficiency.

1.3 Surfactant-modified magnetic nanoparticles

Recently, researchers have succeeded in developing nano-composites of MNPs and surfactants to separate organic contaminants in real matrices. Muthukumaran et al. (2016) have synthesized sodium dodecyl sulphate (SDS) coated MNPs as an effective, low-cost adsorbent for removal of cationic dye, crystal violet (CV) from aqueous solution. They found that SDS-coated MNPs are cost-effective and easily separable nano-adsorbents for efficiently removing crystal violet dye. They also studied adsorption isotherms and kinetic parameters of crystal violet dye removal from aqueous solution using this surfactant-modified magnetic nano-adsorbent.

Li et al. (2008) have introduced cetyltrimethylammonium bromide (CTAB)-coated Fe₃O₄ nano-magnets (CTAB-coated Fe₃O₄ NP) for enrichment of

selected chlorophenols in aqueous matrices before HPLC –UV determination. The fabricated CTAB-coated Fe₃O₄ NP combined with mixed hemimicelles SPE technique showed good recoveries and precision, revealing that the proposed method based on CTAB-coated Fe₃O₄ NP has potential for preconcentration of trace organic pollutants from environmental water samples. Another study by Zhao et al. (2008) also reported the preparation of cation surfactants, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) onto magnetic nanoparticles for mixed hemimicelles solid-phase extraction (SPE) method to separate several phenolic compounds including bisphenol A (BPA), 4-tert-octylphenol (4-OP), and 4-n-nonylphenol (4-NP) from real aqueous matrices. It was found that the proposed adsorbents CTAB and CPC modified on Fe₃O₄ nanoparticles (Fe₃O₄ NPs) have strong electrostatic and hydrophobic interactions with studied analytes. The proposed method provided some advantages such as high recoveries, high breakthrough volumes and short separation times.

All the studies regarding the applications of the ionic surfactants modified magnetic nanoparticles towards hazardous contaminants demonstrate that the nanocomposites are effective adsorbents for treating and determining these pollutants. In this study, silicone non-ionic surfactant Sylgard 309 is used to functionalize the surface of MNPs because it has flexible polysiloxane chains without any aromatic structure, which is advantageous compared to other frequently used non-ionic surfactants, namely Triton X. Tergitol and PONPE series as none of them considered suit with HPLC-DAD, where Diode Array HPLC Detectors are most commonly used to record the ultraviolet and visible (UV-vis) absorption spectra of samples that are passing through high-performance liquid chromatography. This is due to their aromatic chromophore, which has strong UV absorbance or fluorescence signals that become obstacles for UV and fluorescent detectors. The current research focused on using silicone non-ionic surfactant Sylgard 309 modified MNPs for magnetic solid phase extraction of phenols from environmental water matrices before HPLC-DAD analysis. To our knowledge, no studies have investigated this idea yet.

1.3.1 Synthesis of MNP with ferum oxide and surfactant Slygard

MNPs were synthesized using the wet chemical coprecipitation method. A 3.1736 g of FeCl₂.4H₂O and 7.5684 g of FeCl₃.6H₂O were dissolved in 320 ml of deionized water, such that Fe²⁺/Fe³⁺ = 1/2. The mixed solutions were

stirred under N_2 at 80 °C for 1 hour. Then, 40 ml of NH_3H_2O was injected into the mixture rapidly, stirred under N_2 for another hour and cooled to room temperature. The precipitated particles were washed five times with hot water and separated by magnetic decantation. Finally, magnetic nanoparticles were dried under a vacuum at 70 °C.

4.2252 g Fe₃O₄ MNPs was sonicated in 150 mL of ethanol/water (volume ratio, 1:1) solution for 30 minutes to obtain uniform dispersion. Then 16.1600 g (17 mL) of APTES was added to the solution under N₂ atmosphere at 40 °C for 2 hours. The optimal surface modification in a molar ratio of APTES to Fe₃O₄ was found at 4:1. After that, the solutions were cooled at room temperature. The prepared APTES-modified Fe₃O₄ MNPs were separated with a magnet and washed with ethanol, followed by deionized water three times. Finally, APTES-modified Fe₃O₄ (Fe₃O₄-APTES) were dried under vacuum at 70°C.

0.2000 g of Fe₃O₄-APTES MNPs was dispersed in 8.0000 g of 3-(3-Hydroxypropyl)—Heptanethyltrisiloxane (Sylgard 309) non-ionic surfactant solution with continuous stirring overnight at room temperature under N_2 gas. The suspension was then washed with ethanol three times. The precipitated particles were collected by magnetic decantation. Finally (Fe₃O₄-APTES-Sylgard 309) was dried under vacuum at 70° C.

1.4 Characterization of MNP with ferum oxide and surfactant Sylgard

The magnetic nanoparticles (MNPs) combined with surfactant Slygard were firstly characterized for the functional groups by an FTIR spectrometer (Thermo Nicolet, Nexus 670) in the absorption mode with 32 scans and a resolution of \pm 4 cm⁻¹, a wave-number range of 4000-400 cm⁻¹. For the KBr pellet technique, optical grade KBr was used as the background material. The MNPs were intimately mixed with dried KBr at the ratio of MNPs: KBr = 1:100, then compressed into pellets under pressure.

A wide-angle X-ray diffractometer (Bruker D8 Advance) was used to study the crystalline structure of the synthesized MNPs below the nanometer scale. The CuK-alpha radiation source was operated at 40 kV/30 mA. The MNPs were placed into a sample holder, and the measurement was continuously run. The experiment was recorded by monitoring the diffraction pattern in the 2θ range from 10 to 80 with a scan speed of 1° /min and a scan step of 0.02° .

A transmitting electron microscope (FEI Talos L120C, resolution of 0.2nm@120kV) was used to examine the morphological structure and to measure the particle size of the MNPs. The samples were placed on the holder with adhesive tape and coated with a thin layer of platinum using an ion sputtering device for 1 min prior to observation under SEM. The SEM images were obtained using the acceleration voltage of 5 kV with a magnification of 100-150 kx. The average particle sizes are determined by randomly capturing SEM images from 500 nanoparticles.

Energy dispersive X-ray (EDX) was used for the elemental analysis or chemical characterization of a sample.

A vibrating sample magnetometer (VSM) Lakeshore 7404 Series was used to study the magnetic properties of the MNPs. The hysteresis loops were measured under a magnetic field strength of 10,000 Gauss at room temperature. The data were taken with 80 points/loop and a 10 s/ point scan speed.

1.4.1 Morphological analysis

The particle size of MNPs, MNP-APTES and MNP-Sylgard 309 were investigated using TEM, as shown in Figure 1.5, Figure 1.6 and Figure 1.7. The prepared nanoparticles with an approximate spherical shape and uniform nano-size distribution were observed. From the diameter distribution (Figures 1.6, 1.7, 1.8), it could be seen that the average diameters of MNPs, MNP@APTES, and MNP-Sylgard 309 are increases which can be related to encapsulation of APTES and surfactant Sylgard 309, respectively onto the surface of MNPs.

In addition, the TEM image of MNPs showed that they were agglomerated due to large specific surface area and high surface energy. After being coated with APTES, the MNP-APTES particles are well dispersed, as APTES prevent the interparticle interactions between MNPs particles. After introducing surfactant Sylgard 309, the dispersion of the MNP-Sylgard 309 nanoparticles was enhanced because surfactant Sylgard 309 provided sufficient repulsive interactions between nanoparticles, reducing the agglomeration between the MNPs particles.

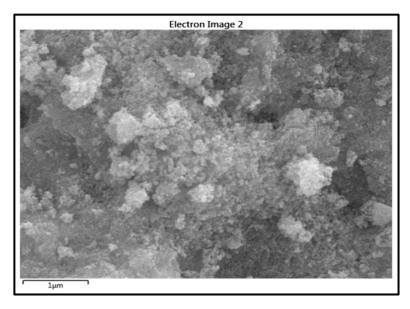


Figure 1.5 TEM image of MNPs

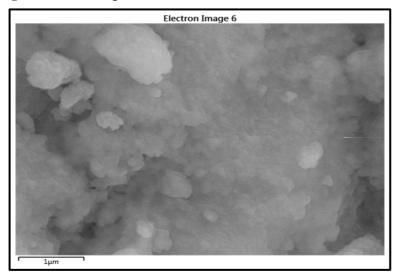



Figure 1.6 TEM image of MNP-APTES

Figure 1.7 TEM image for MNP-Sylgard 309

1.4.2 Elemental analysis

EDX analysis was performed to provide elemental identification and quantitative compositional information elements such as N, O, Fe, Si, and C in the prepared MNPs, MNP-APTES and MNP-Sylgard 309 (Figure 1.8, Figure 1.9 and Figure 1.10). The elemental analysis of the MNPs sample showed that MNPs only contain 71.2% Fe and 25.6% O. After the modification with APTES, the presence of new elements, such as 4.0% C and 1.2% Si, confirmed the APTES was successfully anchored to the surface of MNPs. Finally, as evident from the spectrum of MNP-Sylgard 309, the high percentage of C (17.1%), Si (3.1%) and O (26.1%) in MNP-Sylgard 309 revealed that the surfactant Sylgard 309 was successfully introduced onto the surface of MNP-APTES.

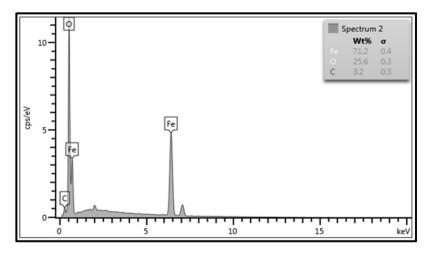


Figure 1.8 EDX spectra MNP

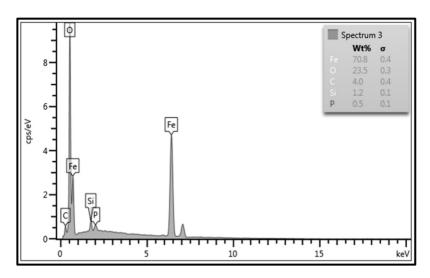


Figure 1.9 EDX spectra of MNP-APTES

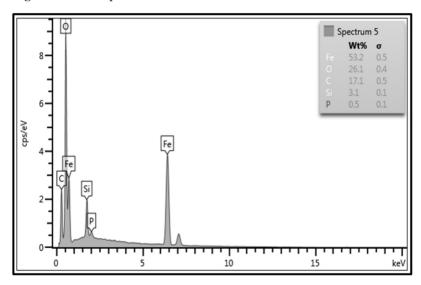


Figure 1.10 EDX spectra of MNP-Sylgard 309