3D Digital Printing and Characterization of Poly Lactic Acid-Based Self-Reinforced Composites

3D Digital Printing and Characterization of Poly Lactic Acid-Based Self-Reinforced Composites

Ву

Padmanabhan Krishnan, Gaurav Mathur, Sai Mahidhar N Putchala and Aman Chaure

Cambridge Scholars Publishing

 ${\tt 3D\,Digital\,Printing\,and\,Characterization\,of\,Poly\,Lactic} \\ {\tt Acid-Based\,Self-Reinforced\,Composites} \\$

By Padmanabhan Krishnan, Gaurav Mathur, Sai Mahidhar N Putchala and Aman Chaure

This book first published 2025

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2025 by Padmanabhan Krishnan, Gaurav Mathur, Sai Mahidhar N Putchala and Aman Chaure

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN: 978-1-0364-5112-7

ISBN (Ebook): 978-1-0364-5113-4

TABLE OF CONTENTS

List of Tables	ix
List of Graphs	X
List of Figures	xviii
Abbreviations	xxvii
Abstract	xxviii
Introduction	1
Introduction to Additive Manufacturing	3
Materials used in Additive Manufacturing	4
Introduction to Fused Deposition Modelling	10
Parts of an FDM Machine	11
Functioning of FDM Machine	13
Pre-Processing of Product	17
Post-Processing	20
Surface Roughness	21
Infill (%) vs Surface Roughness Graphs (μm)	25
Layer Width (mm) vs Surface Roughness Graphs (µm)	28
Speed (mm/s) vs Surface Roughness Graphs (µm)	31
Temperature (K) vs Surface Roughness Graphs (μm)	34
Shell Thickness (mm) vs Surface Roughness Graphs (μm)	37

Angle X (°) vs Surface Roughness Graphs (μm)	39
Angle Y (°) vs Surface Roughness Graphs (μm)	42
Angle Z (°) vs Surface Roughness Graphs (μm)	44
Bed Thickness (mm) vs Surface Roughness Graphs (μm)	46
Raster Angle (°) vs Surface Roughness Graphs (μm)	48
Cross Angle (*) vs Surface Roughness Graphs (μm)	51
Errors	54
Support	60
Process Parameters	62
Illustrations of all parameters with examples:	67
Infill Patterns	70
Measured Parameters	80
How do you make Gcode from a CAD model (Slicing)?	83
Variable Process Parameters	88
Good Practices Parameters and CAD Model	89
Microscopy	92
Methodology	93
Voids	117
ASTM D-638 Standard-2022	120
Methodology	124
Sample Dimension Discussions	126
Correlation	130

3D Digital Printing and Characterization of Poly Lactic Acid-Based Self-Reinforced Composites	vii
Regression	134
Regression of Time	135
General Shape of the Graphs expected with Time and Density	136
Regression of Density	144
Regression of Mass Deposition Rate	151
Regression of Void	160
Regression of UTS	169
Regressions of UTS vs Process Parameters	170
Regression of Young's Modulus	179
Regression of Mass by Stiffness ratio	190
Regression of Ultimate Tensile Strength per Unit Mass	197
Regression of Young's Modulus per unit Mass	208
Regression of Stress	216
Regression of Load	223
Combined Graphs of Angle X (°)	230
Combined Graphs of Angle Y (°)	233
Combined Graphs of Angle Z (°)	235
Combined Graphs of Bed thickness (mm)	237
Combined Graphs of Cross Angle (°)	239
Combined graphs of Infill (%)	241
Combined Graphs of Layer width (mm)	243
Combined Graphs of Raster angle (°)	245

Combined Graphs of Shell Thickness (mm)	247
Combined Equation of Time	249
Combined Equation of Density	250
Combined Equation of UTS	251
Combined Equation of Young's Modulus	252
Clusters of Ultimate Tensile Strength vs Young's Modulus	253
Introduction to Fractography	255
Fractography Results	257
Correlations between Regressions and Fractography	291
How to Use Multiple Parameters to Work for You to get Desired Properties	292
Decision Tree for Choosing Parameters based on the Product Requirements	298
Summary	299
Conclusion	300
Future	301
References	302

LIST OF TABLES

Table 1: Parts of an FDM machine (Refer to figure 4)	12
Table 2: Removable sacrificial structures	14
Table 3: Process Parameters with their Units and Ranges	65
Table 4: Different materials and their FDM Process Parameters. [36]	6]78
Table 4: Standard printing Pre-sets	86
Table 5: Mean Process Parameters	116
Table 6: Dimensions of ASTM sample	120
Table 7: Error % in Width and Thickness	127
Table 8: Correlation between Process parameters and Error (%)	128
Table 9: Correlation between Process Parameters	131
Table 10: Descriptive Statistics of Time	135
Table 11: Descriptive Statistics of Mass Deposition Rate	151
Table 12: Correlation between the process parameters	
and UTS, Young's modulus	169
Table 13: Trends of Process Parameters with the measure parameter	rs 292

LIST OF GRAPHS

Graph 1: Ra 1 (μm) vs Infill (%) (A) and Rq 1 (μm) vs Infill (%) (B) 2	25
Graph 2: Rz 1 (μm) vs Infill (%) (A) and Rz 1 max (μm)	
	25
Graph 3: Ra 2 (μm) vs Infill (%) (A) and Rq 2 (μm) vs Infill (%) (B) 2	25
Graph 4: Rz 2 (μm) vs Infill (%) (A) and Rz 2 max (μm)	
	26
Graph 5: Ra Mean (μm) vs Infill (%) (A) and Rq Mean (μm)	
	26
Graph 6: Rz Mean (μm) vs Infill (%) (A) and Rz Max Mean (μm)	
	26
Graph 7: Ra 1 (μm) vs Layer width (mm) (A) and Rq 1 (μm)	
	28
Graph 8: Rz 1 (μm) vs Layer Width (mm) (A) and Rz Max 1 (μm)	
	28
Graph 9: Ra 2 (μm) vs Layer Width (mm) (A) and Rq 2 ((μm)	
	28
Graph 10: Rz 2 (μm) vs Layer Width (mm) (A) and Rz max 2 (μm)	
• • • • • • • • • • • • • • • • • • • •	29
Graph 11: Ra Mean (μm) vs Layer Width (mm) (A) and	
	29
Graph 12: Rz Mean (μm) vs Layer Width (mm) (A) and	
	29
Graph 13: Ra 1 (μm) vs speed (mm/s) (A) and Rq 1 (μm)	
1 ()()	31
Graph 14: Rz 1 (μm) vs Speed (mm/s) (A) and Rz max 1 (μm)	
1 ()()	31
Graph 15: Ra 2 (μm) vs Speed (mm/s) (A) and Rq 2 (μm)	
·F · - · ()	31
Graph 16: Rz 2 (μm) vs Speed (mm/s) (A) and Rz Max 2 (μm)	
15 Speed (11112 5) (2)	32
Graph 17: Ra Mean (μm) vs Speed (mm/s) (A) and Rq mean (μm)	
	32
Graph 18: Rz Mean (μm) vs Speed (mm/s) (A) and	
Rz Max Mean (μm) vs Sped (mm/s) (B)	32
Graph 19: Ra 1 (μm) vs Temperature (K) (A) and Rq 1 (μm)	
vs Temperature (K) (B)	34

Graph 40: Rz 2 (μm) vs Angle Y (°) (A) and Rz max 2 (μm)	
vs Angle Y (°) (B)	43
Graph 41: Ra mean (μm) vs Angle Y (°) (A) and Rq Mean (μm)	
vs Angle Y (°) (B)	43
Graph 42: Rz Mean (μm) vs Angle Y (°) (A) and	
Rz Max Mean (μm) vs Angle Y (°) (B)	43
Graph 43: Ra 1 (μm) vs Angle Z (°) (A) and Rq 1 (μm)	
vs Angle Z (°) (B)	44
Graph 44: Rz 1 (μm) vs Angle Z (°) (A) and Rz max 1 (μm)	
vs Angle Z (°) (B)	44
Graph 45: Ra 2 (μm) vs Angle Z (°) (A) and Rq 2 (μm)	
vs Angle Z (°) (B)	44
Graph 46: Rz 2 (μm) vs Angle Z (°) (A) and Rz max 2 (μm)	
vs Angle Z (°) (B)	45
Graph 47: Ra mean (μ m) vs Angle Z (°) (A) and Rq mean (μ m)	
vs Angle Z (°) (B)	45
Graph 48: Rz Mean (μ m) vs Angle Z (°) (A) and Rz max mean (μ m)	
vs Angle Z (°) (B)	45
Graph 49: Ra 1 (μm) vs Bed Thickness (mm) (A) and Rq 1 (μm)	
vs Bed Thickness (mm) (B)	46
Graph 50: Rz 1 (μm) vs Bed Thickness (mm) (A) and	
Rz Max 1 (μm) vs Bed Thickness (mm) (B)	46
Graph 51: Ra 2 (μm) vs Bed Thickness (mm) (A) and Rq 2 (μm)	
vs Bed Thickness (mm) (B)	46
Graph 52: Rz 2 (μm) vs Bed Thickness (mm) (A) and	
Rz Max 2 (μm) vs Bed Thickness (mm) (B)	47
Graph 53: Ra Mean (μm) vs Bed Thickness (mm) (A) and	
Rq Mean (μm) vs Bed Thickness (mm) (B)	47
Graph 54: Rz Mean (μm) vs Bed Thickness (mm) (A) and	
Rz Max Mean (μm) vs Bed Thickness (mm) (B)	47
Graph 55: Ra 1 (μm) vs Raster Angle (°) (A) and Rq 1 (μm)	
vs Raster Angle (°) (B)	48
Graph 56: Rz 1 (μm) vs Raster Angle (°) (A) and Rz Max 1 (μm)	
vs Raster Angle (°) (B)	48
Graph 57: Ra 2 (μm) vs Raster Angle (°) (A) and Rq 2 (μm)	
vs Raster Angle (°) (B)	48
Graph 58: Ra 2 (μm) vs Raster Angle (°) (A) and Rz Max 2 (μm)	
vs Raster Angle (°) (B)	49
Graph 59: Ra Mean (μm) vs Raster Angle (°) (A) and	
Rq Mean (μm) vs Raster Angle (°) (B)	49

3D Digital Printing and Characterization of Poly Lactic Acid-Based Self-Reinforced Composites	xiii
Graph 60: Rz Mean (μm) vs Raster Angle (°) (A) and	
Rz Max Mean (µm) vs Raster Angle (°) (B)	49
Graph 61: Ra 1 (µm) vs Cross Angle (°) (A) and Rq 1 (µm)	17
vs Cross Angle (°) (B)	51
Graph 62: Rz 1 (µm) vs Cross Angle (°) (A) and Rz Max 1 (µm)	5 1
vs Cross Angle (°) (B)	51
Graph 63: Ra 2 (μm) vs Cross Angle (°) (A) and Rq 2 (μm)	5 1
vs Cross Angle (°) (B)	51
Graph 64: Rz 2 (μm) vs Cross Angle (°) (A) and Rz Max 2 (μm)	5 1
vs Cross Angle (°) (B)	52
Graph 65: Ra Mean (μm) vs Cross Angle (°) (A) and	52
Rq Mean (µm) vs Cross Angle (°) (B)	52
Graph 66: Rz Mean (µm) vs Cross Angle (°) (A) and	52
Rz Max Mean (µm) vs Cross Angle (°) (B)	52
Graph 67: Time (sec) vs Infill (%)	137
Graph 68: Time (sec) vs Layer Width (mm)	
Graph 69: Time (sec) vs Speed (mm/s)	
Graph 70: Time (sec) vs Shell Thickness (mm)	
Graph 71: Time (sec) vs Angle X (°)	
Graph 72: Time (sec) vs Angle Y (°)	
Graph 73: Time (sec) vs Bed Thickness (mm)	
Graph 74: Density (gm/cc) vs Infill (%)	
Graph 75: Density (gm/cc) vs Shell Thickness (mm)	
Graph 76: Density (gm/cc) vs Angle X (°)	
Graph 77: Density (gm/cc) vs Angle Y (°)	147
Graph 78: Density (gm/cc) vs Bed Thickness (mm)	
Graph 79: Mass Deposition Rate (mg/s) vs Infill (%)	
Graph 80: Mass Deposition Rate (mg/s) vs Layer Width (mm)	
Graph 81: Mass Deposition Rate (mg/s) vs Speed (mm/s)	
Graph 82: Mass Deposition Rate (mg/s) vs Shell Thickness (mm)	
Graph 83: Mass Deposition Rate (mg/s) vs Angle X (°)	
Graph 84: Mass Deposition Rate (mg/s) vs Angle Y (°)	
Graph 85: Mass Deposition rate (mg/s) vs Angle Z (°)	
Graph 86: Mass Deposition rate (mg/s) vs Bed Thickness (mm)	
Graph 87: Void (%) vs Infill (%)	
Graph 88: Void(%) vs Layer Width (mm)	
Graph 89: Void (%) vs Speed (mm/s)	
Graph 90: Void (%) vs Temperature (K)	163
Graph 91: Void (%) vs Shell Thickness(mm)	
Graph 92: Void (%) vs Angle X (°)	
Graph 93: Void (%) vs Angle Y (°)	

Graph 94: Void (%) vs Angle Z (°)	166
Graph 95: Void (%) vs Bed Thickness (mm)	166
Graph 96: Void (%) vs Raster Angle (°)	
Graph 97: Void (%) vs Cross Angle (°)	
Graph 98: UTS M (MPa) vs Infill (%)	
Graph 99: UTS M (MPa) vs Layer Width (mm)	
Graph 100: UTS M (MPa) vs Shell Thickness (mm)	172
Graph 101: UTS M (MPa) vs Angle X°	173
Graph 102: UTS M (MPa) vs Angle Y°	
Graph 103: UTS M (MPa) vs Angle Z°	175
Graph 104: UTS M (MPa) vs Bed Thickness (mm)	
Graph 105: UTS M (MPa) vs Raster Angle (°)	177
Graph 106: UTS M (MPa) vs Cross Angle (°)	
Graph 107: E M (MPa) vs Infill (%)	179
Graph 108: E M (MPa) vs Layer Width (mm)	180
Graph 109: E M (MPa) vs Speed (mm/sec)	181
Graph 110: E M (MPa) vs Temperature (K)	182
Graph 111: E M (MPa) vs Shell Thickness (mm)	
Graph 112: E M (MPa) vs Angle X (°)	184
Graph 113: E M (MPa) vs Angle Y (°)	185
Graph 114: E M (MPa) vs Angle Z (°)	
Graph 115: E M (MPa) vs Bed Thickness (mm)	187
Graph 116: E M (MPa) vs Raster Angle (°)	188
Graph 117: E M (MPa) vs Cross Angle (°)	
Graph 118: Mass to stiffness (kg/MPa-m) vs Infill (%)	190
Graph 119: Mass to stiffness (kg/MPa-m) vs Layer Width (mm)	
Graph 120: Mass to stiffness (kg/MPa-m) vs Speed (mm/sec)	191
Graph 121: Mass to stiffness (kg/MPa-m) vs Shell Thickness (mm)	192
Graph 122: Mass to stiffness (kg/MPa-m) vs Angle X (°)	192
Graph 123: Mass to stiffness (kg/MPa-m) vs Angle Y (°)	
Graph 124: Mass to stiffness (kg/MPa-m) vs Angle Z (°)	194
Graph 125: Mass to stiffness (kg/MPa-m) vs Bed Thickness (mm)	
Graph 126: Mass to stiffness (kg/MPa-m) vs Raster Angle (°)	195
Graph 127: Mass to stiffness (kg/MPa-m) vs Cross Angle (°)	196
Graph 128: UTS/M (MPa/kg) vs Infill (%)	197
Graph 129: UTS/M (MPa/kg) vs Layer Width (mm)	198
Graph 130: UTS/M (MPa/kg) vs Speed (mm/sec)	
Graph 131: UTS/M (MPa/kg) vs Temperature(K)	
Graph 132: UTS/M (MPa/kg) vs Shell Thickness (mm)	
Graph 133: UTS/M (MPa/kg) vs Angle X (°)	
Graph 134: UTS/M (MPa/kg) vs Angle Y (°)	

Graph 135: UTS/M (MPa/kg) vs Angle Z (°)	204
Graph 136: UTS/M (MPa/kg) vs Bed Thickness (mm)	
Graph 137: UTS/M (MPa/kg) vs Raster Angle (°)	206
Graph 138: UTS/M (MPa/kg) vs Cross Angle (°)	207
Graph 139: E/M (MPa/kg) vs Infill (%)	208
Graph 140: E/M (MPa/kg) vs Layer Width (mm)	209
Graph 141: E/M (MPa/kg) vs Shell Thickness (mm)	
Graph 142: E/M (MPa/kg) vs Angle X (°)	211
Graph 143: E/M (MPa/kg) vs Angle Y (°)	212
Graph 144: E/M (MPa/kg) vs Angle Z (°)	212
Graph 145: E/M (MPa/kg) vs Bed Thickness (mm)	213
Graph 146: E/M (MPa/kg) vs Raster Angle (°)	214
Graph 147: E/M (MPa/kg) vs Cross Angle (°)	214
Graph 148: Stress (MPa) vs Infill (%)	216
Graph 149: Stress (MPa) vs Layer Width (mm)	217
Graph 150: Stress (MPa) vs Speed (mm/sec)	217
Graph 151: Stress (MPa) vs Temperature(K)	
Graph 152: Stress (MPa) vs Shell Thickness (mm)	218
Graph 153: Stress (MPa) vs Angle X (°)	
Graph 154: Stress (MPa) vs Angle Y (°)	
Graph 156: Stress (MPa) vs Bed Thickness (mm)	
Graph 157: Stress (MPa) vs Raster Angle (°)	
Graph 158: Stress (MPa) vs Cross Angle (°)	
Graph 159: Load Mean (N) vs Infill (%)	
Graph 160: Load Mean (N) vs Layer Width (mm)	
Graph 161: Load Mean (N) vs Speed (mm/sec)	
Graph 162: Load Mean (N) vs Shell Thickness (mm)	
Graph 163: Load Mean (N) vs Angle X (°)	
Graph 164: Load Mean (N) vs Angle Y (°)	
Graph 165: Load Mean (N) vs Angle Z (°)	
Graph 166: Load Mean (N) vs Bed Thickness (mm)	
Graph 167: Load Mean (N) vs Raster Angle (°)	
Graph 168: Load Mean (N) vs Cross Angle (°)	
Graph 169: Load (N) vs extension (mm) graph of Angle X (°)	230
Graph 170: Zoomed in Load (N) vs extension (mm)	
	230
Graph 171: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
	231
Graph 172: Zoomed in Tensile Stress (MPa) vs Tensile Strain	
(mm/mm) graph of angle X (°)	
Graph 173: Load (N) vs extension (mm) graph of Angle Y (°)	233

Graph 174: Zoomed in Load (N) vs extension (mm)	
graph of Angle Y (°)	233
Graph 175: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
	234
Graph 176: Zoomed in Tensile Stress (MPa) vs Tensile Strain	
(mm/mm) graph of Angle Y (°)	234
Graph 177: Load (N) vs extension (mm) graph of Angle Z (°)	
Graph 178: Zoomed in Load (N) vs extension (mm) graph	
of Angle Z (°)	235
Graph 179: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
graph of Angle Z (°)	236
Graph 180: Zoomed in Tensile Stress (MPa) vs Tensile Strain	
(mm/mm) graph of Angle Z (°)	236
Graph 181: Load (N) vs extension (mm) graph of Bed	
	237
Graph 182: Zoomed-in Load (N) vs extension (mm)	
graph of Bed Thickness (mm)	237
Graph 183: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
graph of Bed Thickness (mm)	238
Graph 184: Zoomed-in Tensile Stress (MPa) vs Tensile Strain	
(mm/mm) graph of Bed Thickness (mm)	238
Graph 185: Load (N) vs extension (mm) graph of Cross Angle (°)	239
Graph 186: Zoomed in Load (N) vs extension (mm) graph	
of Cross Angle (°)	239
Graph 187: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
graph of Cross Angle (°)	240
Graph 188: Zoomed in Tensile Stress (MPa) vs Tensile Strain	
(mm/mm) graph of Cross Angle (°)	
Graph 189: Load (N) vs extension (mm) graph of Infill (%)	241
Graph 190: Zoomed in Load (N) vs extension (mm) graph	
	241
Graph 191: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
graph of Infill (%)	242
Graph 192: Zoomed in Tensile Stress (MPa) vs Tensile Strain	
	242
Graph 193: Load (N) vs extension (mm) graph of Layer Width (mm)	243
Graph 194: Zoomed-in Load (N) vs extension (mm) graph	
of Layer Width (mm)	243
Graph 195: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
graph of Layer Width (mm)	244

Acid-Based Self-Reinforced Composites	XVII
Graph 196: Zoomed-in Tensile Stress (MPa) vs	
Tensile Strain (mm/mm) graph of Layer Width (mm)	244
Graph 197: Load (N) vs extension (mm) graph of Raster Angle (°)	245
Graph 198: Zoomed in Load (N) vs extension (mm) graph	
of Raster Angle (°)	245
Graph 199: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
graph of Raster Angle (°)	246
Graph 200: Zoomed-in Tensile Stress (MPa) vs Tensile Strain	
(mm/mm) graph of Raster Angle (°)	246
Graph 201: Load (N) vs extension (mm) graph of Shell	
Thickness (mm)	247
Graph 202: Zoomed-in Load (N) vs extension (mm) graph	
of Shell Thickness (mm)	247
Graph 203: Tensile Stress (MPa) vs Tensile Strain (mm/mm)	
graph of Shell Thickness (mm)	248
Graph 204: Zoomed-in Tensile Stress (MPa) vs Tensile Strain	
(mm/mm) graph of Shell Thickness (mm)	248
Graph 205: Graph of UTS vs Young's Modulus of all Samples	
separated by the process parameters.	253
Graph 206: Zoomed in plot of UTS vs Young's Modulus.	254

LIST OF FIGURES

Figure 1: Cost per unit vs Number of units Manufactured	1
Figure 2:Different additive manufacturing and their materials	7
Figure 3: Electron Beam Melting (EBM) schematics (A) and	
Stereolithography (SLA) schematics (B)	7
Figure 4: Schematic of different parts of an FDM machine	. 11
Figure 5: Schematic of an FDM machine [1]	. 11
Figure 6: Image depicting G-Code with all the Keys.	. 14
Figure 7: Screenshot of different types of support structures	. 15
Figure 8: Image depicting wiping tower and raft	. 16
Figure 9: Image depicting helper disks, brim and bridge	. 16
Figure 10: Examples of Errors [1].	. 17
Figure 11: shrinking and curling effect	
Figure 12: Showing the staircase effect of the FDM machine	. 18
Figure 13: Depicting support structure burrs	
Figure 14: Depiction of an exaggerated view of the effect	
of sanding on the surface of the print	. 20
Figure 15: Images depicting the topography of the layers	. 22
Figure 16: Image depicting the method of calculating	
surface roughness	
Figure 17: Image depicting Side 1 and Side 2 of the sample	. 24
Figure 18: Flowchart Depicting the errors in FDM machines [2]	. 54
Figure 19:Catastrophic Failure Caused by a Slicing Error	. 57
Figure 20: Spaghetti Error as a result of not shutting off t	
he printer after a failure	. 57
Figure 21: Letter F without Support (A) and Letter F with Support (B).	. 60
Figure 22: Letter T without Support (A) and Letter T with Support (B).	. 60
Figure 23: Image of the sample with Line support (A)	
and Treelike Support (B)	
Figure 24: Showing X-Y-Z axes of the FDM machine	. 63
Figure 25: Image showing infills (A to B) 20%, 40%, 80% and 100%	. 67
Figure 26: Image showing shells of (A to B) 2,3,6 shell passes	. 67
Figure 27: Image showing different angles X (A to B) 30° , 60° and 90° .	. 68
Figure 28: Image depicting different Angle Y (A to B) 0°, 45° and 90°	. 68
Figure 29: Image depicting different Angle Z (A to B) 30°, 45° and 90°	. 68
Figure 30: Image depicting different raster angles (A to B)	
0°,45° and 90°	. 69

manufacturing (A) and 10X magnification with delamination (B)..... 94

Figure 57: Image of Sample 1 with 10X Magnification with imperfect

Figure 58: Image of sample 2 at 3.3X magnification (A) and 10X

Figure 66: image of 8 at 3.3 X (A) and 10x (B) magnification98
Figure 67: shows sample 9 at 3.3 X (A) and 10 x (B) magnification 99
Figure 68: Image of sample 10 at 3.3 X (A) and 10x (B)
magnification99
Figure 69: the image of sample 10 at 5 x magnification
Figure 70: shows sample 12 at 3.3 X (A) and 5X (B) magnification. 100
Figure 71: Image of sample 13 at 3.3 X (A) and 5X (B)
magnification
Figure 72: image of sample 14 at 3.3 X (A) and 10x (B)
magnification
Figure 73: an image of sample 14 at 5 x magnification
Figure 74: image of sample 15 at 3.3 X (A) and 10x (B)
magnification
Figure 75: Image of sample 26 at 3.3 X (A) and 10x (B)
magnification
Figure 76: Image of sample 28 at 3.3 X (A) and 5X magnification (B). 103
Figure 77: Image of sample 29 at 3.3X (A) and 10X Magnification (B) 104
Figure 78: Image of sample 30 at 3.3X (A) and 10x magnification (B). 104
Figure 79: Image of sample 32 at 3.3X (A) and 10X magnification (B) 105
Figure 80: Image of sample 32 at 5x Magnification
Figure 81: Image of sample 33 at 3.3X (A) and 10X (B)
Magnification
Figure 82: Image of sample 33 at 5x Magnification
Figure 83: Image of sample 34 at 3.3X (A) and 5x (B) Magnification 106
Figure 84: Image of sample 35 at 3.3x (A) and 5x Magnification (B) 107
Figure 85: Image of sample 37 at 3.3X (A) and Screenshot
of angle Y about the Y axis
Figure 86: Image of sample 38 at 5x Magnification
Figure 87: Image of sample 39 at 5x (A) and 10X (B) Magnification 108
Figure 88: Image of sample 40 at 3.3X
Figure 89: Image of sample 40 at 5X Magnification
Figure 90: Image of sample 42 at 3.3x (A) and 5x (B) magnification 110
Figure 91: an image of sample 43 at 5x magnification
Figure 92: Image of sample 44 at 3.3x (A) and 5X (B) Magnification111
Figure 93: Image of sample 45 at 3.3 X (A) and 5X (B) magnification111
Figure 94: Image of sample 46 at 3.3x (A) and 10x (B) Magnification . 112
Figure 95: Image of sample 47 at 3.3X (A) and 5X (B) magnification 112
Figure 96: Image of sample 49 at 3.3X (A) and 10X magnification(B). 113
Figure 97: Image of sample 50 at 3.3X Magnification
Figure 98: Image of sample 51 at 3.3X (A) and 10X (B) Magnification.114
Figure 99: Image of sample 51 at 10x magnification 114

Eigen 100, Inc
Figure 100: Image of sample 52 at 3.3X (A) and 5X (B) magnification 115
Figure 101: Image of sample 54 at 3.3x
Figure 102: Image of sample 55 at 3.3X
Figure 103: Screenshot of raster angle (0°) and Cross Angle (90°) (A)
and Screenshot of Raster angle (30°) and Cross Angle (90°)
Figure 104: Screenshot of the sample with raster angle (0°) and Cross
Angle (30°) (A) and Raster Angle (0°) and Cross Angle (45°) 117
Figure 105: Screenshot of a sample with raster angle 0° and
cross angle 0° for both angles about Z axis 0° and 30°
Figure 106: Screenshot of samples with a raster angle of 45° and cross
angle of 90° with an angle about X axis 45° (A-top) and 30° (B-top).
Screenshot of samples with raster angle 45° and cross angle 90°
with an angle about Y axis 45°(A-bottom) and 30° (B-bottom) 118
Figure 107: Schematic of the dog bone sample manufactured
Figure 108: Picture of measurement Vernier Callipers A, B, C 126
Figure 109: Isometric view of the samples rotating about the Y-axis 175
Figure 110: Top view of the samples rotating about the Z-axis
Figure 111: Isometric view of a cross-section of the sample(A)
and top view of a cross-section of the sample(B)
Figure 112: View of the shell of the sample with 40% infill and
everything at mean parameters at 150 X Magnification
Figure 113: View of the fibres of the sample with 40% infill and
everything at mean parameters 500X (A), 200X (B)257
Figure 114: View of the fibres of the sample with 40% infill and
everything at mean parameters Mag 200X (A), mag 100X (B) 257
Figure 115: View of the fibres of the sample with 40% infill and
everything at mean parameters Mag 60X
Figure 116: View of the shell of the sample with 80% infill
and mean parameters Mag 130X (A), mag 130X (B)
Figure 117: View of the shell of the sample with 80% infill
and mean parameters Mag 150X (A), mag 150X (B)
Figure 118: View of the fibres of the sample with 80% infill
and mean parameters Mag 300X (A), mag 100X (B)
Figure 119: View of the fibres of the sample with 80% infill
and mean parameters Mag 300X (A), mag 60X (B)259
Figure 120: View of the fibre of the sample with a layer width
of 0.25mm Mag 650X (A), mag 650X (B)260
Figure 121: View of the shell of the sample with a layer width
of 0.25mm Mag 150X (A), mag 150X (B)
Figure 122: View of the fibre of the sample with a layer width
of 0.25mm Mag 300X (A), mag 300X (B)

Figure 123: View of the fibre of the sample with a layer width	
of 0.25mm Mag 100X (A), mag 60X (B)	261
Figure 124: View of the sample with layer width 0.3 mm	
Mag 300X (A), mag 300X (B)	262
Figure 125: View of the shell of the sample with layer	
width 0.3 mm Mag 130X (A), Sno 13 mag 130X (B)	262
Figure 126: View of the fibre arrangement of the sample with	
layer width 0.3 mm 13 Mag 300X (A), Sno 13 mag 300X (B)	262
Figure 127: View of the fibre arrangement of the sample with	
layer width 0.3 mm Mag 100X (A), Sno 13 mag 60X (B)	263
Figure 128: View of the shell of the sample laid with 90mm/s	
speed Mag(A), mag 200X (B)	263
Figure 129: View of the fibres of the sample laid with 90mm/s	
speed Mag 300X (A), mag 300X (B)	264
Figure 130: View of the fibres of the sample laid with 90mm/s	
speed Mag 100X (A), mag 60X (B)	264
Figure 131: View of the fibres of the sample printed with	
the temperature of 215 °C Mag 750X (A), mag 750X (B)	265
Figure 132: View of the fibre of the sample printed with the	
temperature of 215 °C Mag 750X (A), View of the shell of the	
sample printed with the temperature of 215 °C mag 150X (B)	265
Figure 133: View of the shell of the sample printed with the	
temperature of 215 °C Mag 150X (A), View of the fibre of the	
sample printed with the temperature of 215 °C 300X (B)	265
Figure 134: View of the fibre of the sample printed with the	
temperature of 215 °C Mag 100X (A), mag 60X (B)	266
Figure 135: View of the fibre of the sample printed with the	
temperature of 215 °C Mag 300X	266
Figure 136: View of the fibre of the sample printed with the	
temperature of 225 °C Mag 750X (A), mag 750X (B)	267
Figure 137: View of the fibre of the sample printed with the	
temperature of 225 °C Mag 750X (A), View of the Shell of the	
sample printed with the temperature of 225 °C mag 150X (B)	267
Figure 138: View of the shell of the sample printed with the	
temperature of 225 °C Mag 150X (A), View of the fibre of the	
sample printed with the temperature of 225 °C mag 300X (B)	267
Figure 139: View of the fibre of the sample printed with the	
temperature of 225 °C Mag 300X (A), mag 100X (B)	268
Figure 140: View of the fibre of the sample printed with the	
temperature of 225 °C Mag 60X	268

3D Digital Printing and Characterization of Poly Lactic Acid-Based Self-Reinforced Composites	xxiii
Figure 141: View of the fibre of the sample printed with the shell of 1 mm Mag 650X (A), mag 650X (B)	268
Figure 142: View of the fibre of the sample printed with the shell of 1 mm Mag 650X (A), View of the shell of the sample	
printed with the shell of 1 mm mag 100X (B)	269
Figure 143: View of the shell of the sample printed with the shell of 1 mm Mag 100X (A), View of the fibre of the sample	
printed with the shell of 1 mag 300X (B)	269
Figure 144: View of the fibre of the sample printed with the shell	20)
of 1mm Mag 300X (A), View of the fibre of the sample	
printed with the shell of 1 100X (B)	269
Figure 145: View of the fibre of the sample printed with the shell	
of 1 mm Mag 60X	270
Figure 146: View of the fibre of the sample printed at 30° with	
the x-axis Mag 600X (A), mag 600X (B)	270
Figure 147: View of the fibre of the sample printed at 30° with	
the x-axis Mag 600X (A), View of the shell of the sample	
printed at 30° with the x-axis mag 100X (B)	271
Figure 148: View of the fibre of the sample printed at 30° with	0.71
the x-axis Mag 300X (A), mag 300X (B)	271
Figure 149: View of the shell of the sample printed at 30° with	
the x-axis Mag 100X (A), View of the fibre of the sample	271
printed at 30° with the x-axis mag 100X (B)	2 / 1
Figure 150: View of the fibre of the sample printed at 30° with	272
the x-axis Mag 60X (A), mag 60X (B)	212
the x-axis Mag 150X (A), mag 150X (B)	272
Figure 152: View of the fibre of the sample printed at 45° with	212
the x-axis Mag 150X (A), View of the shell of the sample	
printed at 45° with the x-axis mag 300X (B)	272
Figure 153: View of the shell of the sample printed at 45° with	2 , 2
the x-axis Mag 300X (A), View of the fibre of the sample	
printed at 45° with the x-axis mag 100X (B)	273
Figure 154: View of the fibre of the sample printed at 45°	
with the x-axis Mag 60X (A), mag 100X (B)	273
Figure 155: View of the fibre of the sample printed at 45°	
with the x-axis Mag 300X (A), mag 300X (B)	273
Figure 156: View of the fibre of the sample printed at 45°	
with the x-axis Mag 100X	274
Figure 157: View of the shell of the sample printed at all	
mean values Mag 150X (A), mag 150X (B)	274

Figure 158: View of the fibres of the sample printed at	
all mean values Mag 250X (A), mag 250X (B)	275
Figure 159: View of the fibres of the sample printed at	
all mean values Mag 60X (A), mag 100X (B)	275
Figure 160: View of the fibres of the sample printed at	
all mean values Mag 64X	275
Figure 161: View of the shell of the sample printed at 30° with	
the Y axis Mag 150X (A), View of the fibres of the sample	
published at 30° with the Y axis mag 300X (B)	276
Figure 162: View of the fibres of the sample printed at 30° with	
the Y axis Mag 300X (A), View of the fibres of the sample	
published at 30° with the Y axis mag 250X (B)	276
Figure 163: View of the fibres of the sample printed at 30° with	
the Y axis Mag 250X (A), View of the fibres of the sample	
published at 30° with the Y axis mag 100X (B)	276
Figure 164: View of the fibres of the sample printed at 30° with	
the Y axis Mag 60X	277
Figure 165: View of the shell of the sample printed at 45° with	
the y-axis Mag 150X (A), mag 150X (B)	277
Figure 166: View of the shell of the sample printed at 45° with	
the y-axis Mag 150X (A), mag 150X (B)	278
Figure 167: View of the fibres of the sample printed at 45° with	
the y-axis Mag 300X (A), mag 300X (B)	278
Figure 168: View of the shell of the sample printed at 45° with	
the y-axis Mag 150X (A), mag 150X (B)	278
Figure 169: View of the shell of the sample printed at 45° with	
the y-axis Mag 100X (A), mag 60X (B)	279
Figure 170: View of the shell of the sample printed at 45° with	
the z-axis Mag 200X (A), View of the fibres of the sample	
published at 45° with the z-axis mag 300X (B)	279
Figure 171: View of the fibres of the sample printed at 45° with	
the z-axis Mag 300X (A), mag 300X (B)	280
Figure 172: View of the fibres of the sample printed at 45° with	
the z-axis Mag 300X (A), mag 100X (B)	280
Figure 173: View of the fibres of the sample printed at 45° with	
the z-axis Mag 60X	280
Figure 174: View of the fibres of the sample printed at 60° with	
the z-axis Mag 300X (A), mag 300X (B)	281
Figure 175: View of the shell of the sample printed at 60° with	
the z-axis Mag 100X (A), View of the fibres of the sample	
published at 60° with the z-axis mag 60X (B)	281

Figure 194: The view of the fibres of the sample printed at a	
cross angle is 30° Mag 300X (A), View of the bed of the	
sample printed at a cross angle is 30° mag 100X (B)	288
Figure 195: View of the fibres of the sample printed at a cross	
angle is 30° Mag 300X (A), mag 300X (B)	288
Figure 196: View of the fibres of the sample printed at a cross	
angle is 30° Mag 100X (A), mag 60X (B)	289
Figure 197: View of the fibres of the sample printed at a cross	
angle is 45° Mag 200X (A), mag 200X (B)	289
Figure 198: The view of the shell of the sample printed at a cross	
angle is 45 Mag 100X (A), View of the fibres of the sample	
printed at a cross angle is 45 300X (B)	290
Figure 199: View of the fibres of the sample printed at a cross	
angle is 45 Mag 60X (A), mag 100X (B)	290
Figure 200: Decision Tree on how each parameter affects	
the design decisions	298

ABBREVIATIONS

3D -3 Dimensional ABS -Acrylonitrile Butadiene Styrene ASA -Acrylonitrile Styrene Acrylate ASTM -American Society for Testing and Materials E M or E -Elastic Modulus or Young's Modulus E/M -Young's Modulus per unit mass FDA -Food and Drug Administration (United States of America) FDM -**Fused Deposition Modelling** FFF -Fused Filament Fabrication G-code -Geometric Code GPa -Gigapascals Mag -Magnification MPa -Megapascals PC-Polycarbonate PEEK -Polyether ether ketone PETG -Polyethylene terephthalate PLA -Poly Lactic Acid PMMA -Polymethylmethacrylate PPSF -Polyphenylsulfone PVA -Polyvinyl Alcohol RMS -Root Mean Square Ra-Average Roughness Rq -Root Mean Square Roughness Rz the maximum difference between the average of the top 5 peaks and the top 5 deepest valleys Rz Max -The difference between the deepest valley and the highest peak Scanning Electron Microscopy SEM -STL -Standard Triangle Language or Standard Tessellation Language TPU-Thermoplastic polyurethane UTS-Ultimate Tensile Strength

Ultimate Tensile Strength per unit mass

Ultraviolet light Micrometre

UTS/M -

μm -

UV Light -

ABSTRACT

This study investigates different additive manufacturing processes and the materials used. Then, we investigate fused deposition modelling (FDM). Parts of an FDM machine and their functions are discussed. Later steps for pre-processing, post-processing and G-code preparation are mentioned. Do's and Don'ts are noted in each section. The following section defines all the process parameters with their ranges and units, followed by all the measured parameters with their ranges and units. After printing the samples, we study the samples under a microscope to visualise the printed structures and look for microscopic defects. All the samples are then weighed and measured. The weight is noted, and correlations are drawn between measured and control parameters. The errors in manufacturing are reported, and correlations are drawn. The samples are segregated parameter-wise, and regressions are drawn between weight and parameter values. Then, a relationship between measured variables and process parameters is established. This process is repeated for all the measured parameters. The surface roughness of all the samples is measured, correlations are drawn, and regressions are done. The samples are tested on a UTM. Stress-strain curves, UTS and Young's Modulus, are then derived from the raw data obtained. Combined stress-strain graphs are drawn to visualise the effect of each parameter. Various derived values are calculated with this data, like mass deposition rate, stiffness, and mass to stiffness, and their trends are studied. The highest outliers of UTS and Young's Modulus are selected, and Scanning Electron Microscopy is performed on them to visualise the fractures. The last section correlates the process parameters to the fractography results. This study establishes a relationship between most process parameters and their effects on physical properties.

Introduction

Additive manufacturing is a great way to tackle low-volume prototyping or speciality production. Additive manufacturing is not used in high-volume production runs because, unlike many traditional manufacturing processes, the economics of scale does not apply to additive manufacturing. Conventional manufacturing methods are expensive for low volume runs because of the tooling cost. However, since additive manufacturing does not require tooling, it is cheaper in the short volume runs. Additive manufacturing can also be used as an alternative to machined products Refer to Figure 1.

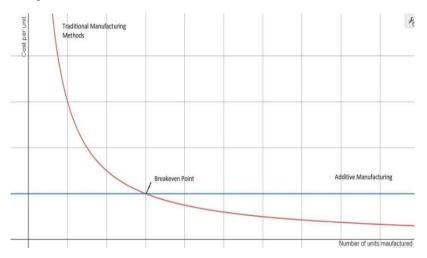


Figure 1: Cost per unit vs Number of units Manufactured.

Additive manufacturing is estimated at around 13.84 billion in 2021 and is expected to grow USD to 76.16 billion by 2030 [1]. In 2021, there were 2.2 million 3D printer exports worldwide. By 2030, 21.5 million units are projected to be supplied. North America currently holds the most significant global market share for additive manufacturing [1].

AM is gaining popularity because it can provide precise and rapid prototyping and shorten the time it takes to market. The range of materials

2 Introduction

that AM can process keeps growing. Low-volume plastics, methods, and equipment for printing on ceramics, glass, paper, wood, cement, and even living cells have been created.

Market expansion is anticipated to be fuelled by rising demand and active 3D printing research & development. Most industries, including those in the automobile, healthcare, aerospace, and others, need prototype applications using additive manufacturing.