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0.1. Introduction 1

0.1 Introduction

0.1.1 Overview of the Book
What does Robust Control mean in control theory?

The term "robust" comes from the Latin word "robustus," which
means "strong." A durable product is one that does not readily
break. As a result, a resilient operating system is one in which
any particular program may fail without disrupting the operat-
ing system or other applications. Thus, robust design focuses
on improving the fundamental function of the process.

Control theory is a branch of Applied Mathematics dealing
with the use of feedback to affect a system’s behavior in order
to achieve a certain objective.

Definition 0.1 Robust control is a controller design feedback
strategy that emphasizes the control algorithm’s dependability
(robustness). Robustness is commonly described as the min-
imum requirements that a control system must meet in order
to be helpful in a real-world situation.

When one or more of a system’s output variables must fol-
low a certain reference throughout time, a controller manipu-
lates the system’s inputs to achieve the intended impact on the
system’s output. So, a feedback controller measures a process
output and then changes the input as needed to drive the pro-
cess variable toward the desired setpoint, i.e., a controller reacts
to setpoint variations initiated by operators as well as random
disturbances to the process variable caused by external forces.



Dealing with the control design of any actual dynamic system,
a researcher attempts to meet three basic requirements in order
to make the control process more easy and appealing from a
practical standpoint:

e first, the mathematical model of a plant to be controlled
may be inexactly known or contain some uncertain para-
meters or structure-elements;

e second, the controlled system should be able to work sat-
isfactorily in the presence of external perturbations (even
bounded and not necessarily "smooth");

e third, the controller should be the simplest form that al-
lows for straightforward implementation: a linear state-
feedback regulator (despite the fact that the considered
plant is nonlinear) appears to be the most suitable option.

Clearly, any traditional optimum control approaches (such as
the Pontryagin Maximum Principle and Bellman Dynamic Pro-
gramming) developed for control design under complete and pre-
cise plant information are inapplicable in such uncertain scen-
arios. Recent research and actual implementations have demon-
strated that the most appropriate strategies for the control design
of various types of uncertain systems include

- Robust Control Theory (Zhou-Doyle-Glover, 1996), primar-
ily concerned with the H, - approach and its several variations,
such as

Robust Adaptive (Ioannou-Sun, 1996) and Robust Adaptive
Controls (Hong, 2008);
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- Attractive Ellipsoid Method (for example, Poznyak-Polyakov-
Azhmyakov, 2014);
- Sliding Mode Control (Utkin, 1992).

Content of the book

This course consists of five parts:

1. Part I: Mathematical Background and Linear Mat-
rix Inequalities in Control Theory.

The fundamental characteristics of quadratic forms are ad-
dressed in the first lecture. Then the positive definitive-
ness of partitioned matrices is investigated using Schur’s
complement lemma. Finsler’s lemma is provided, as well
as the so-called S - method, which deals with extra re-
stricting quadratic forms.

2. Part II: Absolute Stability and H.,- Control.

The stability theory of the group of nonlinear systems with
sectorial restrictions is considered. The generalized the Lurie-
Postnikov type Lyapunov function with a vector feedback is ap-
plied in time and frequency domains to analyze the absolute
stability property. Also the problem of perturbations attenu-
ation in linear continuos - time systems (Hoo-control) is analyzed
based on the Kalman - Yakubovich - Popov’s (KYP) frequency
lemma.

3. Part III: Attractive Ellipsoid Method (AEM).



It includes the design technique of state and output feed-
backs, the full-order dynamic feedback, feedbacks in sys-
tems with delay and sample-data with quantized output
feedbacks.

4. Part IV: Sliding Mode Control (SMC).

Sliding Mode Control is a nonlinear control approach that
changes the dynamics of a nonlinear system by applying
a discontinuous control signal (or, more precisely, a set-
valued control signal) that causes the system to "slide"
along a cross-section of its desired behavior. The state-
feedback control law is not a time-dependent function.
Instead, depending on where it is in the state space, it
can flip from one continuous structure to another.

5. Part V: Engineering Examples.

This part contains 3 examples:

- Autonomous Vehicles (AV) moving in 2D and avoiding
obstacles;

- Guidance Control of Underwater Autonomous Vehicle;

- Acceleration Control for Pilots and Astronauts Simu-
lator.

The bibliographic list of references is given in the end of each
part.

According to the author opinion, this text covers several sub-
jects that have never been considered in other related books:
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- The necessary conditions for the existence of an LMI solu-
tion,

- the extension of Schur’s lemma to nonnegative (not re-
quired strictly positiveness) matrices,

- the dynamic feedback controller and its design using the
AEM application,

- the AEM for time-delay systems,

- robust control designing for systems with Sampled-Data
and Quantized Output;

- the SMC method in unitary representation including Aver-
aged Subgradient Method and Integral Sliding Mode approach,

- and the analysis of Absolute Stability for vector nonlinear
feedbacks are among them.

0.1.2 Prerequisites

This course is aimed at graduate students (Masters and Doc-
torate) of the Electrical and Mechanical Engineering faculties,
studying Control Theory and Mecatronics, and, who wish to
learn more about how the modern robust control theory solves
different problems that arise in the real world.

We will assume familiarity with systems theory at the basic
level, including:

- Math language and logic;

- Real and complex mathematical analysis;

- Linear algebra (Vectors, Matrices, and Least Squares ap-
proach);

- Linear control systems theory (Linear system theory and
design, Feedback systems).



This book is a research-oriented material with a heavy em-
phasis on original sources. Participants should be confident in
their ability to locate, read, and comprehend conference and
journal publications well enough to duplicate and/or explain
results to a colleague.

0.1.3 Computational Tools

The analytical skills we learn in class may be used in formal
control system thinking. Real-world systems, on the other hand,
rarely allow for pen-and-paper study, therefore we rely heavily
on computational tool outputs in practice. As a result, this
book will stress both analytical and computational methods, as
well as their benefits and drawbacks.

Python is now the most favorite computational toolkit; it is
free, open-source, cross-platform, and full-featured. T’ll encour-
age the participants to use Python tools by publishing sample
code, homework assignments, and homework answers. For their
course work, the readers are free to use any computational tool
(for example, my favorite is MATLAB with Control System
Toolbox and Simulink).

0.1.4 The Relationship to Other Courses and
Books

Of course, this book includes fresh ideas that might serve as
supplements to the older works that are still in print and well-
liked among Modern Control Theory experts. These books are
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- Maciejowski, J.M., 1989, Multivariable Feedback Design.
Addison Wesley.

The optimization of the feedback parameters is not con-
sidered. The book respectively old.

- Grimble, M.J., 1994, Robust Industrial Control. Prentice
Hall International.

Some specific systems such as sample-data quntized out-
put feedbacks, Time-Delay, Implicit and Switched Structer
Systems are not considered.

- Zhou, K., Doyle, J. & Glover, K., 1996, Robust and Op-
timal Control, Prentice Hall
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Estimation and Control: 2, Systems & Control: Founda-
tions & Applications, Boston, MA: Birkhauser.
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ceton.

It does not considere uncertainty effects and set-stability
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results in the field of robust control under parametric un-
certainty only.
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The book considers Gap metric, V-gap metric, model val-
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