Advances in Materials Used in Civil and Construction Engineering

Advances in Materials Used in Civil and Construction Engineering

Edited by

Syed Ali Rizwan, Shahid Ali, Muzna Anam and Bilal Zahid

Cambridge Scholars Publishing

Advances in Materials Used in Civil and Construction Engineering

Edited by Syed Ali Rizwan, Shahid Ali, Muzna Anam and Bilal Zahid

This book first published 2025

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2025 by Syed Ali Rizwan, Shahid Ali, Muzna Anam, Bilal Zahid and contributors

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN: 978-1-0364-4963-6 ISBN (Ebook): 1-0364-4963-7

TABLE OF CONTENT

LIST OF ILLUSTRATIONS	ix
LIST OF TABLES	xviii
FOREWORD	xxi
Preface	xxii
Acknowledgments	xxiii
LIST OF ABBREVIATIONS	xxiv
CIVIL ENGINEERING MATERIALS	1
CHAPTER ONE	2
Development of Geopolymer Mortar at Ambient Condition b	y Using
Limestone powder	2
CHAPTER TWO	13
Measurement of Temperature Distribution in Freezing/Thaw	ing
concrete	13
Chapter Three	22
Systematic Approach to Develop Geopolymer Brick by Single,	Binary
and Ternary Binders	22
CHAPTER FOUR	
Characterization of Novel Alkaliphilic Calcifying Bacteria for	
Sustainable Bio-Based Concrete Self-Healing Mechanism	33
CHAPTER FIVE	
Strength Enhancement of Rubberized Concrete by Using Che.	mically
Treated Rubber Particles as Partial Replacement of Sand	· ·

CHAPTER SIX	72
EVALUATION OF PHYSICAL & MECHANICAL PROPERTIES OF STEEL FIB	ER
REINFORCED CONCRETE	72
CHAPTER SEVEN	88
Sustainable Performance of Geopolymer Mortars as Mod	ern
Concrete Surface Repair Materials	88
CHAPTER EIGHT	100
Developing Self-Healing and Self-Sensing Multipurpose Sr.	nart Mortar
Modified with Graphitic Insertions	100
CHAPTER NINE	121
Performance Evaluation of Powder Reactive Concrete Usi	ng a
Composite Mixture of Ceramic and Brick Powders as Parti	ial
Replacement of Cement	121
CHAPTER TEN	134
Early-age Linear Shrinkage of Self Compacting Mortar Sys	stems
(SCMs) Containing Super Absorbent Polymers (SAPs)	134
CHAPTER ELEVEN	156
Effect of Size of TiO ₂ Nano-Particles on Physical and Mech	nanical
Properties of Self-Compacting Cement Paste Systems	156
CHAPTER TWELVE	177
Development of Sustainable Construction Materials and F	Products
Using Multiscale Investigation Approach	177
Chapter Thirteen	198
Effective Micro-organisms and Wood Saw Dust Enhance F	Response of
Eco-Friendly Self-Consolidating Paste Systems	198
CHAPTER FOURTEEN	233
Effect of Methylcellulose on the Strength Properties of Co	ncrete 233
STRUCTURAL ENGINEERING	255
CHAPTER FIFTEEN	256
EXPLORING DESIGN EFFICIENCY USING BIM FOR APPLICA	
PAKISTAN	256
CHAPTER SIXTEEN	279
Structural Performance of Building Façade for Sustainable	

Circular Economy Implications for Construction and Demolition Waste in Pakistan	CHAPTER SEVENTEEN	292
CHAPTER EIGHTEEN	Circular Economy Implications for Construction and Demolition)
Study On Sustainable Construction in Pakistan by Use Of Fly Ash Bricks	Waste in Pakistan	292
Bricks	Chapter Eighteen	311
Bricks	Study On Sustainable Construction in Pakistan by Use Of Fly As.	h
Finite element analysis of GFRP-Reinforced Geopolymer Concrete Circular Columns under Concentric Loading		
CHAPTER TWENTY-TWO 38 Performance comparison of complete mix reactor and monolithic static mixer in Ballasted Flocculation 38 CHAPTER TWENTY-THREE 40 Assessment of streamflows at Haro River Basin using Climate Forecast System Reanalysis Dataset in Soil and Water Assessment Tool 40 CHAPTER TWENTY-FOUR 41 Experimental Study of Potential Use of Treated Wastewater on Compaction and Shear Strength of Silty Sand 41 CHAPTER TWENTY-FIVE 41 Development of Regional IDF Relationships for Oman 41 CHAPTER TWENTY-FIVE 42 CHAPTER TWENTY-FIVE 43 CHAPTER TWENTY-FIVE 41 Development of Regional IDF Relationships for Oman 41 CHAPTER TWENTY-FIX. 43	CHAPTER NINETEEN	323
CHAPTER TWENTY	Finite element analysis of GFRP-Reinforced Geopolymer Concre	ete
CHAPTER TWENTY	Circular Columns under Concentric Loading	323
Recycling industrial wastes in manufacturing of concrete and bricks. From waste to wealth	WATER RESOURCES AND ENVIRONMENTAL ENGINEERING	341
Recycling industrial wastes in manufacturing of concrete and bricks. From waste to wealth	CHAPTER TWENTY	342
From waste to wealth		
CHAPTER TWENTY-ONE		
Climate change and variability in Pakistan: A case study of Swat Rivers (1987) 1985 1985 1985 1985 1985 1985 1985 1985		
CHAPTER TWENTY-TWO		
Performance comparison of complete mix reactor and monolithic static mixer in Ballasted Flocculation		
Performance comparison of complete mix reactor and monolithic static mixer in Ballasted Flocculation	CHAPTER TWENTY-TWO	381
Static mixer in Ballasted Flocculation		
CHAPTER TWENTY-THREE		
Assessment of streamflows at Haro River Basin using Climate Forecast System Reanalysis Dataset in Soil and Water Assessment Tool		
Forecast System Reanalysis Dataset in Soil and Water Assessment Tool		
CHAPTER TWENTY-FOUR		ent
Experimental Study of Potential Use of Treated Wastewater on Compaction and Shear Strength of Silty Sand	Tool	400
Compaction and Shear Strength of Silty Sand	CHAPTER TWENTY-FOUR	410
CHAPTER TWENTY-FIVE	Experimental Study of Potential Use of Treated Wastewater on)
Development of Regional IDF Relationships for Oman	Compaction and Shear Strength of Silty Sand	410
CHAPTER TWENTY-SIX	CHAPTER TWENTY-FIVE	419
	Development of Regional IDF Relationships for Oman	419
Performance Evaluation and Bias Adjustment of GSMaP Rainfall		
	Performance Evaluation and Bias Adjustment of GSMaP Rainfa	ıll
Estimates for Ravi River Basin, Pakistan43	Estimates for Ravi River Basin, Pakistan	437

CONSTRUCTION MANAGEMENT	461
CHAPTER TWENTY-SEVEN	-
Building Operations: Impact, Challenges, and the Path Forward	462
Performance-based design for structures: The need and the	
process	479
CHAPTER TWENTY-NINE	495
Adopting Building Information Modeling	495
CHAPTER THIRTYStandardizing Qualifications and Mobilizing Engineering	509
Professionals for 2030 Agenda for Sustainable Development	509
LIST OF CONTRIBUTORS	511

LIST OF ILLUSTRATIONS

Fig.	1-1: Schematic Diagram of Specimen Preparation	6
Fig.	1-2: Influence of Curing Condition on the Compressive Strength	
	of Fa-Lime Geopolymer Mortar	7
Fig.	1-3: Influence Of A/P Ratio.	
Fig.	1-4: Influence Of Type Of Sand	9
	1-5: Bulk Density And Compressive Strength of All Types of	
	Specimens	10
Fig.	2-1: (Left) optical fiber sensor housing glued on concrete surface.	
	(right) T-type thermocouple cast in mortar specimen	17
Fig.	2-2: Temperature development obtained at 5mm below the test	
	surface by optical fiber sensor at the edge (Left) and by cast-in	
	thermocouple at the central axis (right)	19
Fig.	3-1: Particle size distribution of FA and BA	
_	3-2: Particle size distribution of DS	
_	3-3: Influence of moulding pressure on compressive strength	
	of FA-based geopolymer paste	28
Fig.	3-4: Compressive strength of geopolymer paste with binary	
	precursors FA, and BA	29
Fig.	3-5: Compressive strength of geopolymer pate (binary precursors:	
	FA, and DA; ternary precursors: FA, BA, and DS)	30
Fig.	4-1: (a) Screening of calcifying bacteria through CPM Plate	
_	(b) 15ml 0Falcon tube depicting white precipitate at the bottom	41
Fig.	4-2: Bacterial calcite quantification for calcium lactate and calcium	
	acetate	42
Fig.	4-3: Isolated bacterial calcite qualification at pH7 pH10	43
	4-4: Spore former (left), Non-spore former(right)	
	4-5: Gram-positive bacilli and cocci bacteria	
Fig.	4-6: Oxidase-positive and negative strains output	44
Fig.	4-7: Catalyze negative and positive strains output	44
Fig.	4-8: Phylogenetic tree based on the bacterial 16S rRNA gene	
	sequence data of different isolates available in the GenBank	
	database	48

Fig.	4-9: Effect of calcium source on calcite morphology; (A) calcite	
	precipitates of calcium locate sources are mostly spherical vaterite	
	(A.1) and rhombohedral calcite crystals (A.2). (B) calcite precipitat	es
	of calcium acetate source are mainly spherical oval vaterite (B.2)	
	few are rhombohedral (B.1) and amorphous CaCO ₃ (B.3)	49
Fig.	4-10: XRD patterns of precipitated calcite	
_	4-11: TG curve of precipitated calcite	
_	5-1: Concrete ingredients (a) fly ash, (b) silica fumes, (c) Waste	
Ü	Crumb Rubber, (d) Sand, € Coarse aggregates, and (f) NaOH	63
Fig.	5-2: Specimen preparation (a) Mixing (b) Casting, and (c) Curing	
_	5-3: Slump Test	
Fig.	5-4: Graphical representation of results of slump test	65
_	5-5: Graphical representation of results of density test	
_	5-6: Graphical representation of compressive strength test results	
_	5-7: Graphical representation of flexural strength tests	
Fig.	5-8: Graphical representation of splitting tensile strength test	68
_	6-1: Gradation curve for fine aggregate	
_	6-2: Crumpled shape	
Fig.	6-3: Mixing of Control Concrete	78
Fig.	6-4: Mixing of steel fiber	79
Fig.	6-5: Comparison of compressive strength of steel fiber reinforced	
	concrete	83
Fig.	6-6: Comparison of split tensile strength of SFRC & CC	84
	6-7: Comparison of flexural strength of steel fiber reinforced	
	concrete	85
Fig.	7-1: Geometry of slant share bond strength test	93
Fig.	7-2: Strength development of ternary blended GPMs	95
Fig.	7-3: Effects of various WCT: GBFS: FA ratios on the XRD patterns	5
	of GPMs	96
Fig.	7-4: Effects of various WCT: GBFS: FA ratios on SSBS of GPMs	
	at 28 days of age	97
Fig.	8-1: Peizoresistive testing	07
Fig.	8-2: Compressive strength of smart mortar at increasing curing	
	periods	08
Fig.	8-3: Compressive strength recovered for pre-cracked specimens after	er
	healing under. (a) 28 days wet curing. (b) 56 days wet curing 1	11

Fig.	8-4: Resistivity of graphitic formulations against varying loading	
	conditions. (a) no load, (b) ultimate compressive load, (c) cyclic	
	compressive load	4
Fig.	9-1: (a) Ceramic waste, (b) Waste bricks in landfills	3
	9-2: Powder form (a) waste ceramic, (b) waste brick	
Fig.	9-3: XRD images of WCP and WBP 120	5
	9-4: Strength activity index for (a) waste brick powder, (b) waste	
	ceramic powder	8
Fig.	9-5: Workability as a function of combined WCP and WBP content 128	8
Fig.	9-6: (a) Compressive, (b) tensile, and (c) flexural strengths as a	
	function of waste	9
Fig.	10-1: Scanning electron micrograph of an individual SAP particle 138	8
_	10-2: Chemical Composition of SAP	
Fig.	10-3: Method of Graduated Cylinders	2
Fig.	10-4: Modified German shrinkage channel apparatus used to measure	
	linear shrinkage of SCM systems	5
Fig.	10-5: Shrinkage in SCM systems with 0.38 w/c (basic) at different	
	amounts of SAP146	6
Fig.	10-6: Shrinkage in SCM systems with 0.4 w/c (basic) at different	
	amounts of SAP146	5
Fig.	10-7: Shrinkage of SCM systems with 0.42 W/C (basic) at different	
	amounts of SAP14	7
	10-8: Flow of SCM formulations	
Fig.	10-9: Flow times of SCM formulations	8
Fig.	10-10: Compressive strength of SCM formulations at 1,3 and 28	
	days	9
Fig.	10-11: Flexural Strength of SCM formulations for 1,3 and 28	
	days	
Fig.	11-1: Different forms of Ti02	8
Fig.	11-2: SEM of TiO2 nanoparticles; (a) 20nm Anatase; (b) 15nm	
	Anatase (c) 5nm Amorphous + Anatase	
Fig.	11-3: Mechanically operated Hagerman's Cone apparatus 16-	4
_	11-4: SCP with 30cm flow	
_	11-5: Superplasticizer demand	
_	11-6: Flexural strength of SCP systems having Titania particles 16'	7
Fig.	11-7: XRD diffractograms for formulations with 5nm particle sizes	
	@ 1 Day168	8

Fig.	11-8: XRD/DTG/TGA Diffractograms for formulations with 5nm	
	particle sizes @ 1Day	168
Fig.	11-9: Heat flow of SCP with N30 Particles	169
	11-10: Heat flow of SCP with N15 Particles 13	
Fig.	11-11: Heat flow of SCP with N5 Particles	170
Fig.	11-12: Heat flow of SCP with CEM I and 1% replacement	170
	11-13: MIP Results of N5-1.00 at 3 Ages	
	11-14: MIP Results of CEM I and N5-1.00 at 3 days	
Fig.	11-15: MIP Results of CEM I and N5-1.00 at 7 days	172
Fig.	12-1: At multi-scale module showing different scales of paste	181
Fig.	12-2: Self-curing of samples using polythene sheet	183
	12-3: Cylindrical specimen of 75mm diameter and 225mm length	
Fig.	12-4: Bagasse ash	185
Fig.	12-5: Short-term creep test of cement paste	185
Fig.	12-6: (a) Mold for cylindrical specimens (b) Brick manufacturing	
	machine (c) Brick specimens	187
Fig.	12-7: Compressive strength of the pastes and mortars at different	
	ages	188
Fig.	12-8: a, b, c, d, e & f (Creep strain parameter's graphical relation	
	of cement paste)	189
Fig.	12-9: Creep Function [10 ⁻⁶ /MPA] VS time relation for cement	
	paste	190
Fig.	12-10: a, b, c, d, e (Creep strain parameter's graphical relation of	
	cement mortar)	191
Fig.	12-11: Creep function [10 ⁻⁶ /MPa] VS time relation for cement	
_	mortar	191
Fig.	12-12: a, b,c, d, e (creep strain parameter's graphical relation of	
	bagasse cement paste)	192
Fig.	12-13: Creep function [10 ⁻⁶ /MPA] Vs time relation for bagasse	
_	ash paste	193
Fig.	12-14: a, b, c, d, e, & f (creep strain parameter's graphical relation	
	of bagasse ash mortar)	194
Fig.	12-15: Creep Function [10-6 / MPa] VS time relation for bagasse as	
_	mortar	
Fig.	13-1: (a) Deodar Soft Wood SD (SWSD) (b) Sheesham Hard Woo	d
_	SD (HWSD)	
Fig.	13-2: Particle size distribution (grading) curves for Soft Wood	
_	(Deodar) & Hard Wood (Sheesham) sae dust	205

Fig.	13-3: SEM Image of Deodar @200 micro meter	206
Fig.	13-4: SEM Image of Sheesham @200 micro meter	206
Fig.	13-5: FTIR Spectrograph of a) Sheesham b) Deodar	209
Fig.	13-6: Early Shrinkage Apparatus	213
Fig.	13-7: F-CAL Calorimetry	213
Fig.	13-8: Initial and final setting time for cement paste4 specimens	215
Fig.	13-9: Super plasticizer demand for SCP's formulation	215
Fig.	13-10: Water Demand for SCP Formulation	216
	13-11: Air Content of SCP's	
Fig.	13-12: Densities for SCP's	220
Fig.	13-13: Calorimetric Curves for SWSD SCPs Formulations	220
Fig.	13-14: Early age shrinkage strain of SCP systems	221
Fig.	13-15: Compressive strength of SCP formulations at different	
	ages	221
Fig.	13-16: XRD Pattern of SCPs containing 2% unfermented SD,	
	Control Sample, and 2% Fermented SD	222
Fig.	13-17: SEM Micrographs of (a) Control Formulation, (b) 2%	
	Unfermented Sawdust Deodar, and (c) 2% Fermented Sawdust	
	Deodar	-225
Fig.	14-1: Casted concrete and mortar samples	237
Fig.	14-2: Gradation curve of Lawrencepur sand	239
Fig.	14-3: Gradation curve of Margalla Crush	240
Fig.	14-4: Concrete Tensile Strength	241
Fig.	14-5: SEM for methyl cellulose	243
Fig.	14-6: Concrete Compressive Strength	244
Fig.	14-7: Compressive strength of concrete cube specimens	245
Fig.	14-8: Rate of gain of strengths, concrete cubes	245
Fig.	14-9: Effect of methylcellulose on ratio of cube to cylinder	
	compressive strength	247
Fig.	14-10: Increase in compressive strength of cement mortar cubes	
	and concrete cubes	
Fig.	14-11: Modulus of Rupture Test	250
Fig.	14-12: Effect of Methylcellulose on Modulus of Rupture of	
	Concrete	
_	15-1: AutoCAD plan view 1	
	15-2: AutoCAD plan view 2	
Fig.	15-3: Color Scheme of 1st Floor	267
Fig.	15-4: Color Scheme of 2 nd Floor	267

Fig.	15-5: Revit 3D model	267
Fig.	15-6: 3D cut view	267
Fig.	15-7: Frame structure	268
Fig.	15-8: RSA analysis	268
Fig.	15-9: Beam drawing	269
Fig.	15-10: Column drawings	270
Fig.	15-11: Slab drawing	271
Fig.	15-12: Clash Case 1	272
	15-13: Clash Case 2	
Fig.	16-1: Grenfell tower-before (a) and after reinforcement (b)	281
	16-2: Inferno timeline for Grenfell Tower	
Fig.	16-3: a) the building façade and fire breakout; b) Details of the	
	facade	282
Fig.	16-4: Wave effect in Aquatic Center Façade in Melbourne	
	Australia	285
Fig.	16-5: Earth and Cloud effect in Parking Lot in Sydney Australia	285
Fig.	16-6: Ventilation Chamber on the roof using perforated metal shee	ts
	as façade, acting as both a barrier (against potentially small anima	ls
	such as birds) and allowing free air to flow out	286
Fig.	16-7: Cable Truss Façade for Hospital Building	
Fig.	16-8: Aesthetical pleasing and sustainable Façade improves precin	ct
	value	
Fig.	16-9: Provision of Sunshades & Fall Protection in school building	288
	16-10: Quality control by site checks to ensure Sustainability	
Fig.	17-1: An investigation framework for C&D waste minimisations	294
Fig.	18-1: Bricks in water tray during (a) Fly ash (b) Clay	315
	18-2: Plan of 62' x 72' Appartment	
Fig.	18-3: Cost of foundation brickwork	319
	18-4: Water absorption of brick sample	
	18-5: Cost of super-structure brickwork	
	18-6: total cost of brickwork	
_	19-1: Geometry of specimen in mm units	
	19-2: Tensile behavior of reinforcement bars R8, N10, G8	
J	and G10	329
Fig.	19-3: Stress-strain behavior of 50MPa GPC	
_	19-4: Simulated FEM	

Fig.	19-5: Comparison between the failure modes of steel40, GFRP40,
	and GFRP75, respectively obtained from experiments & FEM
	models
Fig.	19-6: Comparison between experimental and FEM load-deformation
	curve of STEEL40
Fig.	19-7: Comparison between experimental and FEM load-deformation
	curve of GFRP40
Fig.	19-8: Comparison between experimental and FEM load-deformation
	curve of GFRP75
Fig.	19-9: Comparison between experimental and FEM results with mesh
	size 100 and 75
Fig.	19-10: Load deformation curve of different pitch sizes
	19-11: Load deformation curve column with concrete grade 50MPa
	and 55 MPa
Fig.	20-1: Aggregates (a) sand, (b) coarse (5mm-10mm), (c) Aggregate
	20mm
Fig.	20-2: Industrial waste slag (a) raw form, (b) powder form 349
Fig.	20-3: Strength test (a) compressive, (b) tensile and (c) flexural 352
Fig.	20-4: Compressive strength
Fig.	20-5: Split cylinder tensile strength at 28 days
Fig.	20-6: Flexural strength
Fig.	21-1: Location map of Swar river basin
Fig.	21-2: Percentage correlation of ENSO cycle and precipitation in
	Jul-Aug-Sep from 1948-2010
Fig.	21-3: Projected average changes in Tmax and Tmin concerning the
	baseline period 1979-2014 under RCPs 4.5 and RCP 8.5 in Swat
	river basin
Fig.	21-4: Projected absolute annual Tmax under RCP 4.5 and RCP 8.5
	for 2020, 2050s and 2080s in Swat River basin364-365
Fig.	21-5: Projected absolute annual average Tmin under RCP 4.5 and
	RCP 8.5 in Swat river basin
Fig.	21-6: Projected average annual percentage changes in precipitation
	with respect to the baseline period 1979-2014 under RCPs 4.5 &
	8.5 in Swat river basin
Fig.	21-7: Projected average seasonal precipitation of Swat river basin
	under RCP 4.5(a) and RCP 8.5(b) by three RCMs376-377

Fig.	21-8: Projected average seasonal changes in precipitation (%) with	
	respect to baseline period (1979-2014) in the Swat river basin und	er
	RCP 4.5(a) and RCP 8.5(b), by three RCMs'	379
Fig.	22-1: Characteristics of ballast adopted in this study	385
Fig.	22-2: Callibration of Jar test operation	386
Fig.	22-3: Timeline of Static mixer and jar test operations leading to the	;
	floc characterization using image analysis	389
Fig.	22-4: Initial pH optimization at applied coagulant concentration	
_	(PACI: 30mgL ⁻¹)	390
Fig.	22-5: Determination of clarification(%) of highly turbid influent	392
Fig.	23-1: Location of study area	403
Fig.	23-2: Watershed Delineation in SWAT	406
Fig.	23-3: Yearly flow simulated in seventeen Sub-basins	407
_	24-1: Proctor testing	
_	24-2: Soil samples	
Fig.	24-3: Comparison between dry density and moisture content of TV	7
Ū	and TWW	
Fig.	24-4: Comparison of normal and shear strength of TW and TWW	
·	at 0,41 and 120 days	416
Fig.	24-4: Graph b/w degree of saturation and shear strength of TW and	l
	TWW at 10kPa at 0.41 and 120 days	416
Fig.	25-1: Map of Sultanate of Oman	422
Fig.	25-2: Methodology for developing IDF relationship	428
	25-3: IDF Curves for Mazara station	
Fig.	25-4: Contours of e curve in IDF relationship	433
Fig.	25-5: Contours of m value in IDF relationship	434
Fig.	25-6: Contours of C value in IDF relationship	434
Fig.	26-1: Study region with the positions of rain stations outlined through	ıgh
·	SRTM 30-meter DEM	_
Fig.	26-2: Comparison of scatter plots for daily point rainfall of the stud	
·	region for years 2014-2016	
Fig.	26-3: Mean annual guage-based and GSMaP-based rainfalls	451
	26-4: Comparison of scatter plots for average rainfall of the study	
·	region for years 2014-2016	452
Fig.	26-5: Flow hydrographs generated for gauge, GSMaP and adjusted	
_	GSMaP estimates by HEC-HMS model for years 2014-2016	
Fig.	26-6: Comparison for flows generated by HEC-HMSmodel for year	
٥	2014-2016	

Fig. 27-1: Construction 4.0 technologies and their applications	in the
project life cycle	466
Fig. 28-1: Various performance levels in PBD	481
Fig. 28-2: Linking the damage to various performance levels in	PBD 481
Fig. 28-3: Various types of hazards that can affect structural saf	ety and
lead to disasters	482
Fig. 28-4: Constituents of disaster	483
Fig. 28-5: The responsibility for safety in the modern days can l	oe spread
among many stakeholders	484
Fig. 28-6: Typical building code	489
Fig. 28-7: Earthquake hazard level	490
Fig. 28-8: Schematic diagram showing the methodology for PB	D 491
Fig. 28-9: Linking hazards to design decisions	491
Fig. 29-1: Ducts VS wall (before resolving)	500
Fig. 29-2: Ducts VS Walls (After resolving)	500
Fig. 29-3: Clashes percentage chart	501
Fig. 29-4: Number of clashes with resolving time	503

LIST OF TABLES

Table 1-1: Summary of mix proportion and the specimens prepared in	
all series	6
Table 2-1: Analysis of temperature sensors according to set standards	15
Table 3-1: The XRF analysis of FA, BA, and DS (main oxides)	25
Table 3-2: Physical properties of DS	
Table 4-1: Physical and chemical properties of selected soil samples	40
Table 4-2: Properties of selected isolated strains	
Table 5-1: Physical properties of Fly ash and silica fumes	60
Table 5-2: Physical properties of crumb rubber	60
Table 5-3: Physical properties of cement	61
Table 5-4: Physical properties of sand	61
Table 5-5: Physical properties of Coarse aggregate	62
Table 6-1: Properties of cement	75
Table 6-2: Properties of Fine Aggregates	-76
Table 6-3: Properties of Coarse Aggregates	-77
Table 6-4: Mix Design	78
Table 6-5: Compressive strength results of control concrete	80
Table 6-6: Split tensile strength results of control concrete	81
Table 6-7: Flexural Tensile strength results of control concrete	81
Table 6-8: Compressive strength values of steel fiber reinforced	
concrete	82
Table 6-9: Split tensile strength values of steel fiber reinforced	
concrete	82
Table 6-10: Split tensile strength values of steel fiber reinforced	
concrete	83
Table 7-1: Mixture design of ternary blended (WCT, GBFS and FA)	
geoplymers	92
Table 8-1: Mix proportions of different formulations	05
Table 8-2: Cycle durations for cyclic compressive loading	06
Table 8-3: Average healed crack-widths across all curing ages of each	
formulation and overall average of crack-width healed 1	09
Table 9-1: Physical properties of cement, fine and coarse aggregates 1	
Table 9-2: Chemical composition of cement, WCP and WBP	

Table 9-3: Elemental composition in concrete specimen as a functi	on of
waste content	127
Table 10-1: Chemical characterization of cement	138-139
Table 10-2: SCM formulations and their compositions	140
Table 10-3: Dry density of SAP using Volume displacement method	od 143
Table 10-4: Absorption Capacity of SAP-Sieve Method	144
Table 10-5: Absorption Capacity of SAP-Graduated Cylinder Meth-	od 144
Table 11-1: XRF of cement	
Table 11-2: Physical properties of CEM I	160
Table 11-3: Physical properties of TiO2 nanoparticles	161
Table 11-4: Chemical composition of TiO2	161
Table 11-5: Test Formulations	163
Table 11-6: Average pore size of different formulations	173
Table 12-1: Mix proportion of controlled samples and SCMs sample	s 182
Table 12-2: Chemical composition of materials	184
Table 12-3: Physical properties of OPC cement BA	184
Table 12-4: Properties of fine aggregates	
Table 13-1: Chemical and physical analysis of OPC	
Table 13-2: Characteristics of EMD	
Table 13-3: Water absorption capacity of saw dust by using tea bag	5
method	
Table 13-4: Self compacting paste system formulations	
Table 13-5: Thermal conductivity of SCP formulations	
Table 14-1: Types of Specimens and their designations	
Table 14-2: Physical properties of cement	238
Table 14-3: Tensile strength of concrete with methylcellulose	242
Table 14-4: Compressive strength of concrete cylinders with	
methylcellulose	244
Table 14-5: Mortar cubes compressive strength	
Table 15-1: Global adoption rates	258
Table 15-2: Barriers to implementation of BIM	261-263
Table 17-1: A matrix summarizing the issues, strategies and stakeh	
across the different stages of LoWMoR	
Table 18-1: Details of samples	
Table 19-1: Compressive and tensile properties of reinforcement	
Table 19-2: Experimental and FEM results of Steel40, GFRP40, G	
with respect to peak deflection and peak load	332
Table 20-1: Properties of cement	347

Table 20-2: Chemical properties of OPC	. 348
Table 20-3: Physical properties of aggregates	. 349
Table 20-4: Concrete composition	. 351
Table 21-1: Seasonal average future temperature (degree celcius) in Sv	vat
river basin with three RCMs under RCP 4.5	. 372
Table 21-2: Seasonal average future temperature (degree celcius) in Sv	vat
river basin with three RCMs under RCP 8.5	. 373
Table 21-3: Average increase in temperature (degree celcius) baseline	
period:1979-2014) in Swat river basin with three RCMs under	
RCP4.5	. 374
Table 21-4: Average increase in temperature (degree celcius) baseline	
period:1979-2014) in Swat river basin with three RCMs under	
RCP8.5	. 375
Table 22-1: Experimental conditions applied to Jar test and static mixe	r
operation	. 388
Table 22-2: Control Experiment conditions	. 391
Table 24-1: Results of water sample	. 414
Table 24-2: Sieve analysis result	. 415
Table 25-1: The intensity, duration and return period of rainfall at Maz	
station, Muscat	. 429
Table 25-2: Parameters of IDF relationship for all the stations 430	-432
Table 26-1: Behavior of various SPEs over different study areas	. 441
Table 26-2: Basic information about GSMaP estimates	. 444
Table 26-3: Statistical parameters used in the comparison and	
evaluation	. 445
Table 26-4: Primary and secondary statistical indices before the execut	tion
of bias ammendment	. 453
Table 26-5: Primaery statistical indices later the execution of bias	
ammendment	. 453
Table 28-1: Acceptance criteria	. 488
Table 29-1: Clashed resolving time	. 502

FOREWORD

It gives me great pleasure to introduce the proceedings of the conference organized by the National University of Computer and Emerging Sciences (FAST) titled "Advances in Civil and Construction Engineering" held in December 2022. These proceedings present a remarkable collection of research papers presented and discussions held during the conference.

In these proceedings, readers will find a wealth of knowledge and innovation in the form of cutting-edge research papers, enlightening case studies, and thought-provoking discussions. The diverse range of topics covered in the conference represents the dynamic nature of civil and construction engineering, including but not limited to structural analysis and design, sustainable infrastructure development, construction materials and techniques, project management, and emerging technologies. The technical contributions from esteemed professionals, researchers, and participants from academia from around the globe, highlight the ongoing efforts to address the challenges in our ever-evolving built environment.

It is my sincere hope that these proceedings will serve as a valuable information source for the international community of civil and construction engineers, consultants, policymakers, and other stakeholders. I believe that the collective wisdom contained within this compilation will inspire further innovation and foster collaboration for advancement in civil engineering.

I extend my heartiest gratitude and appreciation to all the authors, reviewers, organizers, and conference participants who made this publication possible.

Dr. Tahir Masood Managing Director and President National Engineering Services Pakistan Pvt. Ltd.

> Lahore Pakistan December 2022

PREFACE

This book is a collection of the proceedings of an international conference called the International Conference on "Advances in Civil and Construction Engineering ACCE 2022", held from December 1st-3rd, 2022, at the University of Management and Technology and the National University of Computer and Emerging Sciences in Lahore. The papers were invited on almost all aspects of these two engineering specialties and were subjected to a two-stage peer review. The percentage of selected papers was around 25%. The book contains several chapters, such as civil engineering materials, structural engineering, water resources and environmental engineering, construction management, and transportation engineering. The presented papers have been grouped under the aforementioned areas. It is worth noting that approximately 90 percent of the speakers were world-class researchers and academicians, while the remaining 10 percent represented top-tier universities from Pakistan. The book presents the latest and stateof-the-art papers that are essential for leading consultants, academicians, and contractors. It is hoped that the readers will find this book as a valuable collection of their liabilities. In case of further information, the undermentioned may kindly be contacted.

> Prof. Dr Syed Ali Rizwan Civil Engineering Department, Fast Lahore, Pakistan

ACKNOWLEDGMENTS

On behalf of **Rector NUCES-FAST Dr. Aftab Maroof** and **Air Marshal Asif Raza**, Rector University of Management and Technology, the undermentioned is deeply indebted to them for their wholehearted support, encouragement,, and patronage.

I am also grateful to the technical committees, review experts, organizing committees, and management committees for their untiring support. Thanks, are also due to representors who came from around the globe to present their work and interact with their Pakistani counterparts. I would also like to extend my vote of thanks to Muhammad Bilal Zahid (UMT), Engr. Waqas Ajmal, Engr. Muzna Anam, Engr. Abdul Moeiz Khan, Engr. Muhammad Tayyab and Engr. Abdul Rafey Asad (NUCES-FAST) for their help. Without their help, it would have been an impossible task.

A special thanks goes out to the book editors, Engr. Abdur Rehman Zahid (NUCES-FAST) and Engr. Noor Fatima (NUCES-FAST), for their invaluable work and the indelible mark they leave on every page.

LIST OF ABBREVIATIONS

- a, b = empirical constants in IDF relationships
- C = empirical constant in IDF relationship
- d = rainfall duration (T)
- e =empirical constant in IDF relationship
- i = rainfall intensity (L/T)
- K = empirical function in IDF relationship
- K_T = Frequency factor
- m = empirical constant in IDF relationship
- P = Precipitation (rainfall) (L)
- T_r = Return period (years)
- S =Standard deviation
- x =Observed value
- \bar{X} = Mean of observed values

CIVIL ENGINEERING MATERIALS

CHAPTER ONE

DEVELOPMENT OF GEOPOLYMER MORTAR AT AMBIENT CONDITION BY USING LIMESTONE POWDER

KHURAM RASHID AND KHADIJA MAWRA

Biographies

Khuram RASHID is an Associate Professor at the University of Engineering and Technology, Lahore, Pakistan. He received his Bachelor's and Master's from the same university and PhD from Japan. He is a member of the Pakistan Engineering Council, and Pakistan Engineering Congress, and was a member of the Asian Concrete Federation, and Japan Concrete Institute. His research interests include the development and performance of sustainable construction materials and strengthening of reinforced concrete structures.

Khadija MAWRA is a lecturer at the University of Engineering and Technology, Lahore, Pakistan. She completed her Master's degree in Construction Engineering and Management from NUST, Pakistan. Her research interests are Sustainability, Modular Construction, and Building Information Modelling.

Abstract

Geopolymer is an emerging material in the construction industry, but hot curing is required for the strength evolution of low calcium fly ash (FA) based geopolymer, which makes it energy intensive and is not suitable for real application. Although slag was added to attain strength at ambient conditions, but it increases the cost, and its availability is also an issue. Therefore, this work was designed, to get the strength at ambient conditions

by activating widely available uncalcined lime powder and FA in the alkaline environment (a combination of NaOH and Na₂SiO₃). River sand was also incorporated to develop geopolymer mortar. Specimens were exposed to three curing regimes; ambient curing, sun-dried, and hot curing and finally compressive strength was evaluated after 7 days. It was observed that due to the addition of limestone powder(LSP), the strength at ambient conditions was 26 MPa, and it further increased (39 MPa) under hot curing conditions. Furthermore, to reduce the cost, the alkaline to precursor ratio was reduced from 0.18 to 0.12, and mixture was pressed at 20 MPa molding pressure and more than 16 MPa strength was attained at ambient condition. It can be easily concluded that the observed compressive strength can be widely used in residential and commercial projects to fulfill the demand for construction materials and to reduce cement consumption.

Keywords: ambient cure; compressive strength; curing regimes; geopolymer mortar; hot curing; lime; molding pressure.

Introduction

Ordinary Portland Cement (OPC) is well renowned binding material but is considered an environmental burden due to a lot of CO₂ emissions. Several trials have been made by reducing the amount of cement in concrete by adding supplementary cementitious materials [1]. However, geopolymer materials are considered as the alternative material to cement paste, mortar, and concrete. Therefore, needs to be explored in more detail to replace conventional mortar or fired clay brick.

Geopolymers, which are considered part of alkali-activated materials, are one of the most promising materials in this respect. The process of geopolymerization involves the activation of rich silica and alumina materials in an alkaline environment [2]. The aluminosilicates are known as precursors such as clays (illite, halloysite, kaolinite, etc.) [3], and ashes (FA, bagasse ash, and rice husk ash, etc.) [4]. FA is a silica and alumina-rich precursor that is widely available in many countries. It has been used in cementitious products widely, many standards have also been developed for its efficient utilization [5]. The utilization of FA is only possible when it gets activated in an alkaline environment. In terms of the selection of a precursor, the basic philosophy to be kept in mind for obtaining a superior product is the degree of reaction based on the availability of amorphous

silica and alumina in the source material. Similarly, other parameters that influence the compressive strength during geopolymerization include alkaline to precursor and sodium silicate (Na₂SiO₃) to sodium hydroxide (NaOH) ratios, the molarity of NaOH and curing temperature, etc [6-8]. The mixture of NaOH and Na₂SiO₃ results in better strength development as compared to using them individually as an alkaline activator. Reducing the alkaline/precursor (A/P) ratio for FA-based geopolymer mortar decreases its cost. Another significant factor to consider, especially for geopolymerization, is the molding pressure [9-12], which might have a favorable impact on compressive strength. Pressure increases the rate of geopolymerization, but it also decreases porosity while increasing the bulk density. Moreover, there is a big variation in the temperature or curing condition of cement mortar as it requires very high temperature. Slag has been used along with the FA to cure the resultant geopolymer product at ambient conditions. Slag is rich in Calcium, and activated at the ambient condition to form the calciumalumino-silicate-hydrate (C-A-S-H) gel and thus gets the strength [7]

With this background, a new couple has been proposed in this work, where FA was coupled with the LSP. Three curing regimes have been adopted to cure the specimen at ambient conditions and compare it concerning the hot curing condition. Hence, a systematic approach has been proposed in this work to synthesize geopolymer which fulfilled the mechanical strength criterion of ASTM standards for brick masonry.

Research Significance

OPC is used globally every year, and it contributes greatly to the world's CO₂ emissions. However, its use in concrete and mortar is environmentally unsustainable. This work was designed to develop FA-based geopolymer coupled with lime, a widely available material. The LSP was used without calcination to produce a cleaner environment. Moreover, the curing condition may also be the ambient or sun-dried condition to make it more sustainable. Hence, a systematic approach has been proposed in this work to synthesize geopolymer and to replace conventional concrete blocks or fired clay bricks. The authors believe that this study will have a positive effect on the construction industry.

Experimental Investigation

Materials

For the production of geopolymer mortar, FA, sand (river, dune), alkaline activators (NaOH, and Na₂SiO₃), LSP (calcium carbonate), and distilled water were used. The FA was classified as class F and having low calcium content (4.81%), because the total amount of SiO₂ (54.14%), Al₂O₃ (28.19), and Fe₂O₃ (4.93%) is higher than 70%, and the CaO content less than 10%, according to ASTM C 618 [13]. The color of FA was light grey having a density of 1058.6kg/m³. Types of sand used are River Sand (RS) and Dune Sand (DS). The sodium hydroxide (NaOH) was taken in pallet form having a white color. Sodium hydroxide was used to activate the FA so that FA exhibits good cementitious properties. Sodium Silicate was colorless and clear in physical properties. It was taken in gel form and also used to activate the FA. LSP was taken in powdered form and white color.

Specimens

Dry mixing of precursors i.e. FA and lime and filler material i.e. sand (river or dune) was carried out for 30 seconds with high speed mixer. By the addition of an alkaline activator, sodium silicate (Na₂SiO₃), and sodium hydroxide solution (NaOH), wet mixing was carried out for a further two min 30s, and a paste was formed. The work was divided into three series. In Series I, the paste was formed with 0.18 Alkaline/Precursor ratio (A/P) and 1.5 NaOH/Na₂SiO₃ with the river sand and was filled in three layers in cube molds which were tested after placing under three curing regimes i.e. Ovendry, Sun-dry, ambient dry. Then, the mix proportion was changed in Series II by reducing A/P to 0.12 and NaOH/Na₂SiO₃ to 1.0, and cylinders (diameter of 71 mm) were filled with this paste in three layers with 12 times tamping at each layer. Then these were placed in the Universal Testing Machine (UTM) and a load was applied to obtain 20 MPa molding pressure. The specimen was taken out carefully from the cylindrical mold and was kept under ambient temperature. The same mix proportion was used in Series III with dune sand but it formed a slurry because of the change in porosity and surface roughness of particles so cubes of 2.75 mm in size were cast. A schematic diagram for preparation of geopolymer mortar specimens is shown in Fig. 1-1 and mix proportions for different series can be found in Table 1-1.

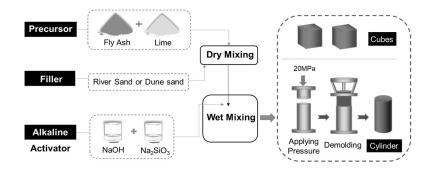


Fig. 1-1: Schematic Diagram of Specimen Preparation

Table 1-1: Summary of mix proportion and the specimens prepared in all series

FA	Lime	Sand	Na ₂ SiO ₃ /	A/P	Pressure	Curing
			NaOH		MPa	
40	10	50	1.50	0.18	N.A	Oven-
						Dry
						Sun-Dry
						Ambient
40	10	50	1.0	0.18	20	Ambient
40	10	50	1.0	0.18	N.A	Ambient
	40	40 10	40 10 50	FA Lime Sand NaOH 40 10 50 1.50 40 10 50 1.0	FA Lime Sand NaOH 40 10 50 1.50 0.18 40 10 50 1.0 0.18	FA Lime Sand NaOH MPa 40 10 50 1.50 0.18 N.A 40 10 50 1.0 0.18 20