Principles of Sustainability Economics

Principles of Sustainability Economics:

Identifying the Gordian Knots

Ву

Jean-Marie Grether and Inmaculada Martínez-Zarzoso

Cambridge Scholars Publishing

Principles of Sustainability Economics: Identifying the Gordian Knots

By Jean-Marie Grether and Inmaculada Martínez-Zarzoso

This book first published 2025

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2025 by Jean-Marie Grether and Inmaculada Martínez-Zarzoso

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN: 978-1-0364-4660-4

ISBN (Ebook): 978-1-0364-4661-1

To Aline, Eric and Yeleen

TABLE OF CONTENTS

List of Principles	xi
List of Figures	xiii
List of Tables	xvii
Foreword	xix
Introductory note	xxi
Abbreviations	xxiii
CHAPTER 1: MARKETS AND SOCIAL WELFARE	1
1.1 Introduction	2
1.2 Individual choices	
1.2.1 Leisure, blueberries and marginal benefits	5
1.2.2 The other side of the coin: opportunity costs	9
1.2.3 The cost-benefit perspective	
1.2.4 Introducing a third activity: Coconuts	
1.3 COLLECTIVE CHOICES	
1.3.1 Friday, Robinson, leisure, blueberries and coconuts	18
1.3.2 Many individuals and many goods	22
1.3.3 Making visible the invisible hand's assumptions	24
1.4. Environmental issues	28
1.4.1 Externalities	29
1.4.2 Intergenerational failures	32
1.4.3 Common pool resources	
1.5 CONCLUSIONS	
Problems	44
DEFEDENCES	

CHAPTER 2: VALUING THE ENVIRONMENT	51
2.1 Introduction	52
2.1.1 Effectiveness and efficiency of environmental projects	
2.2 Cost benefit analysis	
2.2.1 Dupuit's proposal	
2.2.2 CBA today	
2.2.3 CBA in a nutshell	
2.3 DISCOUNTING THE FUTURE	
2.3.1 The discount rate	
2.3.2 Net present value (NPV) and its extensions	59
2.4 VALUING THE ENVIRONMENT	
2.4.1 Total Economic Value	63
2.4.2 Stated Preferences Methods	66
2.4.3 Revealed Preferences Methods	69
2.4.4 Issues and Challenges	70
2.5 VALUING HUMAN LIFE	
2.6 THE SOCIAL COST OF CARBON (SCC)	
2.7 DISCUSSION AND DEVELOPMENTS	
Problems	
References	84
CHAPTER 3: SUSTAINABILITY CONCEPTS AND INDIC	ES 91
3.1 SUSTAINABLE DEVELOPMENT: BIRTH OF A CONCEPT	92
3.2 EFFICIENCY AND FAIRNESS IN THE ALLOCATION BOX	93
3.2.1 Two generations	93
3.2.2 Multi-period model	97
3.3 THE SUSTAINABILITY THEOREM	
3.3.1 Intergenerational well-being	
3.3.2 Inclusive wealth	
3.3.3 Genuine investment and the sustainability theorem	
	105
3.4 SUSTAINABILITY IN PRACTICE	
3.4 SUSTAINABILITY IN PRACTICE	105
3.4 SUSTAINABILITY IN PRACTICE	105 118
3.4 SUSTAINABILITY IN PRACTICE	105 118 119
3.4 SUSTAINABILITY IN PRACTICE	105 118 119
3.4 SUSTAINABILITY IN PRACTICE	105 118 119
3.4 SUSTAINABILITY IN PRACTICE	
3.4 SUSTAINABILITY IN PRACTICE	
3.4 SUSTAINABILITY IN PRACTICE	105118124128133134135
3.4 SUSTAINABILITY IN PRACTICE	105118124128133134135137

	4.3 Market outcomes	. 143
	4.4 FISHING POLICIES	. 146
	4.5 THE DYNAMICS OF WATER POLLUTION	. 151
	4.5.1 Lake eutrophication: the basics	152
	4.5.2 A stylized model	
	4.5.3 Mitigating eutrophication in practice	
	PROBLEMS	
	References	
C	HAPTER 5: NON-RENEWABLE RESOURCES	. 175
	5.1 INTRODUCTION: ENERGY AND FOSSIL FUELS	. 176
	5.1.1 Energy and economic revolutions	176
	5.1.2 Major energy sources and uses today	
	5.1.3 Peak oil and reserves	
	5.2 OPTIMAL EXTRACTION OF FOSSIL FUELS	. 183
	5.2.1 Zero discount rate	184
	5.2.2 Positive discount rate	187
	5.3 APPLICATIONS	
	5.3.1 Gas price ceilings in the US	. 192
	5.3.2 Actual fluctuations in world oil prices and quantities	194
	5.3.3 OPEC and import vulnerability	
	5.3.4 Fossil fuels and climate change	204
	5.4 THE ENERGY TRANSITION	. 207
	5.4.1 The energy transition under way	207
	5.4.2 Three transition scenarios	
	Problems	. 215
	References	. 217
C	HAPTER 6: RULES AND EXPECTATIONS	. 219
	6.1 POLLUTION AND SOCIAL EFFICIENCY	. 220
	6.1.1 Introduction	220
	6.1.2 Efficiency conditions in the absence of abatement	221
	6.1.3 Efficiency conditions with abatement activities	
	6.1.4 Efficient combination of restriction and abatement activitie	es .
	6.2 Cost-efficient policies	
	6.2.1 Emission standards – Command-and-control mechanisms .	
	6.2.2 Emission taxes	
	6.2.3 Cap-and-trade (tradable emission permits)	
	6.2.4 Changing conditions	
	6.2.5 Miscellaneous	244

6.3 A GENERAL FRAMEWORK FOR SUSTAINABILITY	245
6.3.1 Introduction	245
6.3.2 The Impact equation	246
6.3.3 Individual vs. social preferences	
6.4 THE DEMOGRAPHIC TRANSITION	250
6.4.1 World population projections	250
6.4.2 Conformist preferences and fertility behaviour	
6.4.3 Family planning	
6.5 THE CONSUMPTION TRANSITION?	
6.5.1 Conformist and competitive preferences in consumption	254
6.5.2 The natural-resource biases in world consumption	
6.5.3 Easing the consumption transition	256
6.5.4 Sustainable development on a thin line	
Problems	260
References	264
CONCLUSION	267
APPENDIX	269
A1: TECHNICAL APPENDIX	269
A2: CORRECTION GUIDES FOR PROBLEMS	

LIST OF PRINCIPLES

Principle 1.1: Total Benefit Maximization (TBM)	8
Principle 1.2: Total Cost Minimization (TCM)	11
Principle 1.3: Total Net Benefit Maximization (TNBM)	13
Principle 1.4: The invisible hand parabola	
Principle 1.5: Market failures	
Principle 1.6: The benevolent planner perspective	31
Principle 1.7: The marginal user cost (MUC) principle	35
Principle 1.8: The tragedy of the commons	
Principle 2.1: Discounting and Capitalizing	57
Principle 2.2: Net Present Value (NPV) and Benefit-Cost Ratio (BCR	2) 59
Principle 2.3: Total Economic Value (TEV)	64
Principle 2.4: Major valuation methods	65
Principle 2.5: Value of Statistical Life (VSL)	73
Principle 3.1: Intergenerational efficiency condition with a positive	
	97
Principle 3.2: Intergenerational efficiency condition with a positive	
discount rate, version II	
Principle 3.3: Full investment of the scarcity rent (Hartwick rule)	99
Principle 3.4: The sustainability theorem	104
Principle 3.5: The IPAT identity	120
Principle 4.1: Critical levels in the Gordon-Schaefer model	137
Principle 4.2: Sustainable harvesting	139
Principle 4.3: Socially efficient harvesting	
Principle 4.4: Open access and the tragedy of the commons	146
Principle 4.5: Accidental discharges in a pristine lake	
Principle 4.6: Eutrophication vs. restoration of a polluted lake	
Principle 5.1: Energy and fossil fuels	183
Principle 5.2: Optimal extraction if the discount rate is zero	
Principle 5.3: Optimal extraction if the discount rate is positive	191
Principle 5.4: Price ceilings on energy markets	
Principle 5.5: Price variability on the oil market	200
Principle 5.6: Import vulnerability	
Principle 5.7: Fossil fuels and climate change	207
Principle 5.8: The Energy Transition	
Principle 6.1: Social efficiency conditions with pollution	234

Principle 6.2: Cost-efficiency of anti-pollution instruments	241
Principle 6.3: Changing conditions and cost-efficiency	244
Principle 6.4: The impact inequality	248
Principle 6.5: Social preferences	250
Principle 6.6: The demographic transition	254
Principle 6.7: Consumption biases against the environment	256
Principle 6.8: A consumption transition?	

LIST OF FIGURES

Figure 1.1: Optimal allocation in the allocation box: marginal benefits.	6
Figure 1.2: Optimal allocation in the allocation box: marginal opportuni	ty
costs	10
Figure 1.3: Optimal allocation along a single dimension (and one	
alternative use)	12
Figure 1.4: Construction of the iso-MB curve	14
Figure 1.5: Optimal allocation along a single dimension (and two	
alternative uses)	15
Figure 1.6: Varying degrees of resource scarcity	16
Figure 1.7: Different marginal benefits	18
Figure 1.8: Willingness to buy the good (WB)	19
Figure 1.9: Willingness to sell the good (WS)	20
Figure 1.10: Trade equilibrium	21
Figure 1.11: Trade equilibrium with many consumers and many	
producers	23
Figure 1.12: Innovation rent vs. scarcity rent	26
Figure 1.13: A negative externality in production	29
Figure 1.14: Allocation box between two generations	33
Figure 1.15: Allocation box between three generations	36
Figure 1.16: Efficient and inefficient fishing effort	39
Figure 2.1: Protecting a river	53
Figure 2.2: Cost-benefit analysis	56
Figure 2.3: Example of the choice experiment (CE) approach	67
Figure 2.4: Rate of return of a selection of development policies in	
Africa	74
Figure 2.5: Estimated distributions of the SCC in 2020	78
Figure 3.1: Efficient and fair allocation with zero discount rate in the	
allocation box	94
Figure 3.2: Efficient allocation with a positive discount rate in the	
allocation box	95
Figure 3.3: The Inclusive Wealth Index	106
Figure 3.4: Growth in IW and in IW per capita	. 107
Figure 3.5: Decomposition of growth in IW per capita	108
Figure 3.6(a): Average annual growth of IW per capita	109
Figure 3.6(b): Average annual growth of GDP per capita	109
Figure 3.7(a): Composition of IW at the world level	. 110

Figure 3.7(b): Components of IW growth at the world level	110
Figure 3.8: Countries using the SEEA	. 111
Figure 3.9: Four correction steps to obtain ANS	112
Figure 3.10: ANS in resource-rich countries	113
Figure 3.11: Components of ANS for Nigeria	113
Figure 3.12: Non-renewable natural capital depletion	
Figure 3.13: The Structure of comprehensive wealth accounts	114
Figure 3.14: Share of wealth by asset type and income group in 2018.	115
Figure 3.15: GDP and Wealth per capita change	117
Figure 3.16: Planetary Boundaries	
Figure 3.17(a): World GHG and the Kaya identity	
Figure 3.17(b): Selected countries GHG and the Kaya identity	122
Figure 3.18: Share of CO ₂ emissions embedded in trade, 2021	123
Figure 4.1: Natural evolution of the size of the population (<i>S</i>) in the	
Gordon-Schaefer model	
Figure 4.2: Impact of a given level of harvesting (H1)	138
Figure 4.3: Impact of an increase of the fishing effort on the steady	
state stock	141
Figure 4.4: Relationship between the sustainable harvest and the	
fishing effort	
Figure 4.5: Efficient level of the sustainable fishing effort (Ee)	
Figure 4.6: Optimality vs. open access equilibrium	
Figure 4.7: World fish capture and aquaculture production	
Figure 4.8: Regulation increasing the real cost of fishing	
Figure 4.9: The dynamics of P when $I = 0$ (with sudden shocks)	157
Figure 4.10: The dynamics of P when $I > 0$ (with gradual changes	160
Figure 4.11: Phosphorous Concentration in Swiss Lakes	165
Figure 4.12: Phosphorus concentration in two Swiss Lakes	
Figure 4.13: Depth and oxygen levels in Swiss lakes	166
Figure 5.1: World energy supply by major sources	
Figure 5.2: World energy supply by major regions	180
Figure 5.3(a): World oil production, upper graph	
Figure 5.3(b): Demand and supply capacity forecasts	
Figure 5.4: Two polar cases for the marginal extraction cost (MEC)	184
Figure 5.5: The marginal user cost (MUC) in the two polar cases	185
Figure 5.6: The efficiency condition satisfied in the two polar cases	185
Figure 5.7: Stylized optimal trajectories, zero discount rate	187
Figure 5.8: Optimal extraction length, constant <i>MEC</i> , positive	
discount rate	189
Figure 5.9: Stylized optimal trajectories, constant MEC, positive	
discount rate	189

Figure 5.10: Optimal extraction length, increasing <i>MEC</i> , positive	
discount rate	190
Figure 5.11: Stylized optimal trajectories, increasing <i>MEC</i> , positive	
	191
Figure 5.12: Impact of a price ceiling on price and quantity trajectories	193
Figure 5.13: Oil intensity (barrels per million USD of GDP, left) and	
real price (right)	196
Figure 5.14: Oil price fluctuations and recent specific events	
Figure 5.15: OPEC and OPEC+ countries	
Figure 5.16: Oil price and OPEC spare capacity	
Figure 5.17: Crude oil production capacity by most important oil	
	201
Figure 5.18: A stylized national market of an oil-importing country	202
Figure 5.19: Global net anthropogenic GHG emissions 1990-2021	
Figure 5.20: Adjusting optimal extraction with climate change	
externalities	206
Figure 5.21: Global Investment in energy projects	208
Figure 5.22: Unit costs and adoption rates	
Figure 5.23: Global fossil fuel demand over the 2000-2050 period	210
Figure 5.24: Global emissions and temperature increase under three	
scenarios	211
Figure 5.25: Market size and geographical concentration for selected	
commodities	214
Figure 6.1: Socially efficient restriction – one sector	221
Figure 6.2: Socially efficient restriction - two sectors	224
Figure 6.3: Socially efficient abatement – unique abatement	
technology	226
Figure 6.4: Socially efficient abatement – two abatement technologies	. 228
Figure 6.5: Combining restrictions with abatement – the optimal mix	230
Figure 6.6: Combining restrictions with abatement – Social marginal	
cost (SMC)	233
Figure 6.7: The command-and-control case	236
Figure 6.8: The environmental tax case	
Figure 6.9: Impact of technological progress in the tax case	238
Figure 6.10: The Cap-and-trade case	240
Figure 6.11: An uncertain MAC curve	243
Figure 6.12: Individual vs. social preferences	249
Figure 6.13: World population 1950-2100	
Figure 6.14: Conformist preferences for children	252

LIST OF TABLES

Table 2.1: NPV and discount rates	60
Table 2.2: Estimates of costs per life saved by US regulations	75
Table 2.3: US Estimates of the SCC	77
Table 2.4: Example of cost-effective measures	80
Table 3.1: Decomposition of changes in natural capital stock	116
Table 5.1: Historical periods and average energy use by human	
societies	177
Table 5.2: Fossil fuels' share in CO ₂ emissions and carbon content	205
Table 6.1: Shocks and emission control schemes	242

FOREWORD

This short book is the result of more than a decade teaching courses on "environment and resource economics" and "sustainable development economics" at several publics and levels. The initial references were a selection of chapters of the excellent textbooks available at the time. Over the years, a growing number of adaptations became necessary to answer the various needs of the audiences. The guiding principle has been to focus on the core contributions of economists in addressing environmental and sustainability issues. The result is the present textbook, which highlights the core principles, shows the relationships between them, and provides ad hoc problems to check their progressive understanding.

The first part presents the basic concepts used in the economic analysis of choices and their impact on collective welfare. Chapter 1 refers to a stylized case (the allocation of daytime between different activities) to illustrate under which conditions market-based decisions may be socially efficient. When they are not, societies have to deal with so-called "market failures", and the rest of the chapter exposes the major sources of market failures related to the environment. Chapter 2 presents the guiding principles to deal with these market failures. As the aim is to discuss sustainability, a particular attention is given to the estimation of future costs and benefits, and to the available methods for valuing the protection of environmental services and human lives.

These basic concepts are used in the second part of the book to address the major environmental challenges. Accounting for the sake of future generations is at the root of the sustainability concept. How economists propose to measure sustainable development in practice is detailed in chapter 3. Chapters 4 and 5 deal with the specificities of the two major types of environmental resources, renewable and depletable resources, how to use them in a sustainable way and why markets and governments often fail to

¹ In particular Perman, Roger, Ma, Y., Common, M., Maddison D. and Mcgilvray, J. 2012. Natural Resource and Environmental Economics, 4th edition., Pearson, and Tietenberg, Tom and Lewis, Lynne. 2018, Environmental & Natural Resource Economics, 11th edition, Routledge.

xx Foreword

do so. Chapter 6 deals with environmental policy in two steps. It starts with the problem of pollution control, comparing the various instruments, and with a particular interest in pricing carbon emissions. It concludes on a more general note by discussing how technological progress and changes in social preferences may help to achieve sustainability.

We wish to thank all the students for their questions, remarks and criticisms which strongly contributed to improve the content of the book. Another special thank goes to the assistants Benjamin, Benedikt, Joséphine, Marc and Niccolò, who helped us to revise and clarify the notes, and to Stefan Ambec, Rob Elliott and Nicole Mathys for their excellent comments and suggestions. Our special thanks go to Marion Monney for her outstanding work on revising the content and the correction of problems and for her crucial contribution to the final stages of the manuscript preparation.

Jean-Marie Grether and Inmaculada Martínez Zarzoso Neuchâtel and Castellón de La Plana October 2024

INTRODUCTORY NOTE

Aim and content of book. Even if sustainable development is a booming topic, the book has been kept deliberately short. Facts, theories and policy measures are presented in a selective and synthetic way, focusing on the major trends and the basic principles. The presentation is kept simple, consistent and accessible to the general audience, even for those who are not familiar with the economic literature. It is just an introduction to the domain from an economic viewpoint. A deeper understanding of specific issues certainly requires further readings.

Chapter structure. Each chapter is constructed in a similar way. It starts with an abstract and a summary of the main learning objectives, followed by the presentation of the concepts and the discussion of their practical relevance. A set of progressive problems is proposed at the end of each chapter to strengthen understanding. The corresponding synthetic correction guides appear in the Appendix, along with a short recap of basic mathematical tools. The sequence of chapters is progressive, with more advanced chapters pointing to previously introduced concepts.

Additional resources are available at https://www.sustecon.org/. Two categories of complements to the book are freely downloadable from the Sustecon.org website. First, the interested reader will find more detailed bibliographical references, along with extensive corrections of the problems, including diagrams and worksheets. Second, additional material relevant to the topic are made available regularly.

ABBREVIATIONS

ANS Adjusted Net Savings

BCR Benefit-Cost Ratio

CBA Cost-Benefit Analysis

CDR Consumption Discount Rate

CE Choice Experiments

CEA Cost-efficiency Analysis
CV Contingent Valuation

EPA Environmental Protection Agency

ETS Emission Trading System

GHG Green-house Gases

HEE Human Energy Equivalent

IAM Integrated Assessment Model

IEA International Energy Agency

IMF International Monetary Fund

IPCC Intergovernmental Panel on Climate Change

ITQ Individual Transferable Quota

IW Inclusive Wealth

IWR Inclusive Wealth ReportMAC Marginal Abatement Cost

MB Marginal Benefit

MC Marginal Cost

MD Marginal Damage

MEC Marginal Extraction Cost

MNB Marginal Net Benefit

xxiv Abbreviations

MRS Marginal Rate of Substitution

MSY Maximum Sustainable Yield

MUC Marginal User Cost

NPV Net Present Value

OECD Organisation for Economic Cooperation and Development

OPEC Organisation of Petroleum Exporting Countries

PVMNB Present Value of Marginal Net Benefit

RCT Randomized Control Trials

RP Revealed preferences SCC Social Cost of Carbon

SMC Social Marginal Cost

ST Stated preferences

STC Social Total Cost

TB Total Benefit

TBM Total Benefit Maximisation

TC Total Cost

TCM Total Cost Minimisation
TEV Total Economic Value

TNBM Total Net Benefit Maximisation

UN United Nations

VSL Value of Statistical Life

WB World Bank

WBDR Well-Being Discount Rate

WON Wealth of Nations

WTO World Trade Organisation

CHAPTER 1: MARKETS AND SOCIAL WELFARE

Abstract

This chapter presents a simplified model to analyse the relationship between human activity and the environment. Although very schematic, it is useful for two reasons. First, it introduces marginal thinking, one of the cornerstones of economic reasoning. Second, it offers a stylized but consistent explanation of two related facts. One the one hand, the relative economic efficiency of market-based economies vis-à-vis alternative economic systems, which helps understanding why, despite its defaults, capitalism remains so widespread today. On the other hand, it shows why market mechanisms fail to address many environmental issues. It concludes on three major types of market failures which are analysed in greater details in the rest of the book.

Learning objectives

- Discuss the benefits and costs of economic choices, including opportunity costs
- Link the concepts of marginal costs, marginal benefits and scarcity rent to social welfare
- Explain how price levels and changes may work as a coordination device
- Discuss how the invisible hand parabola is far from (or close to) reality
- Identify the major sources of market failures regarding the environment

2 Chapter 1

1.1 Introduction

Over the last two centuries, market economies have been quite efficient in increasing physical well-being for their citizens, relying on billions of individual decisions guided by market prices. At the same time, this material progress has drastically increased the pressure on the environment. Economic growth has led to the destruction of natural habitats, reduction in biodiversity and alteration of global flows such as the nitrogen or carbon cycles, at an unprecedented scale.

This chapter provides an introduction on how economists look at the nexus between economic activity and the environment. It relies on marginal reasoning, a much-used analytical tool by economists, to illustrate how market forces and economic incentives may be both remarkably efficient on the one hand (increasing the material welfare of humans) and dramatically destroying on the other hand (putting entire ecosystems at risk).

The basic objective of the chapter is to introduce in a few pages the major concepts that economists use in practice to analyse environmental (and other) issues. Very often, these issues are very complex (e.g. biodiversity or climate change). Their proper understanding goes far beyond economics, involving almost all other social and natural sciences. However, to keep the exposition of this chapter tractable, we make three choices:

- We focus on the welfare of human beings. This may be criticized
 on behalf of the welfare of all other living creatures that are
 affected by human activities. We understand that criticism, but we
 keep the focus on humans because it is their behaviour that we try
 to analyse and possibly influence.
- We treat the impact of human societies on their environment rather than the reverse, although we do acknowledge the influence of the natural conditions on economic development (see Frankopan 2023 for a historical perspective).
- We keep the exposition and models as simple as possible. This may
 be difficult to admit given the complexity of the issues at stake.
 However, the objective of this first chapter is to highlight a few
 core concepts. More discussions will follow in the rest of the book.

A specific illustration of the "keep simple" guideline is the assumption that people are rational in the sense that they optimize an objective function (e.g. maximizing benefits or minimizing costs). This is often referred to as the *Homo economicus* assumption in the economic literature. It posits that each individual behaves completely selfishly. But are people only driven by such narrow and egoistic motives? The short answer is: "No". However, it still makes sense to keep that assumption as an analytical starting point.

There has been an important debate among economists about this question at the turn of the last century. Empirical studies suggested that *Homo economicus* behaviour was either absent (e.g. Henrich et al. 2001) or magnified by theoretical teaching in economic faculties (Frank et al. 1993). The general view today, shared by most economists, is that people behave according to a variety of different drivers, many of them unlinked to private efficiency, like social concerns, beliefs and emotions. In fact, people may be particularly kind to each other, as argued by Bregman (2021) and trust and cooperation within human communities may have been at the root of economic development (see Seabright 2010). We will come back to these important considerations repeatedly in the text.

However, the fact that humans are social and cooperative beings does not preclude efficiency issues from being relevant. People do face physical and economic constraints and have preferences over feasible alternatives. The approach developed by economists help to account for these constraints and analyse how they condition individual choices. One could even argue that, from a natural selection perspective, those individuals who made the most efficient choices may have prevailed in the long run (e.g. Frank 2011). Independently of this last argument, identifying the most efficient choice is a relevant question whether it is followed in practice or not, because it opens the way for corrective measures to improve our efficiency in using resources, whether natural or human made. Thus, in this introductory chapter, we will often keep the rationality assumption, not because it is an appropriate representation of how people behave, but because it constitutes a useful benchmark to discuss the social efficiency of actual human choices.

4 Chapter 1

We will proceed in two steps and three sections. In the first step, we propose estimates of social welfare in human societies, and we look at the conditions for social efficiency, i.e., social welfare maximization. Social welfare is conceived here in a very broad sense, as the difference between all the benefits and all the costs generated by human activities. We start with the simplest possible setting in section 1.2, analysing a society with only one person. We generalize the perspective in section 1.3, considering societies with many individuals and many activities. We list the restrictive conditions under which a market-based economy can be expected to be socially efficient. These conditions are crucial for the "invisible hand" result, i.e., a situation in which decentralized and selfish individual decisions lead (surprisingly) to social efficiency. This concludes the first step, illustrating how market forces may contribute to efficiency and overall welfare.

The second step consists of showing how taking the environment more seriously into account leads to the reverse, i.e., market failures or situations where market forces do not lead to the most desirable outcome, even for humans. This is done in section 1.4, which considers three canonical cases of market failures: externalities, intergenerational dependences and common pool resources. It illustrates how economic incentives lead to a mismanagement of natural resources. It also indicates relevant ways to prevent this outcome.

As a matter of illustration of the theories outlined in the book, a female character, Mrs. Robinson, is created. She resembles Robinson Crusoe, who has appeared in numerous economics' textbooks and has been cited by many economists. The reason the profession loves Crusoe is because a "single man" economy is a brilliant simplification of reality and a powerful way to explain the logic of economic models (The Economist 2023).

1.2 Individual choices

Imagine Mrs. Robinson, alone on her isolated island. Apart from leisure, which consists of making ricochets on the beach, her unique other activity is collecting blueberries. This may sound over-simplistic, but it will help define how people deal with constraints, specifically the fact that available time per day is limited. Out of a maximum of \bar{h} non-sleeping hours per day, how much time should Mrs. Robinson devote to blueberry collection ("work") rather than leisure ("play")?

This is a basic problem of allocation of a scarce resource, "time" in that case, between two alternative uses. The key dimension which is introduced to solve the case is the assumption that there are **decreasing returns** on each use i.e., satisfaction increases with use (the more blueberries or ricochets the happier she is), but at lower and lower rates (each additional hour on collecting blueberries or throwing stones on the water surface generates a smaller and smaller increase in happiness). As a result, some intermediate allocation between working all the time and playing all the time should be optimal. We provide three alternative ways to prove more formally the intuition and solve this basic problem; each approach being exploited later in the book (see also problems at the end of this chapter for simple numerical applications).

1.2.1 Leisure, blueberries and marginal benefits

In figure 1.1 time is read on the horizontal axis, with a total length of \bar{h} , and two origins: O on the left to read leisure time (h) from left to right, and \tilde{O} on the right to read blueberry collection time (\tilde{h}) from right to left. By construction, each point on the horizontal axis represents a given allocation of time between leisure and fruit collection (as $\bar{h} = h + \tilde{h}$, we have both $h = \bar{h} - \tilde{h}$ and $\tilde{h} = \bar{h} - h$). Thus, we call figure 1.1 an *allocation box*.

6 Chapter 1

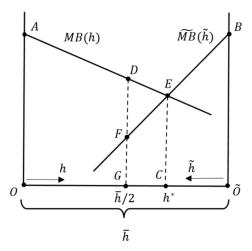


Figure 1.1: Optimality in the allocation box: marginal benefits

Welfare (or satisfaction) per additional time is represented on the vertical axis for each use. We assume that Mrs. Robinson has stable and well-known preferences over blueberries and leisure. We define extra perceived welfare for a small additional time (say a second) devoted to a specific use as the **Marginal Benefit** for this use, and we write it MB(h) for leisure, $\widetilde{MB}(\widetilde{h})$ for blueberries. How is welfare measured? In what follows, we will assume arbitrarily that welfare is expressed in terms of shells. That could be euros or dollars in a different context, and welfare measurement would certainly deserve further discussion. Here again the aim is to simplify. What we need for a start is just an accounting unit to aggregate (sum up) benefits or costs across different uses and also to compare benefits with costs. Shells will do for the moment.

More importantly, for each activity, we assume that **the marginal benefit is decreasing** with time. Each additional second spent on ricochets (or berries) procures less additional satisfaction to Mrs. Robinson than the previous units. In other words, the MB(h) curve is downward-sloping going left to right, and the $\widetilde{MB}(\widetilde{h})$ curve is decreasing going right to left. This property could be due to two reasons: a saturation effect on the consumption side or a decrease in the productivity of Mrs. Robinson's labour. For ease of interpretation, we will discard the latter and assume that labour productivity is constant.