Enhancing Knowledge Transfer for Sustainable Construction through Social Network Analysis

Enhancing Knowledge Transfer for Sustainable Construction through Social Network Analysis

By

Veronika Lilly Meta Schröpfer

Cambridge Scholars Publishing

 $\label{lem:construction} Enhancing \, Knowledge \, Transfer \, for \, Sustainable \, Construction \, through \, Social \, Network \, Analysis$

By Veronika Lilly Meta Schröpfer

This book was first published in 2025

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2025 by Veronika Lilly Meta Schröpfer

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN: 978-1-0364-4319-1

ISBN (Ebook): 978-1-0364-4320-7

For André, Scarlett, and Jocelyn.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS	xiv
LIST OF TABLES	xviii
ACKNOWLEDGEMENTS	xxiv
LIST OF ABBREVIATIONS	xv
1- INTRODUCTION	1
1.1. SUSTAINABILITY IN THE BUILT ENVIRONMENT	1
1.2. Transferring Sustainable Construction Knowledge	EAND
THE SOCIAL NETWORK ANALYSIS APPROACH	4
1.3. METHODOLOGY AND METHODS	6
1.4. EXECUTIVE SUMMARY OF KEY FINDINGS	7
2- SUSTAINABILITY IN THE BUILT ENVIRONMENT	11
2.1. POLICY BACKGROUND	11
2.2. Investor Behaviour	13
2.3. THE PERFORMANCE GAP	16
2.4. THE FOCUS ON GERMANY AND THE U.K.	17
2.5. Knowledge of how to build sustainably	20
2.5.1. Knowledge and awareness of the construction industry	v's
workforce	21
2.5.2. Apprenticeships, skills, and training of the constructio	n
industry's workforce	22
2.5.3. How to overcome the knowledge gap	23
3-THE SPECTRUM OF KNOWLEDGE	27
3.1. Introduction	27
3.2. Knowledge Types	28
3.3. KNOWLEDGE MANAGEMENT	31
3.3.1. Significance of Knowledge Management in the Built	
Environment	34
3.3.2. Innovation: Managing Knowledge on Sustainable	
Construction	38

3.3.3. Key Concepts in the Area of Knowledge Management	42
3.4. Knowledge Transfer	44
3.4.1. The Knowledge Source and Recipient	45
3.4.1.1. Cultural Background and Hierarchical Levels	46
3.4.1.2. 'Who knows What?'	47
3.4.1.3. Motivation for Knowledge Transfer	48
3.4.2. The Knowledge Transfer Process and Methods	49
3.4.2.1. Vital Preconditions for Knowledge Transfer	49
3.4.2.2. Time to Transfer Knowledge	50
3.4.2.3. The Path of Knowledge – Unpacking the 'Knowled	ge
Transfer Box'	51
3.4.2.4. Barriers to the Knowledge Transfer Path	54
3.4.2.5. Enhancing and Inhibiting Factors of Knowledge	
Transfer	55
3.5. CONCLUSION	59
4-NAVIGATING SOCIAL NETWORKS	62
4.1. Introduction	62
4.2. Knowledge Transfer and Social Networks	62
4.2.1. Social Network Theory	64
4.2.1.1. Main components of Social Network Analysis	65
4.2.1.2. Social Network Theory and Knowledge Transfer	68
4.2.2. Social Capital Theory	69
4.2.2.1. Social Capital Theory and Knowledge Transfer	71
4.2.3. Reasoning for Adopting Social Network Theory	72
4.3. SOCIAL NETWORK MODELS ON KNOWLEDGE TRANSFER	75
4.4. SOCIAL NETWORK CHARACTERISTICS INFLUENCING KNOWLE	ЭGE
Transfer	78
4.4.1. Network Structure	78
4.4.2. Tie Characteristics	81
4.4.3. Actor Attributes	83
4.5. CONCLUSION	85
5- THE CONCEPTUAL FRAMEWORK AND ITS	
VALIDATION	87
5.1. THE CONCEPTUAL FRAMEWORK	87
5.1.1. Knowledge Input	89
5.1.2. Knowledge Transfer Process and Influencing Factors	90
5.1.3. Output	92
5.2. MULTIPLE CASE STUDY APPROACH	92
5.2.1. Case Study Selection	94

Enhancing Knowledge Transfer for Sustainable Construction through Social Network Analysis	ix
5.2.2. Sampling	95
5.3. METHODS USED FOR VALIDATION	98
5.3.1. Survey Research	99
5.3.2. The Social Network Perspective	101
5.3.2.1. How to design a questionnaire for SNA	102
5.3.2.2. Participant Observation during Questionnaire	
Administration	105
5.3.3. Documentation Sources	106
5.4. Data Analyses	106
5.4.1. Descriptive Statistics	106
5.4.2. Cross Tabulation	107
5.4.3. Content Analysis	108
5.4.4. Social Network Analysis	109
6-UK CASE STUDIES	114
6.1. Introduction	114
6.2. Case Study UK 1-London	114
6.2.1. Research Setting	114
6.2.2. Actor Attributes	115
6.2.2.1. Age, Gender, and Nationality/ Cultural Background	116
6.2.2.2. Educational Background and Job Levels	117
6.2.2.3. Awareness of Sustainability	119
6.2.2.4. Perceived Use of Sustainable Materials and	
Technologies	122
6.2.2.5. Received and Required Training on Sustainable	
Construction	126
6.2.3. Social Network Characteristics	132
6.2.3.1. Size of the Network	133
6.2.3.2. Network Structure	134
6.2.3.3. Cut-points and Hierarchy Models	135
6.2.3.4. Relationship between Network Density and Tie	120
Characteristics and Tie Contents	138
6.2.3.5. Relationships between Tie Contents and the Actor	1 / 1
Attribute Job Level	141
6.2.3.6. Relationships between Centrality Measures and the	1.42
Actor Attributes Job Level and Age	143 148
6.2.3.7. Knowledge Sources6.2.3.8. Relationships between Knowledge Transfer Methods	140
and the Actor Attributes Age, Job Level, and Actor Centrality	151
6.2.4. Conclusion	151
J.=. ,. CONCONDICTO	100

6.3. CASE STUDY UK 2 – LONDON	166
6.3.1. Research Setting	166
6.3.2. Actor Attributes	166
6.3.2.1. Age, Gender, and Nationality	167
6.3.2.2. Educational Background and Job Levels	168
6.3.2.3. Awareness of Sustainability	170
6.3.2.4. Perceived Use of Sustainable Materials and	
Technologies	172
6.3.2.5. Received and Required Training on Sustainable	
Construction	175
6.3.3. Social Network Characteristics	181
6.3.3.1. Size of the Network	182
6.3.3.2. Network Structure	183
6.3.3.3. Cut-points and Hierarchy Levels	183
6.3.3.4. Relationship between Network Density and Tie	
Characteristics and Tie Contents	184
6.3.3.5. Relationship between Tie Contents and the Actor	
Attribute Job Level	186
6.3.3.6. Relationships between Centrality Measures and the	Actor
Attributes Job Level and Age	188
6.3.3.7. Knowledge Sources	193
6.3.3.8. Relationships between Knowledge Transfer Method	
the Actor Attributes Age, Job Level, and Actor Centrality	196
6.3.3.9. Duration of Knowledge Transfer	203
6.3.4. Conclusion	204
6.4. DIFFERENCES AND SIMILARITIES OF THE UK CASE STUDIES	210
7-GERMAN CASE STUDIES	221
7.1. Introduction	221
7.2. Case Study Germany 1-Southwest	221
7.2.1. Research Setting	221
7.2.2. Actor Attributes	222
7.2.2.1. Age, Gender, and Nationality	222
7.2.2.2. Educational Background and Job Levels	224
7.2.2.3. Awareness of Sustainability	226
7.2.2.4. Perceived Use of Sustainable Materials and	
Technologies	227
7.2.2.5. Received and Required Training on Sustainable	
Construction	229
7.2.3. Social Network Characteristics	234
7.2.3.1. Size of the Network	234

Enhancing Knowledge Transfer for Sustainable Construction through Social Network Analysis	xi
7.2.3.2. Network Structure	235
7.2.3.3. Cut-points and Hierarchy Levels	236
7.2.3.4. Relationship between Network Density and Tie	
Characteristics and Tie Contents	236
7.2.3.5. Relationship between Tie Contents and the Actor	
Attribute Job Level	239
7.2.3.6. Relationships between Centrality Measures and the A	Actor
Attributes Job Level and Age	241
7.2.3.7. Knowledge Sources	245
7.2.3.8. Relationships between Knowledge Transfer Methods	
the Actor Attributes Age, Job Level, and Actor Centrality	247
7.2.3.9. Duration of Knowledge Transfer	253
7.2.4. Conclusion	253
7.3. CASE STUDY GERMANY 2 – HAMBURG	259
7.3.1. Research Setting	259
7.3.2. Actor Attributes	259
7.3.2.1. Age, Gender, and Nationality	259
7.3.2.2. Educational Background and Job Levels	262
7.3.2.3. Awareness of Sustainability	264
7.3.2.4. Perceived Use of Sustainable Materials and	266
Technologies	266
7.3.2.5. Received and Required Training on Sustainable	270
Construction	270
7.3.3. Social Network Characteristics 7.3.3.1. Size of the Network	274 275
	276
7.3.3.2. Network Structure	276
7.3.3.3. Cut-Points and Hierarchy Levels 7.3.3.4. Relationship between Network Density and Tie	270
Characteristics and Tie Contents	277
7.3.3.5. Relationship between Tie Contents and the Actor	211
Attribute Job Level	279
7.3.3.6. Relationships between Centrality Measures and the A	
Attributes Job Level and Age	281
7.3.3.7. Knowledge Sources	286
7.3.3.8. Relationships between Knowledge Transfer Methods	
the Actor Attributes Age, Job Level, and Actor Centrality	288
7.3.3.9. Duration of Knowledge Transfer	294
7.3.4. Conclusion	295
7.4. Case Study Germany 3 – North	301
7.4.1. Research Setting	301
7.4.2. Actor Attributes	301

7.4.2.1. Age, Gender, and Nationality	301
7.4.2.2. Educational Background and Job Levels	303
7.4.2.3. Awareness of Sustainability	305
7.4.2.4. Perceived Use of Sustainable Materials and	
Technologies	306
7.4.2.5. Received and Required Training on Sustainable	
Construction	308
7.4.3. Social Network Characteristics	313
7.4.3.1. Size of the Network	314
7.4.3.2. Network Structure	314
7.4.3.3. Cut-Points and Hierarchy Levels	315
7.4.3.4. Relationship between Network Density and Tie	
Characteristics and Tie Contents	316
7.4.3.5. Relationship between Tie Contents and the Actor	
Attribute Job Level	318
7.4.3.6. Relationships between Centrality Measures and the	Actor
Attributes Job Level and Age	320
7.4.3.7. Knowledge Sources	325
7.4.3.8. Relationship between Knowledge Transfer Methods	and
the Actor Attributes Age, Job Level, and Actor Centrality	328
7.4.3.9. Duration of Knowledge Transfer	333
7.4.4. CONCLUSION	334
7.5. DIFFERENCES AND SIMILARITIES OF THE GERMAN CASE	
STUDIES	340
8-KEY FINDINGS AND CONCLUSION	352
8.1. COMPARISON AND DISCUSSION OF THE KEY FINDINGS FOR	
GERMANY AND THE UK	354
8.1.1. General Knowledge Transfer Enhancers and Inhibitors	356
8.1.1.1. Actor Attributes	356
8.1.1.2. Knowledge Transfer Process	360
8.1.2. Influencing Social Network Characteristics	361
8.2. THE CONCEPTUAL FRAMEWORK	368
8.2.1. Revision of the Framework	368
8.2.2. How to Use the Framework in Practice	372
8.3. CONTRIBUTION TO KNOWLEDGE AND PRACTICE	375
8.3.1. Contribution to Knowledge	375
8.3.2. Contribution to Practice	376

Social Network Analysis	
APPENDICES	378
APPENDIX A – PARTICIPANT INFORMATION SHEET	378
APPENDIX B – CONSENT FORM	380
APPENDIX C – QUESTIONNAIRE	381
APPENDIX D – CASE STUDY UK1: CLOSENESS AND EIGENVECTOR	
CENTRALITY RESULTS	391
REFERENCES	392

Enhancing Knowledge Transfer for Sustainable Construction through

xiii

LIST OF ILLUSTRATIONS

FIGURE 4.1: EXAMPLE OF A SOCIAL NETWORK WITH VARIOUS	
CHARACTERISTICS FROM CHAPTER 6	67
FIGURE 4.2: POSSIBLE SUBGROUPS IN A SUSTAINABLE OFFICE	
CONSTRUCTION PROJECT, INCLUDING NEW 'GREEN' JOB ROLES	74
FIGURE 5.1: THE CONCEPTUAL FRAMEWORK	88
FIGURE 5.2: EXAMPLE OF A SOCIAL NETWORK QUESTION (SEE ANNEX)	103
FIGURE 5.3: CROSS TABULATIONS: RELATIONSHIPS UNDER	
INVESTIGATION	108
FIGURE 5.4: EXAMPLE OF A SOCIOGRAM IN COLOUR	112
FIGURE 6.1: AGE RANGE OF RESEARCH PARTICIPANTS IN CASE STUDY	
UK1	116
FIGURE 6.2: GENDER OF RESEARCH PARTICIPANTS IN CASE STUDY	
UK1	117
FIGURE 6.3: NATIONALITY OF RESEARCH PARTICIPANTS IN CASE STUDY	
UK1	117
FIGURE 6.4: EDUCATIONAL BACKGROUND OF RESEARCH PARTICIPANTS	
IN CASE STUDY UK1	118
FIGURE 6.5: JOB LEVELS OF RESEARCH PARTICIPANTS IN CASE STUDY	
UK1	119
FIGURE 6.6: AWARENESS OF SUSTAINABILITY OF RESEARCH PARTICIPAN	ITS
IN CASE STUDY UK1	120
FIGURE 6.7: PERCEIVED USE OF GREEN MATERIALS OR TECHNOLOGIES	
OF RESEARCH PARTICIPANTS IN CASE STUDY UK1	123
FIGURE 6.8: RECEIVED TRAINING ON SUSTAINABLE CONSTRUCTION BY	
RESEARCH PARTICIPANTS IN CASE STUDY UK1	126
FIGURE 6.9: PERCEIVED REQUIREMENT FOR TRAINING ON SUSTAINABLE	
CONSTRUCTION BY RESEARCH PARTICIPANTS IN CASE STUDY UK1	127
FIGURE 6.11: KNOWLEDGE TRANSFER NETWORK OF CASE STUDY UK1-	-
CUT-POINTS MAIN COMPONENT	
FIGURE 6.12: KNOWLEDGE TRANSFER NETWORK OF CASE STUDY UK1-	-
DEGREE CENTRALITY	143
FIGURE 6.13: KNOWLEDGE TRANSFER METHODS WHEN SEEKING AND	
RECEIVING KNOWLEDGE IN CASE STUDY UK1	153
FIGURE 6.14: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	
WITH AGE GROUPS IN CASE STUDY UK1	155

FIGURE 6.15: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	
WITH JOB LEVELS IN CASE STUDY UK1	156
FIGURE 6.16: AGE RANGE OF RESEARCH PARTICIPANTS IN CASE STUDY	
UK2	167
FIGURE 6.17: GENDER OF RESEARCH PARTICIPANTS IN CASE STUDY	
UK2	168
FIGURE 6.18: NATIONALITY OF RESEARCH PARTICIPANTS IN CASE STUD	Y
UK2	
FIGURE 6.19: EDUCATIONAL BACKGROUND OF RESEARCH PARTICIPANTS	S
IN CASE STUDY UK2	169
FIGURE 6.20: JOB LEVEL OF RESEARCH PARTICIPANTS IN CASE STUDY	
UK2	169
FIGURE 6.21: AWARENESS OF SUSTAINABILITY OF RESEARCH	
PARTICIPANTS IN CASE STUDY UK2	171
FIGURE 6.22: PERCEIVED USE OF SUSTAINABLE MATERIALS/	
TECHNOLOGIES OF RESEARCH PARTICIPANTS IN CASE STUDY UK2.	172
FIGURE 6.23: RECEIVED TRAINING ON SUSTAINABLE CONSTRUCTION OF	
RESEARCH PARTICIPANTS IN CASE STUDY UK2	176
FIGURE 6.24: PERCEIVED REQUIREMENT FOR TRAINING ON SUSTAINABLE	E
CONSTRUCTION OF RESEARCH PARTICIPANTS IN CASE STUDY UK2	176
FIGURE 6.25: KNOWLEDGE TRANSFER NETWORK OF CASE STUDY UK2.	182
FIGURE 6.26: KNOWLEDGE TRANSFER NETWORK OF CASE STUDY UK2-	_
DEGREE CENTRALITY	189
FIGURE 6.27: KNOWLEDGE TRANSFER METHODS WHEN SEEKING AND	
RECEIVING KNOWLEDGE IN CASE STUDY UK2	197
FIGURE 6.28: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	
WITH AGE GROUPS IN CASE STUDY UK2	200
FIGURE 6.29: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	
WITH JOB LEVELS IN CASE STUDY UK2	202
FIGURE 6.30: THE CONCEPTUAL FRAMEWORK – INPUT SECTION	210
FIGURE 6.31: THE CONCEPTUAL FRAMEWORK – PROCESS SECTION	213
FIGURE 7.1: AGE RANGE OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY1	223
FIGURE 7.2: GENDER OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY1	223
FIGURE 7.3: NATIONALITY OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY1	224
FIGURE 7.4: EDUCATIONAL BACKGROUND OF RESEARCH PARTICIPANTS	
IN CASE STUDY GERMANY 1	225
FIGURE 7.5: JOB LEVEL OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY1	225

FIGURE 7.6: AWARENESS OF SUSTAINABILITY OF RESEARCH PARTICIPAL	NTS
IN CASE STUDY GERMANY1	
FIGURE 7.7: PERCEIVED USE OF SUSTAINABLE MATERIALS/ TECHNOLOG	BIES
OF RESEARCH PARTICIPANTS IN CASE STUDY GERMANY1	. 227
FIGURE 7.8: TRAINING ON SUSTAINABLE CONSTRUCTION RECEIVED BY	
RESEARCH PARTICIPANTS IN CASE STUDY GERMANY1	. 229
FIGURE 7.9: PERCEIVED REQUIREMENT FOR TRAINING ON SUSTAINABLE	E
CONSTRUCTION BY RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY1	230
FIGURE 7.10: KNOWLEDGE TRANSFER NETWORK OF CASE STUDY	
GERMANY1	234
FIGURE 7.11: KNOWLEDGE TRANSFER NETWORK OF CASE STUDY	
GERMANY 1 – DEGREE CENTRALITY	242
FIGURE 7.12: KNOWLEDGE TRANSFER METHODS WHEN SEEKING AND	
RECEIVING KNOWLEDGE IN CASE STUDY GERMANY 1	. 249
FIGURE 7.13: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	
WITH AGE GROUPS IN CASE STUDY GERMANY 1	251
FIGURE 7.14: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	
WITH JOB LEVEL IN CASE STUDY GERMANY 1	252
FIGURE 7.15: AGE RANGE OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY2	260
FIGURE 7.16: GENDER OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY2	
FIGURE 7.17: NATIONALITY OF RESEARCH PARTICIPANTS IN CASE STUD	Y
GERMANY2	
FIGURE 7.18: EDUCATIONAL BACKGROUND OF RESEARCH PARTICIPANT	
IN CASE STUDY GERMANY2	262
FIGURE 7.19: JOB LEVEL OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY2	. 263
FIGURE 7.20: AWARENESS OF SUSTAINABILITY OF RESEARCH	
PARTICIPANTS IN CASE STUDY GERMANY2	264
FIGURE 7.21: PERCEIVED USE OF SUSTAINABLE MATERIALS/	
TECHNOLOGIES IN CASE STUDY GERMANY2	
FIGURE 7.22: TRAINING ON SUSTAINABLE CONSTRUCTION RECEIVED BY	
RESEARCH PARTICIPANTS IN CASE STUDY GERMANY2	
FIGURE 7.23: PERCEIVED REQUIREMENT FOR TRAINING ON SUSTAINABLE	Е
CONSTRUCTION BY RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY2	. 271
Figure 7.24: Knowledge Transfer Network of Case Study	
GERMANY?	275

Figure 7.25: Knowledge Transfer Network of Case Study Germany2 – Degree Centrality	าดา
FIGURE 7.26: KNOWLEDGE TRANSFER METHODS WHEN SEEKING AND	202
RECEIVING KNOWLEDGE IN CASE STUDY GERMANY2	289
FIGURE 7.27: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	
WITH AGE GROUPS IN CASE STUDY GERMANY2	292
FIGURE 7.28: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	
WITH JOB LEVEL IN CASE STUDY GERMANY2	293
FIGURE 7.29: AGE RANGE OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY3	302
FIGURE 7.30: GENDER OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY3	
FIGURE 7.31: NATIONALITY OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY3	
Figure 7.32: Educational Background of Research Participants	
IN CASE STUDY GERMANY3	304
FIGURE 7.33: JOB LEVEL OF RESEARCH PARTICIPANTS IN CASE STUDY	
GERMANY3	304
FIGURE 7.34: AWARENESS OF SUSTAINABILITY OF RESEARCH	
PARTICIPANTS IN CASE STUDY GERMANY3	305
FIGURE 7.35: PERCEIVED USE OF SUSTAINABLE MATERIALS/	200
TECHNOLOGIES IN CASE STUDY GERMANY3	306
FIGURE 7.36: TRAINING ON SUSTAINABLE CONSTRUCTION RECEIVED BY	200
RESEARCH PARTICIPANTS IN CASE STUDY GERMANY3	
FIGURE 7.37: PERCEIVED REQUIREMENT FOR TRAINING ON SUSTAINABLE	3
CONSTRUCTION BY RESEARCH PARTICIPANTS IN CASE STUDY	200
GERMANY3FIGURE 7.38: KNOWLEDGE TRANSFER NETWORK OF CASE STUDY	309
GERMANY3	214
Figure 7.39: Knowledge Transfer Network of Case Study	314
GERMANY3 – DEGREE CENTRALITY	321
FIGURE 7.40: KNOWLEDGE TRANSFER METHODS WHEN SEEKING AND	<i>3</i> 21
RECEIVING KNOWLEDGE IN CASE STUDY GERMANY3	329
FIGURE 7.41: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	32)
WITH AGE GROUP IN CASE STUDY GERMANY3	331
FIGURE 7.42: KNOWLEDGE TRANSFER METHODS CROSS TABULATION	JJ 1
WITH JOB LEVEL IN CASE STUDY GERMANY3	332
FIGURE 7.43: THE CONCEPTUAL FRAMEWORK – INPUT SECTION	
FIGURE 7.44: THE CONCEPTUAL FRAMEWORK – PROCESS SECTION	
	369

LIST OF TABLES

TABLE 2.1: BARRIERS TO SUSTAINABLE OFFICE BUILDINGS	. 16
TABLE 2.2: COMPARISON BREEAM – DGNB	. 19
TABLE 2.3: COMPARISON OF ENGLISH APPRENTICESHIP WITH OTHER	
EUROPEAN MODELS	. 22
TABLE 3.1: CLASSIFICATION OF KNOWLEDGE HELD BY THE SUSTAINABILI	
ADVISOR	. 30
TABLE 3.2: KNOWLEDGE TRANSFER BARRIERS BETWEEN INDIVIDUAL AND)
TEAM	. 55
TABLE 3.3: ENHANCING AND INHIBITING KT FACTORS	56
TABLE 4.1: FOCUS OF THIS STUDY INSIDE THE KNOWLEDGE MANAGEMENT	Γ
LIFE CYCLE	64
TABLE 4.2: BENEFITS AND RISKS OF COHESIVE AND SPARSE NETWORKS	80
TABLE 5.1: THE CONCEPTUAL FRAMEWORK – CATEGORIES OF KT	
INFLUENCING FACTORS	
TABLE 5.2: CASE STUDY SELECTION CRITERIA	
TABLE 5.3: KEY FEATURES OF STUDIED CASES	. 98
TABLE 5.4: EXAMPLE FOR NETWORK INFORMATION MATRIX ON FREQUEN	
OF KNOWLEDGE TRANSFERS	
TABLE 6.1: SUSTAINABLE PERFORMANCE OF PROJECT UK1	115
TABLE 6.2: CROSS TABULATION BETWEEN EDUCATIONAL BACKGROUND	
AND JOB LEVEL IN CASE STUDY UK1	
TABLE 6.3: CROSS TABULATION BETWEEN AWARENESS AND AGE GROUP	
IN CASE STUDY UK1	121
TABLE 6.4: CROSS TABULATION BETWEEN AWARENESS AND JOB LEVEL	
IN CASE STUDY UK1	121
TABLE 6.5: CROSS TABULATION BETWEEN PERCEIVED USE OF	
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND JOB LEVEL IN CASE	
STUDY UK1	123
TABLE 6.6: CROSS TABULATION BETWEEN PERCEIVED USE OF	
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND AGE IN CASE STUDY	
UK1	124
Table 6.7: Perceived Use of sustainable Materials/ Technologie	
OF RESEARCH PARTICIPANTS IN CASE STUDY UK1	125

TABLE 6.8: CROSS TABULATION BETWEEN PERCEIVED USE OF SUSTAINABLE
MATERIALS/ TECHNOLOGIES AND AWARENESS IN CASE STUDY
UK1125
TABLE 6.9: CROSS TABULATION BETWEEN RECEIVED TRAINING AND AGE
GROUP IN CASE STUDY UK1 127
TABLE 6.10: CROSS TABULATION BETWEEN TRAINING NEEDS AND AGE
GROUP IN CASE STUDY UK1
TABLE 6.11: CROSS TABULATION BETWEEN JOB LEVEL AND RECEIVED
Training in Case Study UK1
TABLE 6.12: CROSS TABULATION BETWEEN JOB LEVEL AND TRAINING
NEEDS IN CASE STUDY UK1129
TABLE 6.13: PERCEPTIONS OF SUSTAINABLE CONSTRUCTION TRAINING IN
CASE STUDY UK1
TABLE 6.14: TIE CONTENTS OF KNOWLEDGE TRANSFERS IN CASE STUDY
UK1140
TABLE 6.15: TIE CONTENTS OF KNOWLEDGE TRANSFERS LINKED WITH
ACTOR ATTRIBUTE JOB LEVEL IN CASE STUDY UK1142
TABLE 6.16: CENTRALITY MEASURES IN CASE STUDY UK1145
TABLE 6.17: BETWEENNESS MEASURES IN CASE STUDY UK1 147
TABLE 6.18: KNOWLEDGE SOURCES IN CASE STUDY UK1 149
TABLE 6.19: GENERAL FACTORS AND SOCIAL NETWORK CHARACTERISTICS
INFLUENCING KT ON SUSTAINABLE CONSTRUCTION IN CASE STUDY
UK1159
TABLE 6.20: SUSTAINABLE PERFORMANCE OF PROJECT UK2 166
TABLE 6.21: CROSS TABULATION BETWEEN EDUCATIONAL BACKGROUND
AND JOB LEVEL IN CASE STUDY UK2
TABLE 6.22: CROSS TABULATION BETWEEN AWARENESS AND AGE GROUP
IN CASE STUDY UK2 171
TABLE 6.23: CROSS TABULATION BETWEEN AWARENESS AND JOB LEVEL
IN CASE STUDY UK2
TABLE 6.24: CROSS TABULATION BETWEEN PERCEIVED USE OF
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND JOB LEVEL IN CASE
STUDY UK2
TABLE 6.25: CROSS TABULATION BETWEEN PERCEIVED USE OF
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND AGE IN CASE STUDY
UK2174
TABLE 6.26: PERCEIVED USE OF SUSTAINABLE MATERIALS/ TECHNOLOGIES
OF RESEARCH PARTICIPANTS IN CASE STUDY UK2
TABLE 6.27: CROSS TABULATION BETWEEN PERCEIVED USE OF
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND AWARENESS IN CASE
STUDY UK2

TABLE 6.28: CROSS TABULATION BETWEEN RECEIVED TRAINING AND
AGE GROUP IN CASE STUDY UK2
TABLE 6.29: CROSS TABULATION BETWEEN TRAINING NEEDS AND AGE
GROUP IN CASE STUDY UK2
TABLE 6.30: CROSS TABULATION BETWEEN JOB LEVEL AND RECEIVED
TRAINING IN CASE STUDY UK2
TABLE 6.31: CROSS TABULATION BETWEEN JOB LEVEL AND TRAINING
NEEDS IN CASE STUDY UK2
TABLE 6.32: PERCEPTIONS OF SUSTAINABLE CONSTRUCTION TRAINING IN
CASE STUDY UK2
TABLE 6.33: TIE CONTENTS OF KNOWLEDGE TRANSFERS IN CASE STUDY
UK2
TABLE 6.34: TIE CONTENTS OF KNOWLEDGE TRANSFERS LINKED WITH
ACTOR ATTRIBUTE JOB LEVEL IN CASE STUDY UK2
TABLE 6.35: CENTRALITY MEASURES IN CASE STUDY UK2
TABLE 6.36: BETWEENNESS CENTRALITY MEASURES IN CASE STUDY
UK2
TABLE 6.37: KNOWLEDGE SOURCES AND THE REASONING FOR THIS CHOICE
IN CASE STUDY UK2
TABLE 6.38: DURATION OF KNOWLEDGE TRANSFERS IN CASE STUDY
UK2
TABLE 6.39: GENERAL FACTORS AND SOCIAL NETWORK CHARACTERISTICS
INFLUENCING KT ON SUSTAINABLE CONSTRUCTION IN CASE STUDY
UK2
TABLE 6.40: KNOWLEDGE TRANSFER PROCESS/ METHODS AND
MECHANISMS
TABLE 7.1: SUSTAINABLE PERFORMANCE OF PROJECT GERMANY1 222
TABLE 7.2: CROSS TABULATION BETWEEN EDUCATIONAL BACKGROUND
AND JOB LEVEL IN CASE STUDY GERMANY1
TABLE 7.3: CROSS TABULATION BETWEEN PERCEIVED USE OF
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND JOB LEVEL IN CASE
STUDY GERMANY1
TABLE 7.4: CROSS TABULATION BETWEEN PERCEIVED USE OF
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND AGE GROUPS IN CASE
STUDY GERMANY1
TABLE 7.5: PERCEIVED USE OF SUSTAINABLE MATERIALS/ TECHNOLOGIES
OF RESEARCH PARTICIPANTS IN CASE STUDY GERMANY1229
TABLE 7.6: CROSS TABULATIONS BETWEEN RECEIVED TRAINING AND AGE
GROUP IN CASE STUDY GERMANY1
TABLE 7.7: CROSS TABULATION BETWEEN TRAINING NEEDS AND AGE
GROUP IN CASE STUDY GERMANY1

TABLE 7.8: CROSS TABULATION BETWEEN JOB LEVEL AND RECEIVED TRAINING IN CASE STUDY GERMANY1	127
TABLE 7.9: CROSS TABULATION BETWEEN JOB LEVEL AND TRAINING	
NEEDS IN CASE STUDY GERMANY 1	.32
CASE STUDY GERMANY1	
TABLE 7.11: TIE CONTENTS OF KNOWLEDGE TRANSFERS IN CASE STUDY	,55
GERMANY12	:37
TABLE 7.12: TIE CONTENTS OF KNOWLEDGE TRANSFERS LINKED WITH	
ACTOR ATTRIBUTE JOB LEVEL IN CASE STUDY GERMANY 1 2	
Table 7.13: Centrality Measures in Case Study Germany1 2	:43
TABLE 7.14: BETWEENNESS CENTRALITY MEASURES IN CASE STUDY	
GERMANY12	
Table 7.15: Knowledge Sources in Case Study Germany1 2	46
Table 7.16: Duration of Knowledge Transfers in Case Study	
GERMANY12	
Table 7.17: General Factors and Social Network Characteristic	CS
INFLUENCING KT ON SUSTAINABLE CONSTRUCTION IN CASE STUDY	
GERMANY1	
Table 7.18: Sustainable Performance of Project Germany2 2	
Table 7.19: Cross Tabulation between educational Background	
AND JOB LEVEL IN CASE STUDY GERMANY2	
Table 7.20: Cross Tabulation between Awareness and Age Group	
IN CASE STUDY GERMANY2	65
Table 7.21: Cross Tabulation between Awareness and Job Level	
IN CASE STUDY GERMANY2	65
TABLE 7.22: CROSS TABULATION BETWEEN PERCEIVED USE OF	
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND JOB LEVEL IN CASE	
STUDY GERMANY22	67
TABLE 7.23: CROSS TABULATION BETWEEN PERCEIVED USE OF	
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND AGE IN CASE STUDY	
GERMANY22	68
Table 7.24: Sustainable Materials/ Technologies as perceived	
BY RESEARCH PARTICIPANTS IN CASE STUDY GERMANY2 2	69
TABLE 7.25: CROSS TABULATION BETWEEN PERCEIVED USE OF	
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND AWARENESS IN CASE	
STUDY GERMANY2	:70
TABLE 7.26: CROSS TABULATION BETWEEN RECEIVED TRAINING AND	
AGE GROUP IN CASE STUDY GERMANY2	.71
TABLE 7.27: CROSS TABULATION BETWEEN TRAINING NEEDS AND AGE	
GROUP IN CASE STUDY GERMANY2	272

TABLE 7.28: CROSS TABULATION BETWEEN JOB LEVEL AND RECEIVED
TRAINING IN CASE STUDY GERMANY2
TABLE 7.29: CROSS TABULATION BETWEEN JOB LEVEL AND TRAINING
NEEDS IN CASE STUDY GERMANY2
TABLE 7.30: PERCEPTIONS OF SUSTAINABLE CONSTRUCTION TRAINING IN
CASE STUDY GERMANY2
TABLE 7.31: TIE CONTENTS OF KNOWLEDGE TRANSFERS IN CASE STUDY
GERMANY2
TABLE 7.32: TIE CONTENTS OF KNOWLEDGE TRANSFERS LINKED WITH
ACTOR ATTRIBUTE JOB LEVEL IN CASE STUDY GERMANY2280
TABLE 7.33: CENTRALITY MEASURES IN CASE STUDY GERMANY2 282
TABLE 7.34: BETWEENNESS MEASURES IN CASE STUDY GERMANY2 285
TABLE 7.35: KNOWLEDGE SOURCES IN CASE STUDY GERMANY2
TABLE 7.36: DURATION OF KNOWLEDGE TRANSFERS IN CASE STUDY
GERMANY2
TABLE 7.37: GENERAL FACTORS AND SOCIAL NETWORK CHARACTERISTICS
INFLUENCING KT ON SUSTAINABLE CONSTRUCTION IN CASE STUDY
GERMANY2
TABLE 7.38: SUSTAINABLE PERFORMANCE OF PROJECT GERMANY3 301
TABLE 7.39: CROSS TABULATION BETWEEN EDUCATIONAL BACKGROUND
AND JOB LEVEL IN CASE STUDY GERMANY3
TABLE 7.40: CROSS-TABULATION BETWEEN PERCEIVED USE OF
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND JOB LEVEL IN CASE
STUDY GERMANY3
TABLE 7.41: CROSS TABULATION BETWEEN PERCEIVED USE OF
SUSTAINABLE MATERIALS/ TECHNOLOGIES AND AGE IN CASE STUDY
GERMANY3
TABLE 7.42: SUSTAINABLE MATERIALS/ TECHNOLOGIES AS PERCEIVED BY
RESEARCH PARTICIPANTS IN CASE STUDY GERMANY3
TABLE 7.43: CROSS TABULATION BETWEEN RECEIVED TRAINING AND AGE
GROUP IN CASE STUDY GERMANY3
TABLE 7.44: CROSS TABULATION BETWEEN TRAINING NEEDS AND AGE
GROUP IN CASE STUDY GERMANY3
TABLE 7.45: CROSS TABULATION BETWEEN JOB LEVEL AND RECEIVED
TRAINING IN CASE STUDY GERMANY3
TABLE 7.46: CROSS TABULATION BETWEEN JOB LEVEL AND TRAINING
NEEDS IN CASE STUDY GERMANY3
TABLE 7.47: PERCEPTIONS OF SUSTAINABLE CONSTRUCTION TRAINING IN
CASE STUDY GERMANY3
TABLE 7.48: TIE CONTENTS OF KNOWLEDGE TRANSFERS IN CASE STUDY
GERMANY3

TABLE 7.49: TIE CONTENTS OF KNOWLEDGE TRANSFERS LINKED WITH	
ACTOR ATTRIBUTE JOB LEVEL IN CASE STUDY GERMANY3	319
TABLE 7.50: CENTRALITY MEASURES IN CASE STUDY GERMANY3	321
TABLE 7.51: BETWEENNESS MEASURES IN CASE STUDY GERMANY3	324
TABLE 7.52: KNOWLEDGE SOURCES IN CASE STUDY GERMANY3	326
TABLE 7.53: DURATION OF KNOWLEDGE TRANSFERS IN CASE STUDY	
GERMANY3	334
TABLE 7.54: GENERAL FACTORS AND SOCIAL NETWORK CHARACTERIST	ICS
INFLUENCING KT ON SUSTAINABLE CONSTRUCTION IN CASE STUDY	
GERMANY3	335
TABLE 7.55: KNOWLEDGE TRANSFER PROCESS/ METHODS AND	
MECHANISMS	345
TABLE 8.1: KEY RESEARCH FINDINGS ON GENERAL KNOWLEDGE	
TRANSFER ENHANCERS AND INHIBITORS PER COUNTRY	355
TABLE 8.2: KEY RESEARCH FINDINGS ON SOCIAL NETWORK	
CHARACTERISTICS PER COUNTRY	363

ACKNOWLEDGEMENTS

This research was partially funded by the Department of Real Estate and Construction Management of Oxford Brookes University and the Engineering and Physical Sciences Research Council, UK.

My sincere gratitude goes to Professor Joseph Tah, Dr. Ramin Keivani, and Dr. Esra Kurul for their invaluable guidance and steadfast support throughout this research project. I am also deeply thankful to all the research participants, whose time and insights were essential to this study.

LIST OF ABBREVIATIONS

BRE Building Research Establishment

BREEAM Building Research Establishment Environmental

Assessment Method

DGNB Deutsche Gesellschaft für Nachhaltiges Bauen
DGNB Deutsche Gütesiegel für Nachhaltiges Bauen

ENEV Energieeinsparverordnung

ESG Environmental, Social, and Corporate Governance

KM Knowledge Management KT Knowledge Transfer

LEED Leadership in Energy and Environmental Design NDC Nationally Determined Contributions to the Paris

agreement

RICS Royal Institution of Chartered Surveyors

SN Social Network

SNA Social Network Analyses

SME Small and medium-sized enterprise

WBCSD World Business Council of Sustainable Development

WGBC World Green Building Council

1- Introduction

1.1. Sustainability in the Built Environment

Almost half a century has passed since the Brundtland Commission Report in 1987 (Pitt *et al.*, 2009), and many policies, legislation, and initiatives relating to environmental performance and sustainability have emerged in the meantime. In December 2019, the EU heads of state and government agreed in the European Council that Europe should be the first continent to become climate-neutral by 2050. This resulted in the Green Deal (European Commission, 2019). According to the European Climate Change Act, EU countries must reduce their greenhouse gas emissions by at least 55% by 2030, leading to the Fit for 55 Package. The Twin Transition explains how these sustainability goals can be integrated with digital transformation strategies and enables companies to work more efficiently and sustainably at the same time. The green and digital transitions are political priorities of the European Commission and the European Member States (Muench et al., 2022; Schröpfer, 2024).

At the outset of this study, in 2009, it seemed the focus of built environment stakeholders lay mainly on the energy efficiency of buildings, and most investors saw the energy-saving costs as an incentive to build sustainably. Sustainable building certificates were seen as proof of a quality-built result, which justified the extra costs of green buildings, which were around 2.5% in Europe at that time (Galbraith, 2008). Commercial and public building owners were the forerunners. In the years that followed, the term payback period became more and more important in winning over private property owners to renovate their homes in an energy-efficient way. Nevertheless, the sector moved from this economic focus on energy to a wider perspective of environmental sustainability, looking at safeguarding natural resources. Following the Paris Agreement in 2015, the member states of the United Nations adopted 17 Sustainable

2 Chapter 1

Development Goals (SDGs) (UN, 2024), of which five relate to the built environment. Adapting the built environment to climate change consequences became as vital as mitigating climate change.

The WGBC stated in 2021 that 37% of annual global greenhouse emissions derive from buildings and 75% from the wider built environment. Predictions are that between 2020 and 2050, around 50% of emissions from new buildings will be from embodied sources and the other half from operational sources (WGBC, 2021). When looking at resources and pollution, 40-50% of resources extracted from global materials are used for housing, construction, and infrastructure, while building materials account for half the solid waste generated worldwide (ibid).

The environmental pillar joined the economic one, and building sustainably became mainstream in recent years. The last of the so-called three pillars of sustainability (Elkington, 1998), i.e. social sustainability, followed thereafter, with the European Commission launching the New European Bauhaus Initiative in 2020 to make the built environment more inclusive and foster cultural heritage amongst other areas (JRC, 2021).

Research projects and legislation moved from energy efficiency to nearly zero energy buildings, to climate-neutral and plus-energy buildings. Circularity is the new buzzword, looking at urban mining, buildings as material banks, and design for disassembly. Whereas throughout history, mankind has been reusing building materials, hence this movement is not as new as one might assume (WGBC, 2023). However, in 2023, the circular use of materials is not moving in the right direction, as estimates calculate the world is only 7.2% circular, which is a reduction from 9.1% circularity in 2018 (WGBC, 2023).

Construction is the second largest of the 14 industrial ecosystems listed in the European Industrial Strategy. It is dominated by SMEs and microenterprises, employs 25 million people, and accounts for almost 10% of total value added in the EU. The construction industry faces several challenges, including an ageing labour force and difficulties in attracting young workers. A well-trained construction labour force is one of the key

Introduction 3

factors in making a significant contribution to achieving climate targets (Schröpfer, 2024).

The green economy is defined as one in which value and growth are maximised throughout the economy while natural resources are managed sustainably. Such an economy is supported and enabled by a thriving low-carbon, environmentally friendly goods and services sector. Central to this new green economy is a dynamic design and construction sector that can greatly contribute to increasing resource efficiency and resilience to climate change. To achieve climate targets, up-to-date knowledge and skills of professionals in this sector are essential, not only for the transition to a green economy but also to attract more skilled labour to the sector. However, the construction sector is struggling to meet its carbon reduction targets due to labour shortages and skill gaps (Schröpfer, 2024).

There seems to be the assumption that each construction stakeholder group has the capacity and knowledge to build sustainably. Yet, despite the legal targets, still, only a small number of professionals in the industry possess the specialised knowledge and experience to design and operate sustainable buildings successfully (Cromwijk et al., 2017; Williams, Dair, 2007; Nelson, 2007; WBCSD, 2009). Moreover, there seem to be difficulties in the process of putting this new knowledge on how to build sustainably into practice (Ugwu, 2005). Previous research has shown that for professionals the main barriers to adopting sustainable building techniques are personal know-how and commitment (WBCSD, 2009), which reflects not only a lack of training and education in relevant techniques (Dixon, Colantonio, Shiers, 2008), but also personal commitment and a supportive environment and business acceptance.

The level of complexity in projects, where the goal is to deliver a 'green building', is higher than in standard ones (Myers, 2008). This is due to the increased number of people involved, but also because of the nature of technical knowledge required. Furthermore, sustainable buildings require more and more high-tech components, which are supplied by specialised companies, e.g., for renewable energy solutions. Hence, the supply chains are more distributed and intricate than before (Williams, Dair, 2007). Thus, various sorts of new services and consultancies become more

4 Chapter 1

important, as a high level of expertise is required for solving the complex problems of ecological optimization (Rohrbacher, 2001; Williams, Dair, 2007).

The EU has funded a variety of research projects, and coordination and support actions to map existing skills, such as the Construction Blueprint project or PROF/TRAC, and to foster up-skilling within all professions in the construction sector, such as ARISE and BUS-GoCircular, as only a highly-skilled construction labour force can deliver on climate targets.

There have been several studies comparing the actual performance of sustainable buildings with their intended one, revealing differing results (e.g. Burman et al., 2018, Hinge *et al.*, 2008; Robinson, 2008). Bordass *et al.* (2004) argue that there are many potential reasons for the performance gap that can be divided into four main categories linked to the life cycle stage of the building.

- Project initiation
- Design stage
- · Construction and commissioning
- In-use

This book explores the third one, the construction stage, in order to examine the varied perceptions and practices of sustainability knowledge and skills among construction project participants, advocating for a better understanding of knowledge transfer (KT) dynamics to ease the workflow and ensure higher sustainable building quality standards.

1.2. Transferring Sustainable Construction Knowledge and the Social Network Analysis Approach

There is a very diverse range of professions within the construction sector, all carrying different kinds of knowledge that contribute to the project. As the diversity of knowledge is one of the main factors for innovation (Cohen, Levinthal, 1990), its effective management plays a vital role in gaining a competitive advantage (Sharkie, 2003). This is of greater significance in a project-based sector such as the construction industry,