Dynamic Stereochemistry

Dynamic Stereochemistry:

An Insight into the 3D-Picture in the Course of a Reaction

Ву

Sudhir Chandra Pal

Cambridge Scholars Publishing

Dynamic Stereochemistry:
An Insight into the 3D-Picture in the Course of a Reaction

By Sudhir Chandra Pal

This book first published 2025

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2025 by Sudhir Chandra Pal

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN: 978-1-0364-4101-2

ISBN (Ebook): 978-1-0364-4102-9

To my loving wife ITIKA PAL (SAHA)

TABLE OF CONTENTS

Dynamic Stereochemistry

Foreword	XV
Preface	xvi
Chapter 1	
Nucleophilic Substitution at a Saturated C-Centre	1
1.1 Introduction	1
1.2 S _N 2 Mechanism	1
1.2.1 Allylic substrates: S _N 2' mechanism	9
1.3 S _N 1 Mechanism	10
1.3.1 Epoxide ring opening; $S_N 1$ vs $S_N 2$	15
1.4 Ion-Pair Mechanism	16
1.4.1 Substitution of diazonium ions	19
1.5 Substitution Reactions with Alcohols	20
1.5.1 Mitsunobu reaction	22
1.6 When Stereocentre is not the Reaction Centre	24
1.7 S _N i Mechanism	25
1.8 Neighbouring Group Participation	26
1.8.1 The centre bearing the leaving group is	
stereogenic	27
1.8.2 Both the centres are stereogenic	27
1.8.3 Pi-electron participation as neighbouring group	32
1.9 Some Reactions of Bridged Compounds	33
1.9.1 Fragmentation	37
1.10 Reactions of Cyclohexane Derivatives Through	
Stereospecific Pathways	38
1.10.1 Reactions	39
Exercise 1	46
Chapter 2	
Electrophilic Addition to C=C and C=C Bonds	59
2.1 Introduction	59
2.2 Mechanisms	59
2.2.1 Polar mechanism	59
2.2.2 Cyclic mechanism	60
2.2.3 Stereospecific additions	60
2.3 Addition of HX (X = Halogen)	61
2.4 Addition of Halogen, HOX (X = Cl / Br / I),	
Sulfenylation and Selenylation	62

viii | Dynamic Stereochemistry

2.5 Addition of Carbene (singlet and triplet)	67
2.6 Epoxidation	69
2.6.1 By molecular oxygen	69
2.6.2 Epoxidation with peracid	69
2.6.3 Epoxidation by hydrogen peroxide	72
2.6.4 Epoxidation by hydroperoxide	72
2.6.4a Enantioselective epoxidation	73
2.6.5 Epoxidation by dimethyloxirane	76
2.7 Dihydroxylation	77
2.7.1 Upjohn dihydroxylation	77
2.7.2 Enantioselective dihydroxylation (Sharpless)	79
2.7.3 Permanganate method	81
2.7.4 Woodward variation of Prevost reaction	82
2.8 Dihydroxylation via Epoxide Hydrolysis or Prevost	
Reaction	83
2.8.1 Prevost reaction	83
2.8.2 Hydrolysis of epoxide	83
2.9 Hydroboration and Reactions via Organoborane	84
2.9.1 Introduction	84
2.9.2 Reactions via organoboranes	86
2.9.3 Enantioselective hydroboration-transformation	87
2.9.4 Diastereoselective hydroborations	90
2.10 Oxymercuration-Demercuration	91
2.11 Hydrogenation	92
2.11.1 Heterogeneous catalytic hydrogenation	92
2.11.2 Homogeneous catalytic hydrogenation	93
2.11.3 Enantioselective hydrogenation	95
2.11.4 Directed hydrogenation (haptophilicity)	95
2.11.5 Transfer hydrogenation	99
2.12 Syn-Anti Dichotomy in Pd(II) Catalysed Additions	101
2.11.1 Intramolecular reactions	102
2.11.2 Intramolecular reactions	103
Exercise 2	106
Chapter 3	
1,2-Elimination, Fragmentation and Allyic Strains	121
3.1 Introduction	121
3.2 Ionic Mechanisms	121
3.2.1 Stereochemical studies	123
3.3 Pyrolytic or Cyclic Eliminations	125
3.3.1 Cyclic compounds	129
3.3.2 Rigid systems	133

3.3.3 Elimination to give alkyne	134
3.4 Regioselectivity or Orientation	134
3.4.1 E1 reactions	135
3.4.2 E2 reactions	135
3.4.3 Pyrolysis reactions	136
3.5 Cis-Trans Ratio	138
3.6 1,2-Eliminations where Electrofuge is other than H	140
3.7 Syn-Anti Dichotomy in 1,2-Eliminations	142
3.7.1 Cyclic compounds	145
3.8 Substitution and 1,2-Elimination Occurring	
Simultaneously	146
3.9 Fragmentation`	149
3.9.1 Introduction	149
3.9.2 Early examples	150
3.9.3 Aminotosylates and haloamines	151
3.9.4 1,3-Diol monotosylates (Wharton) `	155
3.9.5 Fluoride triggered fragmentations	156
3.9.6 Epoxybicyclo[2.2.1]heptan-2-ols and -2-ones	157
3.9.7 Fragmentation leading to alkynes and allenes	159
3.9.8 Decarboxylative and decarbonylative	
fragmentations	160
3.9.9 Marshall fragmentation	163
3.9.10 Beckmann fragmentation	164
3.9.11 Fragmentation via radical mechanism	165
3.9.12 Fragmentation involving stepwise mechanism	166
3.10 Allylic Strain	168
3.10.1 Introduction	168
3.9.2 A controlling factor in stereoselective synthesis	169
3.9.3 Stereoselective synthesis of derivative of	
cyclohexane and cyclohexanone	172
3.9.4 Conjugate addition of cyclohexenyl ketone	
and bromination of the products	173
Exercise 3	176
Chapter 4	
Nucleophilic Addition to Carbonyl	191
4.1 Introduction	191
4.1.1 Facial selectivity	191
4.2 Enantioselective Reduction of Ketones	191
4.2.1 Using stoichiometric chiral reducing agents	191
4.2.2 In the presence of chiral catalysts	192
4.2.3 In the presence of biocatalysts	193

x | Dynamic Stereochemistry

4.3 Enantioselective Allylation	195
4.3.1 Diastereoselectivity with crotyl borane reagents	196
4.4 Diastereoselective Reactions	196
4.4.1 Introduction	196
4.4.2 Prelog's rule	197
4.4.3 Cram's rule	199
4.4.4 Cram's chelate model	200
4.4.5 Cornforth model	201
4.4.6 Karabatsos model	202
4.4.7 Felkin-Anh model	203
4.4.8 Cyclohexanones	206
4.4.8a Conjugate addition to cyclohexenones	208
4.4.9 Cieplak model	208
4.4.10 Felkin-Anh model vs Cornforth models	211
4.5 Aldol Reactions (Aldehyde Facial Selectivity)	212
4.5.1 1,2-Stereoinduction	212
4.5.2 Reversal of selectivity by 1,3-chelation	213
4.5.3 1,3-Stereoinduction	214
4.5.3a Chelating cases	216
4.5.4 Merged 1,2- and 1,3-Stereoinduction	216
4.6 Knoevanagel Condensation	218
4.6.1 Doebner modification	220
Exercise 4	221
Chapter 5	
Stereoselectivity, Chiral Auxiliary & Quantitative studies	227
5.1 Introduction	227
5.2 Asymmetric Synthesis	228
5.3 Stereoselective Reaction/Synthesis	229
5.3.1 Enantioselective synthesis	229
5.3.2 Diastereoselective synthesis	230
5.4 Stereospecific Reactions	231
5.4.1 Stereoelectronic factor	231
5.5 The Principle of Stereoselectivity	232
5.6 Asymmetric Induction	235
5.7 Double Asymmetric Induction	236
5.7.1 Matched and mismatched pair	236
5.7.2 Reagent-based stereocontrol	238
5.8 Reactions of Double Asymmetric Induction	238
5.8.1 Matched and mismatched pair in aldol reactions	238
5.8.2 Reagent controlled allylation and crotylation	241
5.8.3 Diels-Alder reaction	241

5.10 Quantitative Studies 5.10.1 Introduction 5.10.2 Boundary condition I 5.10.3 Boundary condition II 5.10.3a Winstein-Holness equation 5.10.3b Conformational population from NMR 5.10.3c Curtin-Hammett principle Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2a Hard enolisation 6.2.2b Soft enolisation 6.3.1 Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Signatropic Shift 7.1 Introduction 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction		
5.10 Quantitative Studies 5.10.1 Introduction 5.10.2 Boundary condition I 5.10.3 Boundary condition II 5.10.3a Winstein-Holness equation 5.10.3b Conformational population from NMR 5.10.3c Curtin-Hammett principle Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.1 Alkylation 6.2.2 Stereoselective enolates 6.3.1 Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.3.4 Mukaiyama aldol reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction	5.9 Stereoselective Synthesis via Chiral Auxiliary	243
5.10.1 Introduction 5.10.2 Boundary condition I 5.10.3 Boundary condition II 5.10.3a Winstein-Holness equation 5.10.3b Conformational population from NMR 5.10.3c Curtin-Hammett principle Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2b Fort enolisation 6.2.2b Fort enolisation 6.3 Indlate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction		246
5.10.2 Boundary condition I 5.10.3 Boundary condition II 5.10.3a Winstein-Holness equation 5.10.3b Conformational population from NMR 5.10.3c Curtin-Hammett principle Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2b Soft enolisation 6.2.1 Alkylation 6.3.1 Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction		246
5.10.3 Boundary condition II 5.10.3a Winstein-Holness equation 5.10.3b Conformational population from NMR 5.10.3c Curtin-Hammett principle Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2b Soft enolisation 6.2.2b Soft enolisation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance		248
5.10.3a Winstein-Holness equation 5.10.3b Conformational population from NMR 5.10.3c Curtin-Hammett principle Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2 Hard enolisation 6.2.2b Soft enolisation 6.3.1 Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of exocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2.2 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric assistance	•	249
5.10.3b Conformational population from NMR 5.10.3c Curtin-Hammett principle Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2b Hard enolisation 6.2.2b Soft enolisation 6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2.2 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance		249
5.10.3c Curtin-Hammett principle Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2a Hard enolisation 6.2.1b Soft enolisation 6.3.1 Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.3.4 Aldol Reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2 Steric indurance 7.2.2 Steric assistance		252
Exercise 5 Chapter 6 Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2 Hard enolisation 6.2.2 boft enolisation 6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.4 Idol Reaction 6.4.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric indrance 7.2.2 Steric indrance 7.2.2 Steric indrance 7.2.2 Steric assistance		253
Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2a Hard enolisation 6.2.2b Soft enolisation 6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric indrance 7.2.2 Steric indrance 7.2.2 Steric assistance	1 1	259
Reactions via Carbanion or Enolate or Enol Equivalents 6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2a Hard enolisation 6.2.2b Soft enolisation 6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric indrance 7.2.2 Steric indrance 7.2.2 Steric assistance	Chapter 6	
6.1 Introduction 6.2 Enolate Formation; Deuteration and Halogenations 6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2a Hard enolisation 6.2.2b Soft enolisation 6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2a Steric hindrance 7.2.2b Steric assistance	±	265
6.2.1 Regioselective enolate formation 6.2.2 Stereoselective enolate formation 6.2.2a Hard enolisation 6.2.2b Soft enolisation 6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4.4 I Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance		265
6.2.2 Stereoselective enolate formation 6.2.2a Hard enolisation 6.2.2b Soft enolisation 6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4 Aldol Reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.2 Enolate Formation; Deuteration and Halogenations	265
6.2.2a Hard enolisation 6.2.2b Soft enolisation 6.3 Enolate Alkylation of exocyclic enolates 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4 Aldol Reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance		266
6.2.2b Soft enolisation 6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4 Aldol Reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Signatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.2.2 Stereoselective enolate formation	267
6.3 Enolate Alkylation 6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4 Aldol Reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.2.2a Hard enolisation	267
6.3.1 Alkylation of exocyclic enolates 6.3.2 Alkylation of endocyclic enolates 6.4 Aldol Reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.2.2b Soft enolisation	268
6.3.2 Alkylation of endocyclic enolates 6.4 Aldol Reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Signatropic Shift 7.1 Introduction 7.2 Steric Factor deciding the course of the reaction 7.2.1 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.3 Enolate Alkylation	269
6.4 Aldol Reaction 6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.3.1 Alkylation of exocyclic enolates	270
6.4.1 Enolate face selectivity 6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2a Steric hindrance 7.2.2b Steric assistance	6.3.2 Alkylation of endocyclic enolates	270
6.4.2 Mukaiyama aldol reaction 6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Signatropic Shift 7.1 Introduction 7.2 Steric Factor deciding the course of the reaction 7.2.1 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.4 Aldol Reaction	272
6.5 Single Diastereomer: Reaction of Chiral Enolate with Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Signatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2a Steric hindrance 7.2.2b Steric assistance	6.4.1 Enolate face selectivity	274
Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.4.2 Mukaiyama aldol reaction	276
Achiral Aldehyde 6.5.1 Acetate aldol reaction 6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.5 Single Diastereomer: Reaction of Chiral Enolate with	
6.6 Reaction of (E)- or (Z)-Enolates with Chiral Aldehydes 6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 2.5 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Signatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance		277
6.7 Double Stereodifferentiation 6.8 1,5-Stereoinduction 6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Signatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.5.1 Acetate aldol reaction	280
6.8 1,5-Stereoinduction 2.8 Exercise 6 2.9 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance	6.6 Reaction of (E) - or (Z) -Enolates with Chiral Aldehydes	282
6.9 Stereoselectivity with Free Radical Reactions Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance 36	6.7 Double Stereodifferentiation	284
Exercise 6 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance 30	6.8 1,5-Stereoinduction	287
Exercise 6 29 Chapter 7 Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 29 7.1 Introduction 29 7.2 Steric Factor 29 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 30 7.2.2b Steric assistance 30	6.9 Stereoselectivity with Free Radical Reactions	287
Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance 30		290
Reactions - Steric Factor, Mechanism Investigation, [3,3] Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance 30	Chapter 7	
Sigmatropic Shift 7.1 Introduction 7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2 Steric hindrance 7.2.2b Steric assistance 30		
7.2 Steric Factor 7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2a Steric hindrance 7.2.2b Steric assistance 30		297
7.2.1 Steric factor deciding the course of the reaction 7.2.2 Steric factor deciding the rates of the reaction 7.2.2a Steric hindrance 7.2.2b Steric assistance 30	7.1 Introduction	297
7.2.2 Steric factor deciding the rates of the reaction 7.2.2a Steric hindrance 7.2.2b Steric assistance 30	7.2 Steric Factor	297
7.2.2a Steric hindrance 30 7.2.2b Steric assistance 30	7.2.1 Steric factor deciding the course of the reaction	297
7.2.2b Steric assistance 36		299
	7.2.2a Steric hindrance	301
7.2.3 Acyclic diols	7.2.2b Steric assistance	303
7.2.5 regene diois	7.2.3 Acyclic diols	304

xii | Dynamic Stereochemistry

7.3 I – Strain	305
7.4 Establishing the Reaction Mechanism	308
7.4.1 Reactions involving 1,2-shift	308
7.4.2 Some other mechanistic investigations	314
7.4.3 Different reaction conditions	318
7.5 [3,3] Sigmatropic Shifts	320
7.5.1 Stereochemistry of Cope rearrangement	321
7.5.2 Stereoselectivity of Claisen rearrangement	322
7.5.3 Stereochemistry of Ireland-Claisen rearrangement	323
7.5.4 Eschenmoser-Claisen rearrangement	324
Exercise 7	326
Chapter 8	
Intramolecular Reactions, Tethers, Transannular	337
Reactions	
8.1 Introduction	337
8.2 Reactions Highlighting Different Aspects	337
8.2.1 Groups are proximate due to close location	337
8.2.2 The rigid framework/ configuration	341
8.2.3 Conformation	341
8.2.4 Intermolecular vs intramolecular	343
8.3 Geminal Di-substitution: Thorpe-Ingold Effect	344
8.4 Baldwin Rules	348
8.4.1 Tet-cyclisations	350
8.4.2 Trig-cyclisations	352
8.4.2a Intramolecular enolate alkylation	355
8.4.3 Dig cyclisations	356
8.4.4 Intra-molecular aldol reactions	357
8.5 Halolactonisation	359
8.6 Acid Catalysed Cyclisation of Compounds via	
Carbocation	361
8.7 Biosynthesis of Steroids and Terpenoids	365
8.8 Cyclisation Leading to Heterocyclic Rings	372
8.9 Cyclisation by Radical Mechanism	374
8.10 Tethers	379
8.10.1 Introduction	379
8.10.2 Incorporation of silyl tethers	380
8.10.3 Application of tethers in synthesis	381
8.10.4 Reactions by free radical pathway	385
8.10.5 Tethered olefin metathesis	386
8.11 Transannular Reactions	387
8 11 1 Introduction	387

8.11.2 Functionalisation at 'inert' site	387
8.11.2 Reactions of transannular functional groups	389
8.11.3 Application in synthesis of natural products	391
Exercise 8	393
Chapter 9	
Stereoselective Synthesis and Interconversion of Olefins	407
9.1 Introduction	407
9.1.1 Elimination of XY from vicinal positions	407
9.2 Wittig Reactions and its Various Modifications	407
9.2.1 Cis-selectivity for non-stabilised ylides	408
9.2.2 Reduced selectivity in the presence of Li ⁺ salts	409
9.2.3 Trans-selectivity for stabilised ylides	410
9.2.4 Trans-selectivity for non-stabilised ylides	411
9.3 Horner-Wittig Olefination	411
9.4 Horner-Wadsworth-Emmons Reaction	413
9.4.1 Cis-selectivity: Still-Gennari variation	414
9.5 Peterson Olefination	415
9.5.1 Preparation of diastereomeric β–hydroxysilanes	417
9.6 Julia-Lythgoe Olefination	417
9.6.1 Modified Julia olefinations	418
9.6.2 Peterson versus Julia and Wittig type reactions	419
9.7 Corey-Winter Reaction	420
9.8 De-Oxygenation of Epoxides	421
9.9 From Alkynes	421
9.10 From Cyclopropylmethyl Substrates	423
9.11 Ring Fragmentation	423
9.12 Interconversion of Cis- and Trans-Alkenes	424
9.12.1 Directed conversion	424
9.12.2 Cis-trans equilibration	426
Exercise 19	428
Chapter 10	
Pericyclic Reactions	433
10.1 Introduction	433
10.2 Electrocyclic Reactions	434
10.2.1 Conrotatory electrocyclic reactions	434
10.2.2 Disrotatory electrocyclic reactions	436
10.2.3 Selection rules for electrocyclic reactions	439
10.2.4 Nazarov reaction	439
10.3 Cycloaddition Reactions	441
10.3.1 Selection rules for cycloadditions	443
10.4 Sigmatropic Reactions	443

xiv | Dynamic Stereochemistry

10.4.1 Selection rules for sigmatropic shifts	445
10.5 Theories	445
10.5.1 Conservation of orbital symmetry: Correlation	
diagrams	446
10.5.2 Frontier Molecular Orbital (FMO) approach	453
10.5.2a Exo-/ endo-selectivity	455
10.5.2b S-cis / S-trans conformations of dienes	457
10.5.2c Torquoselectivity	459
10.5.3 [3,3] Sigmatropic shift	464
10.5.3a The Cope rearrangement	464
10.5.3b Oxy-Cope rearrangement	467
10.5.4 General selection rules	467
10.5.5 Aromatic – nonaromatic transition state theory	469
10.6 Walk Rearrangement	472
10.7 The ene Reaction	473
10.8 Regioselectivity and Site Selectivity	474
10.9 Periselectivity	475
10.10 Enantioselective Pericyclic Reaction	478
10.11 Applications	479
10.11.1 Naturally occurring pericyclic reactions	479
10.11.2 Synthetic examples	480
Exercise 10	485
Appendix I: Some conformational aspects	495
Exercise A I	498
Appendix II: Miscellaneous multiple-choice questions	501
Solutions to the Problems in Exercises	519
Exercise 1	519
Exercise 2	532
Exercise 3	545
Exercise 4	557
Exercise 5	564
Exercise 6	569
Exercise 7	575
Exercise 8	584
Exercise 9	596
Exercise 10	600
Exercise AI	608
Exercise A II	613
Selected References	614
Subject index	623

FOREWORD

Often referred to as the chemistry in three-dimensions, stereochemistry is one of the most fascinating, as well as challenging subject. Ever since the landmark discovery of Louis Pasteur of the optical activity and chirality of tartaric acid, stereochemistry has become a pivotal subject, not only within organic chemistry but also in the broader fields of pharmaceuticals, materials science, biochemistry. This book on stereochemistry, titled "DYNAMIC STEREOCHEMISTRY" by Professor Sudhir Pal, who has vast experience in teaching stereochemistry to undergraduate students, comes out at a time when the need for a deeper understanding of spatial molecular arrangements has become so important. With the advent of new chiral drugs and advanced materials, it becomes increasingly important to grasp the concept of how molecular orientation and reactivity in 3D-space can drastically affect the outcome or stereoselectivity of a chemical reaction and the biological properties.

What sets this book apart from the rest of already published ones, is the rigorous exploration of reactivity of molecules in motion in 3D-space with other molecules, reagents or biomolecules and its effect on asymmetric synthesis. The author has managed to balance the depth of the subject matter with clarity, guiding both students and experienced chemists through the fundamental concepts of kinetics of asymmetric chemical reactions.

It is my sincere belief that this book will become an essential reference for anyone seeking to navigate through the world of inter-reactivity of three-dimensional molecular structures. The chapters are very well organised with the unravelling of topics in a pedagogical manner. The problems at the end of each chapter will help the readers to boost up their understanding of 3D-chirality.

My congratulations to Professor Pal for this outstanding effort. I believe this book will be regarded as a stepping stone to the broader and dynamic portrait of how molecules shape the chiral world around us.

Amit Basak, FNA, FRSC, FASc, FNASc INSA Senior Scientist, IISER Kolkata Formerly Professor, Head (Chemistry) and Dean (Faculty) Indian Institute of Technology Kharagpur, INDIA

PREFACE

The book discusses the application of the basic aspects / principles of stereochemistry in organic reactions. It correlates the stereochemistry of starting reactant and products in terms of the transition state and the intermediates.

Further, it deals with the studies of the effect of stereochemistry on the rate process – be it chemical reactions or conformational interconversions. The conformational theory provides a logical basis of these observations and also provides information regarding the relative reactivity of stereoisomers.

There are a number of literatures on the subject. But newer reactions and strategies for the synthetic methods are developed. The book attempts to highlight these topics in addition to presenting the existing reactions in a different approach.

A large number of problems are given in the exercise. Their solution is given for the benefit of the learners. Moreover, a good number of multiple-choice type questions are given to help the students in facing different competitive examinations. The book is made student-oriented.

The teaching and learning of this subject are the main purpose of the book. It is hoped that the students and teachers interested in this area will welcome the book.

I appreciate the assistance of Professor Samik Nanda (IIT, Kharagpur), Dr. Nirmal K Hazra (Egra S.S. Mavidyalaya), Dr. Subhabrata Mabhai (Mahishadal Raj College), Dr. Gopal Chandra Maity (Abhedananda Mahavidyalaya), for some helpful discussions and suggestions on some of the subject matters.

I take this opportunity to thank Prof. Alakes Bisoi (IISER, Kolkata), Prof. Prasanta Ghorai (IISER, Bhopal), Prof. Anirban Misra (NBU), Prof. Anirban Bhunia (Bose Institute), Prof. Snehadri Khatua (NEHU), Prof. Akhil K Sen (BIT, Mesra), Dr. Dipankar Das (US Pharmacopeia), Dr. Subir Roy (DRDO), Dr. Akbar Ali (ITC), Dr. Sankar P Dey (Principal), Dr.

xviii | Dynamic Stereochemistry

Avishek Ghosh (Midnapore City College), Sri Debabrata Sarkar (Entrepreneur) and many others for their direct and indirect help.

I am grateful to all the teachers, especially Sri Bimal K Das and Late Jatindranath Paria, Prof. S. Bagchi and Prof. M. R. Jana, of my student life for their inspiration. I am also grateful to my research guide Prof. Avijit Banerji for arousing interest in the topic and organic chemistry in general.

I am indebted to my family members but for whose cooperation the work could not be done.

Finally, I take this opportunity to thank M/s Cambridge Scholars Publishing to publish the work in print and in electronic media

In spite of the best efforts, some errors may creep in. I shall appreciate and be grateful if learned readers bring these errors to the notice of the author. Their suggestions in improving the quality of the book in any respect are most welcome.

Sudhir C Pal
Flat 3A, CD – 61,
Street No. – 262, CD Block, Newtown Action Area 1C,
Kolkata – 700156
West Bengal, INDIA

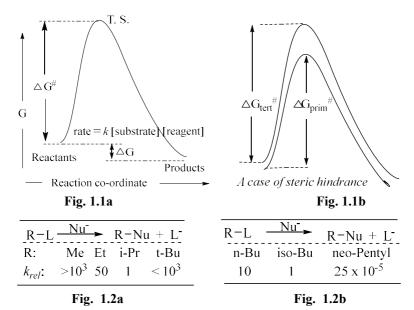
CHAPTER 1

Nucleophilic Substitution at a Saturated C-Centre

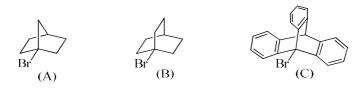
1.1 Introduction

The two most common mechanism of the nucleophilic substitution at a saturated C-centre (sp 3 hybrid carbon) are (i) S_N2 (substitution, nucleophilic, bimolecular) and (ii) S_N1 (substitution, nucleophilic, unimolecular). Neighbouring group participation route and S_Ni are two other less common mechanisms.

1.2 S_N2 Mechanism


This is a concerted process (i.e, single step) in which the transition state (T. S.) is a penta-coordinated species (**Scheme 1.1**). The reaction centre changes its state of hybridisation to sp² in the T.S. such that its unhybrid p-orbital forms two partial bonds with the nucleophile (the incoming group, Nu) and the nucleofuge (the departing group, L). The situation demands that the nucleophile should approach the reaction centre from the rear side of the leaving group; the Nu...C...L is more or less linear.

Scheme 1.1


The characteristic features of $S_{\rm N}2$ mechanism are supported by the following observations:

- (i) Kinetic studies:
- (a) the rate is second order -1^{st} order each with respect to the substrate and the reagent. The energy profile diagram is shown in **Fig. 1.1a**.
- (b) The rate of the S_N2 reactions gradually decrease from methyl to primary to secondary to tertiary substrates (Fig. 1.2a); the α -branching

raises the energy of the T. S. more than that of the ground state (**Fig. 1.1b**). This is because the steric requirement of the T. S. [pentacoordinated] is higher than the steric requirement of the ground state [tetra-coordinated] (steric hindrance). ^{1a}

(ii) Failure of the reactions at the bridgehead positions - Even the reactions can fail if the situation so warrants. As for example the bridged compounds, (A), (B) and (C), with the leaving groups at the bridgehead positions, are inert towards the S_N2 reactions. The cage like framework totally blocks the rear side approach of the nucleophile.

¹If the concentration of one reactant is made too high then its change in concentration would have no effect on the rate of reaction. The reaction is then called **pseudo first order** reaction though the mechanism is bimolecular.

^{1a}see **Section 7.2** of 'Fundamentals of Stereochemistry' by the author.

(iii) The β -branching of the substrate also slows down the reaction (**Fig. 1.2b**). Then neopentyl substrates practically do not undergo the S_N2 reactions primarily due to the failure to attain collinearity, Nu...C...L, in the T.S. (**Fig. 1.3**). Such crowding of the rear side of the leaving group prohibiting collinearity is also the cause of the sluggishness of S_N2 reaction of the decalin derivative, (D).

Nu....C....L non-linear; poor overlap of orbitals

Fig. 1.3

(iv) The change of reaction course - The reaction can take a different route if the access to the rear side of the leaving group is restricted or the S_N2 T.S. becomes crowded. Thus, even though the allylic substrates are more reactive towards substitution the compound, (E), gives mainly a rearranged product (by S_N2') under the bimolecular reaction condition (eqn. 1.1).

The percentage of elimination (by E2) increases from the primary to secondary to the tertiary substrates², and if the nucleophile is strongly basic the tertiary substrates give exclusive elimination product(s) (eqn. 1.2: failure of the Williamson synthesis).

- (v) Failure of the intra-molecular reactions An expected intramolecular S_N2 reaction fails where the linearity, Nu...C...L, cannot be achieved due to any geometrical restriction (see also **Section 8.2**).
- (a) Thus, the ortho-substituted sulfonic acid methyl esters (E) and (F) yield products (G) and (H) respectively by the intermolecular³ rather than an intra-molecular process.

The kinetic studies indicate that the rate of each is second order in the substrate (intermolecular). The intra-molecular reaction⁴ (1st order in substrate), despite favourable entropy factor, fails since the 6-membered T.S., (T), with the collinear arrangement of the three reacting centres in the already rigid framework of the benzenoid ring would be highly strained (Scheme 1.2).

(E) Ts

$$CH_3$$
 CH_3
 CH_3

Scheme 1.2

⁴The intramolecular reaction (including cyclisation) could occur provided the ring of the T.S. is sufficiently large to allow collinearity of the participating centres.

$$(CH_2)_3SO_2Me \\ NMe_2 \\ NMe_2 \\ NMe_3 \\ NMe$$

 $^{^2}$ The increased stability of the alkenes favouring the E2 T.S. and the statistical consideration of having a greater number of β-H are other causes for this trend. 3 The intermolecular path is established by the following cross-over experiment (this does not exclude simultaneous intra-molecular process). The intra-molecular path is excluded by the kinetic experiments.

(b) The following reaction did not give the expected cyclic product; the 6centre T.S. containing two sp-hybrid carbons (requiring linear geometry, too) would be too strained (Scheme 1.3).5

$$\begin{array}{c|c} H & & \\ \hline & & \\ BrNH_3(I) & & \\ \hline \end{array} \\ \begin{array}{c} Br & \\ Br & \\ \end{array} \\ \begin{array}{c} Br & \\ \hline \end{array} \\ \begin{array}{c} Br & \\ \end{array} \\ \begin{array}{c}$$

Scheme 1.3

- (vi) Stereochemical observations: The inversion of configuration at the stereogenic reaction centre occurs; this is called Walden inversion.⁶ As a result the following observations are noted:
- (a) the product from an enantiopure substrate having α -carbon as the only stereocentre is found to have the enantiomeric configuration of the starting isomer (Scheme 1.4).7

Scheme 1.4

(b) the relative configuration of the diastereomeric starting compound (having stereogenic reaction centre, of course) is changed. That is, a threo-

H
$$\longrightarrow$$
 (CH₂)₇ Br $\xrightarrow{\text{NaNH}_2}$ under high dilution cyclodecyne

⁶The situation is analogous to the phenomenon of umbrella inversion in strong wind with the exception that here the umbrella gets 'folded'. Can anyone try to keep it 'unfolded' even in the inverted position (as shown in the parenthesis)? In that case analogy will be more appropriate (the umbrella will find a good market).

$$C \longrightarrow \left[C \longrightarrow \right]_{\#} \longrightarrow C \longrightarrow \left(\left(\bigcirc \right) \longrightarrow \right)$$

⁷This does not mean that configurational notation in terms of R/S would be changed. It is certainly changed if the priority of the leaving group in the starting isomer and the priority of the entered group in the product isomer is same. If the leaving group is written in place of the newly entered group in the product isomer the resultant would become the enantiomer of the starting isomer.

⁵ A longer chain can lead to an intramolecular reaction by S_N2:

isomer forms an erythro product (meso in the limiting case) and *vice-versa* (**Scheme 1.5**).

Scheme 1.5

In case of a cyclic substrate the cis-isomer (chiral / achiral) gives a transproduct (chiral / achiral) or the reverse (**Scheme 1.6**).

Scheme 1.6

Cis-2-bromocylcopentanol undergoes a normal S_N2 reaction in the presence of a base (nucleophilic) to give a trans-diol. However, the corresponding trans-isomer, following an internal nucleophilic attack, yields an epoxide under the similar conditions (**Scheme 1.7**).

(c) Where the incoming and the leaving groups are same, the substitution at a stereocentre leads to the racemisation. The rate of the racemisation is twice the rate of reaction at the initial stages. This is shown by a reaction of an enantiopure iodo-compound labelled with a radioactive iodide (see Section 7.4.2). The experiment clearly indicates that each act of $S_{\rm N}2$ reaction accompanies inversion of configuration at the reaction centre.

(d) Two S_N2 acts in a reaction mechanism can lead to a product with the retention of configuration. The solvolysis of an enantiopure starting compound (**Scheme 1.8**) in aqueous dioxan yielding a product with the retention of configuration is explained by an S_N2 involving nucleophilic solvent followed by another S_N2 step resulting in the final product.

$$\begin{array}{c} \text{n-C}_{6}H_{13} \\ \text{H} \\ \text{Me} \end{array} \rightarrow \begin{array}{c} \text{Dioxane} \\ \text{H}_{2}\text{O} \end{array} \longrightarrow \begin{array}{c} \text{n-C}_{6}H_{13} \\ \text{H}_{2} \\ \text{O} \end{array} \longrightarrow \begin{array}{c} \text{n-C}_{6}H_{13} \\ \text{H}_{2} \\ \text{O} \end{array} \longrightarrow \begin{array}{c} \text{n-C}_{6}H_{13} \\ \text{H}_{2} \\ \text{O} \end{array} \longrightarrow \begin{array}{c} \text{OH} \\ \text{Me} \end{array} \longrightarrow \begin{array}{c} \text{OH} \\ \text{Me} \end{array} \longrightarrow \begin{array}{c} \text{OH} \\ \text{OH} \\ \text{Me} \end{array}$$

(e) A bulky nucleophile (bulkier than the leaving group) prefers to enter along the equatorial rather than the axial path in the reaction with a cyclohexyl substrate. Thus, trans-4-tert-butylcyclohexyl bromide undergoes the reaction with thiophenolate at a slower rate than the corresponding cis-isomer ($k_t < k_c$: Scheme 1.9).

Steric hindrance (see also Section 7.2.2) is responsible for the sluggish reaction of r-1-bromo-t-2, t-6-dimethylcyclohexane (A) as compared to the diastereomeric r-1-bromo-c-2, c-6-dimethylcyclohexane (B) with a nucleophile under bimolecular reaction condition. Both the isomers react through their biased conformers (A) and (B) in which both the methyl groups are equatorial. The incoming nucleophile faces crowding with the axial Hs at C-3 and C-5 in (A) to raise the energy of the T.S., and so the reaction rate is slow. The equatorial approach of the nucleophile in (B) does not face such steric situation (Scheme 1.10).

$$\begin{array}{c}
Me \\
Me \\
Br
\end{array}$$

$$\begin{array}{c}
Me \\
Me
\end{array}$$

Scheme 1.10

(f) An intramolecular S_N2 is a primary step in the formation of a cyclopropanone intermediate in the Favorsky rearrangement. The failure to fulfil the stereoelectronic requirement of S_N2 to form such an intermediate is believed to be the cause of the unsuccessfulness of the Favorsky reaction of the α -bromoketone (C) where -Br is axial. Whereas the epimeric α -bromoketone (D) having the equatorial -Br undergoes the reaction to yield the ring contracted products (Scheme 1.11) as usual.

Scheme 1.11

(g) The steric factor sometimes influences the *regioselectivity* of the S_N2 reactions. The exo-epoxide (I) resists bromide attack at the carbon close to a 4-membered ring (**Scheme 1.12**), and the endo-epoxide (II) prevents - OH to develop at the carbon close to it (**Scheme 1.13**).

$$(I) \qquad \begin{array}{c} & & & \\ & &$$

Scheme 1.13

1.2.1 Allylic substrates: S_N2' mechanism and its stereochemistry –The probable mechanism and the stereochemical course for a chiral secondary substrate is depicted in Fig. 1.3a. Sometimes approach of the nucleophile is observed anti. but in most of the vinylogous S_N2' reactions the same approach is found to be syn / cis if the reactions are synchronous (Magid Fruchey, 1979).

Nu
$$S,Z$$
 $S_N = S_N = S$

Fig. 1.3a

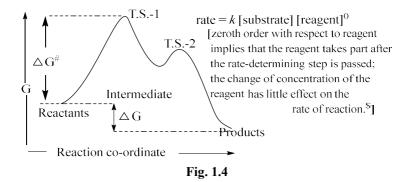
This stereochemistry is a natural consequence of (i) the trans-bending of an alkene upon interaction with a nucleophile, (ii) the preferred staggered arrangement of the allylic groups with respect to the partially pyramidalised C-2, and (iii) the preference for the nucleofuge to leave anti-periplanar to the developing lone-pair at C-2.^{7a} Thus, the transition

state structures shown in **Fig. 1.3b** for the S_N2' reactions of the acyclic and cyclohexenyl systems have been proposed (Houk and Coworkers, 1983).

Fig. 1.3b

The stereochemical observation of the 4-membered substrate (**Scheme 1.14**) also supports this reasoning.

1.3 S_N1 Mechanism


This is a two-step mechanism. The first step involves a reversible slow rate-limiting ionisation of the substrate to form a carbocation intermediate (**Scheme 1.15**). The α -centre changes its sp³ state of hybridisation to sp² in the intermediate. The nucleophile then combines rapidly with the planar carbocation in the second step to yield the final product(s). The second step is the product development step. There are some direct and indirect evidences in support of the formation of the carbocation intermediate.

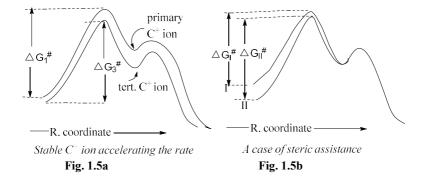
Scheme 1.15

The characteristic features of the S_N1 mechanism are reflected in the following observations:

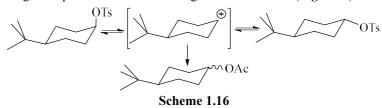
 $^{^{7}a}$ This resembles Winstein's suggestion that the S_N2' reaction is a double-back-side nucleophilic displacement.

- (i) Kinetic studies
- (a) the rate is first order in the substrate and zeroth order in the reagent. Overall order is 1.8 The energy profile diagram is presented in Fig. 1.4.

(b) The rates of S_N1 reactions gradually increase from the methyl to primary to secondary to the tertiary substrates (see Fig. 1.5a). This is primarily due to the increased stability of the carbocations (methyl < primary < secondary < tertiary). By the Hammond postulate⁹ the stability of the respective transition states is in the same order.

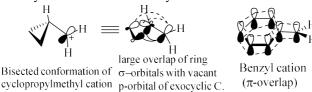

In addition, the α -branching raises the energy of the ground state more than that of the T.S. (as the steric requirement of T.S [a tricoordinted species] is lower than that of the ground state). The relief of the crowding assists the ionisation of the crowded substrate (steric assistance: see **Section 7.2** and example (d) in this section).

In going from the primary to benzyl to benzhydryl to trityl (viz. RCH₂- to PhCH₂- to Ph₂CH- to Ph₃C-) chlorides the stability of the carbocations increases much. Trityl chloride is thus, hydrolysed by warming in water. ¹⁰ (c) The higher solvolytic rate of (Me₃C)₃C—Br (I) than Me₃C—Br (II) is probably due to the more steric assistance in the former (Fig. 1.5b). Both react via tertiary carbocations whose stability are supposedly quite close.


⁸If the reagent concentration is kept too low; its variation will affect the rate.

⁹According to the postulate the T.S. is closer (in the geometry, stability) to that species on either side of the curve with which its free energy difference is less; in this case the carbocation rather than the reactant in the r.d.s.

12 | Dynamic Stereochemistry



(ii) The cis-4-tert-butyleyclohexyl tosylate undergoes acetolysis at a faster rate than the corresponding trans-isomer. This is a case of steric assistance. Both the isomers go to the product(s) via a common carbocation intermediate (**Scheme 1.16**). The cis-isomer having syn-axial H/OTs interactions gets a relief of this strain upon ionisation. The trans-isomer having the equatorial –OTs does not get such assistance (**Fig. 1.5b**).

(iii) Like S_N2 , this mechanism also demands planarity around the reaction centre though in the intermediate (rather than in the T.S.). Thus, the reactions at the bridgehead of the bicyclo-compounds, A, B and C, are very slow under the unimolecular reaction conditions, too. 10a

¹⁰Cyclopropylmethyl chloride also undergoes the nucleophilic substitution at a much faster rate under the solvolytic condition (S_N1). The cyclopropyl methyl cation is actually more stable than the benzyl cation.

