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Chapter 1

Introduction

In ring theory and in the context of algebras, idempotents have

well-established uses. In particular, if e ∈ R is an idempotent of

a ring R, then the subring eRe has unit e and there is an eRe-

bimodule projection x 7→ exe from R onto eRe. The kernel

eR(1 − e) + (1 − e)Re + (1 − e)R(1 − e) of the projection is a

complementary eRe-submodule of R.

In probability theory and in the theory of von Neumann al-

gebras the notion of conditional expectation (as a completely

positive map E : M → M on a von Neumann algebra M , with

M commutative in the case of probability theory) satisfies sim-

ilar algebraic properties as the Peirce projections on a ring R

or on an algebra A. A result of J. Tomiyama [Tomiyama, 1957]

states that a unital and bounded projection E : A → A with

range S = E(A) a C∗-subalgebra of A must have norm one,

must be positive, must satisfy the conditional expectation prop-

erty E(s1xs2) = s1E(x)s2 (for s1, s2 ∈ S, x ∈ A) and also the

Schwarz type inequality (E(x))∗E(x) ≤ E(x∗x). In one of the

1



2 Introduction

themes of recent research, the notion of injective operator space,

a similar algebraic ‘conditional expectation’ property plays a

significant role, interacting with the notion of a ternary ring of

operators (TRO).

In [Lam, 2006] T. Y. Lam proposed abstracting the algebraic

properties of the Peirce projection Ee : R → R associated with

an idempotent e in a ring R, which is given by Ee(x) = exe

(x ∈ R), and investigating algebraic properties that hold in this

more general context. His proposal is to consider (additive)

maps E : R→ R with E ◦E = E , S = E(R) a subring of R under

the assumption that E is an S-bimodule map (which means

that it satisfies the conditional expectation property E(s1xs2) =

s1E(x)s2 for s1, s2 ∈ S, x ∈ R). Lam refers to such subrings S

as ‘corners’.

We consider this notion principally in the context of a (com-

plex) Banach or C∗-algebra A in place of a ring R and with the

assumption that the corner S = E(A) is a complex subalge-

bra. Our aim is to characterise such corners as fully as we can,

ideally by establishing that they are related to the ranges of

the more well-known completely positive (unital) conditional

expectations.

Each chapter below begins with a summary of the results in

it, and here is an overview of the structure of the chapters.

Chapter 2 outlines the general approach of Lam (in the con-

text of rings) and includes some general facts that will be useful

to us later on in the context of algebras. For instance, although
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a ring-theoretic Lam corner S of a unital algebra A need not be

a subalgebra, if S is a subalgebra then E must be linear, which

justifies the definition of corner algebra we use from Chapter 3

on (Definition 3.1.1). We also note that corner rings of unital

rings must be inverse closed and point out that graphs of ring

homomorphisms are corners, an idea we use later as a source

of counterexamples. Chapter 2 also includes some results on

properties inherited by corner rings (regularity, π-regularity and

others).

In Chapter 3 we move to algebras, our main theme, and

adopt a definition modified from the ring-theoretic one (which

insists that we deal with corners that are subalgebras and have

vector space complements, or equivalently we deal only with

linear Lam conditional expectations E). In fact we consider

normed algebras, usually Banach algebras and often C∗-algebras

A. We first observe that in general a Lam conditional expec-

tation E : A → A need not be continuous but the initial exam-

ples leave open the possibility that there always exists a con-

tinuous Lam conditional expectation Ẽ with the same range

S = E(A) = Ẽ(A). While simple examples show that Lam

corners S in C∗-algebras need not be self-adjoint subalgebras,

Peirce corners in C∗-algebras and certain ‘generalised’ Peirce

corners are similar to self-adjoint corners. We characterise cor-

ners in Mn(C) that contain the diagonal and use that to char-

acterise self-adjoint corners of B(H) that contain the diagonal

(in some basis for H). The latter result generalises to certain
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corners in purely atomic von Neumann algebras. A final result

in this chapter is that if p is a projection in a primitive C∗-

algebra, then A is prime if and only if the Peirce corner pAp is

prime.

In Chapter 4 we propose a definition of a ‘ternary’ corner

of a TRO T , which we consider as a generalisation of injective

operator spaces. An injective operator space is completely iso-

metric to a ternary corner pAq of an injective C∗-algebra A

(with p, q ∈ A projections). Hilbertian TROs are completely

characterised as row or column Hilbert spaces and we establish

that the ternary corners are precisely the closed subspaces in

those cases.

Chapter 5 focusses largely on commutative C∗-algebras and

we seek first to relate Lam conditional expectations to retracts

on the spectrum of the algebra. Retractions τ : X → X on

a (locally compact) topological space X give rise to Lam con-

ditional expectations Eτ : C0(X) → C0(X) via Eτ (f) = f ◦ τ .

Such Eτ maps have the additional property of being algebra *-

homomorphisms. In fact we establish a converse, that a Lam

conditional expectation E : C0(X) → C0(X) which is also an

algebra homomorphism must be given by a retraction of the

one-point compactification X∗ = X ∪{ω} of X fixing ω (Corol-

lary 5.1.12). For commutative C∗-algebras we show that dense

corners cannot be proper and that self-adjoint corners must be

closed and always have closed complements (and may also have

non-closed complements). Two final results in this chapter are
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that self-adjoint corners S of a C∗-algebra A are square-root

closed, and if x = x∗ ∈ S then the C∗-subalgebra of A gener-

ated by x must be contained in S.

In Chapter 6 we first examine the concept of norming al-

gebras and its application to the automatic complete bounded-

ness problem. The basic issue here is to determine some alge-

braic conditions which ensure that a given bounded homomor-

phism between operator algebras is automatically completely

bounded. In Theorem 6.1.5 we give one such condition. We then

introduce AW ∗-TROs which admit a type decomposition (type

I, II, and III), and which generalize AW ∗-algebras in a similar

way as W ∗-TROs generalize W ∗-algebras.



Chapter 2

General Theory of

Corner Rings

All rings to be consider are associative, but not necessarily uni-

tal.

In the first section of this chapter we will review the necessary

background material from Corner Ring Theory [Lam, 2006]. In

the succeeding sections, we will prove some new results, in par-

ticular:

• New proofs of uniqueness of complements (§2.2).

• Graphs of ring-homomorphisms are corner rings (§2.4). In

particular, one can always find a Lam conditional expec-

tation onto the graph of a ring homomorphism (between

two rings); this expectation is multiplicative.

• If E : R → R is an E(R)-bimodule projection (or a Lam

6
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conditional expectation), then E is multiplicative if and

only if ker E is an ideal (Proposition 2.4.2).

• Let A be a unital (associative) algebra over a field F , and

S a corner of A regarded as a ring with complement M .

If S is also a subalgebra of A then then the group M must

be a vector space over F (Proposition 2.5.2).

• Every unital corner is inverse closed (Proposition 2.6.1).

• Hereditary properties of corners in regular and ∗-rings. In

particular, every self-adjoint corner of a unital Baer ∗-ring

is a Baer ∗-ring (Theorem 2.8.5).

2.1 Definitions and Main Theorems

The general theory of corner rings was first systematically es-

tablished in T. Y. Lam’s 2006 paper [Lam, 2006], but the con-

cept – without explicit mention of the phrase ‘corner ring’ – had

appeared earlier in the 1999 paper [Kraft et al., 1999] authored

by H. Kraft, L. W. Small, and N. R. Wallach.

One of the main objectives of the theory of corner rings is

to provide an axiomatic foundation for the classical theory of

Peirce decompositions. Recall that the Peirce decomposition of

an associative ring R with respect to an idempotent e2 = e ∈ R
is

R = eRe⊕ eR(1− e)⊕ (1− e)Re⊕ (1− e)R(1− e).
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If R has no identity, R(1 − e) := {x− xe : x ∈ R} and (1 −
e)R := {x− ex : x ∈ R}. It is important to note that

S := eRe and M := eR(1−e)⊕(1−e)Re⊕(1−e)R(1−e)

are respectively a subring of R and a subgroup of the additive

group of R, and

R = S ⊕M, SM ⊆M, MS ⊆M.

This leads to the following definition of corners which allows

one to study some features of Peirce decompositions in arbitrary

rings, including those with no proper idempotents.

Definition 2.1.1 (Lam [Lam, 2006]). Let R be a ring. A sub-

ring S of R is called a corner ring (or simply a corner) of R if

there exists a subgroup M ⊆ R of the additive group of R such

that

R = S ⊕M, SM ⊆M, MS ⊆M. (2.1)

Such M is called a complement of S in R.

A useful characterization of corner rings, which was proved

in [Lam, 2006], asserts that there is a one-to-one correspondence

between corners of R and bimodular projections E : R → R

from R onto subrings of R. Specifically, this characterization is

as follows.

Proposition 2.1.2 ([Lam, 2006, Proposition 2.1]). Let R be
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a ring, S ⊆ R a subring. Then S is a corner ring of R if and

only if there exists an S-bimodule map E : R→ R (which means

that E is additive, and both left and right S-homogeneous, i.e.,

E(sx) = sE(x) and E(xs) = E(x)s for s ∈ S, x ∈ R) such

that E(R) = S and E ◦ E = E . (We will refer to E as a Lam

conditional expectation.)

Proof. If E : R → R exists, one check easily that M := ker E
satisfies (2.1), so S is a corner of R. Conversely, if S ⊆ R is

a corner of R, choose some complement M so that R = S⊕M ,

SM ⊆ M , MS ⊆ M . Then define E : R → R by E(s + m) = s

for s ∈ S and m ∈M . Clearly, E is additive. If s0 ∈ S, we have

E(s0(s+m)) = E(s0s+ s0m) = s0s = s0E(s+m)

since s0s ∈ S and s0m ∈ M . Thus, E is left S-homogeneous,

and a similar check shows that E is also right S-homogeneous.

It is straightforward to verify that E(R) = S and E ◦ E = E .

The following proposition will be useful for further consid-

erations and we will make reference to it many times. It states

that if S is a corner of a unital ring R, then S always has

an identity element, although this may not be the identity of

R. In particular, if E : R→ R is an S-bimodule projection onto

S as in Proposition 2.1.2, then E(1) is an identity of the ring S.

Proposition 2.1.3 ([Lam, 2006, Proposition 2.2]). Let R be

a ring with unit 1, S ⊆ R a corner of R with a complement
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M so that R = S ⊕M , and let 1 = e + f where e ∈ S and

f ∈ M . Then e is an identity of the ring S. In particular, the

decomposition 1 = e + f is independent of the choice of the

complement M , e and f are complementary idempotents in R,

and if E : R→ R is an S-bimodule map as in Proposition 2.1.2

(with E(R) = S and E ◦ E = E) then E(1) = e.

Proof. For any s ∈ S, s = s1 = s(e + f) = se + sf . Since

s, se ∈ S and sf ∈ M , we have s = se. Similarly, s = es, so e

is a multiplicative identity element of S. Since the multiplica-

tive identity element of S is unique, the remaining statements

in the Proposition follow immediately. In particular, e2 = e

and so ef = e(1 − e) = e − e2 = 0. If E : R → R is an S-

bimodule map as in Proposition 2.1.2, then for any s ∈ S,

sE(1) = E(s1) = E(s) = s. Similarly, E(1)s = E(1s) = E(s) = s,

so E(1) is also a multiplicative identity element of S. It follows

that E(1) = e because the multiplicative identity element of

a ring with identity is unique.

We will use the following lemma to prove Proposition 2.5.2.

Lemma 2.1.4. Let R be a ring with unit 1. If S ⊆ R is a corner

with a complement M and 1 = e + f for e ∈ S, f ∈ M , then

fR+Rf ⊆M .

Proof. For x ∈ R we have E(fx) = eE(fx) = E(efx) = E(0) =

0 since e is the identity for S. Thus fR ⊆ M . Similarly,

E(xf) = E(xf)e = E(xfe) = E(0) = 0, and so Rf ⊆M .
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There are four special classes of corners which are of partic-

ular importance to the theory. Those are Peirce corners, unital

corners, rigid and split corners, and they are defined as follows.

Definition 2.1.5 (Lam [Lam, 2006]). Let R be a ring, S ⊆ R

a corner of R.

1. S is called a Peirce corner if there exists e ∈ R such that

e2 = e and S = eRe.

2. WhenR has an identity element, then (so does S by Propo-

sition 2.1.3 and) S is called a unital corner if the identity

element of R belongs to S.

3. S is called a rigid corner if there exists a unique comple-

ment of S in R (two complements M and M ′ are consid-

ered identical if M = M ′).

4. S is called a split corner if there exists a complement of

S in R which is an ideal in R (equivalently, if there exists

a complement of S in R which is a subring of R; in this

case we have a unital ring isomorphism S ∼= R/M).

Furthermore, if R is a ring and e1, e2, . . . , en ∈ R are idem-

potents with eiej = 0 for i 6= j, then

n⊕
i=1

eiRei is a corner of R,

which will be called a generalised Peirce corner .

We note the following fact.
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Fact 2.1.6 (Unitalization). If R is a non-unital ring, its unital-

ization is the abelian group R
]

= R⊕Z. With the multiplication

(x,m)(y, n) = (xy + nx + my,mn) (x, y ∈ R; m,n ∈ Z), R
]

is

a unital ring with unit (0, 1), and R ⊆ R]

is an ideal. If S ⊆ R
is a corner and E : R → R is a corresponding Lam conditional

expectation with E(R) = S (see Proposition 2.1.2), then

E
]

: R
]

→ R
]

defined by E
]

(x,m) = (E(x),m) (x ∈ R,m ∈ Z)

is a Lam conditional expectation from R
]

onto E](R]

) = S
]

=

S ⊕ Z. In other words, if S is a corner of R then S
]

is a cor-

ner of R
]

. Furthermore, if E is multiplicative then E] is also

multiplicative. (Compare this fact with Proposition 3.3.1.)

In light of the following theorem, the theory of general cor-

ners may be reduced to Peirce corners and unital corners in

many ways.

Theorem 2.1.7 (Lam [Lam, 2006]). If R is a unital ring, then:

1. Any corner of R is a unital corner of some Peirce corner

of R; and

2. Any corner of R is a Peirce corner of some unital corner

of R.

For a detailed proof of these results we refer the reader

to [Lam, 2006, Section 5]. Here we briefly outline the key steps.

As regards the first result, if S is a corner of a unital ring R,
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then R = S⊕M for some group M ⊆ R. Therefore the identity

1 of R can be uniquely written as 1 = e+ f for e ∈ S, f ∈ M .

By Proposition 2.1.3, the summand e is an identity element of

S and eRe. Since S ⊆ eRe, it follows that S is a unital corner

of the Peirce corner eRe of R.

As regards the second result, that any corner of R is a Peirce

corner of some unital corner of R, assume again that S is a cor-

ner of a unital ring R. Then R = S⊕M for some group M ⊆ R.

Since the identity 1 of R can be uniquely written as 1 = e+f for

e ∈ S, f ∈ M with ef = fe = 0 (Proposition 2.1.3), it follows

that S ∩ fRf = 0. Indeed, if x ∈ S ∩ fRf then x = ex = f(ex)

because e is an identity of S and f is an identity of fRf . Thus

x = 0 because R is an associative ring and fe = 0. Now,

S′ = S ⊕ fRf is a unital corner of R and S = eS′e is a Peirce

corner of S′.

We shall close this section by noting that H. Kraft, L. W.

Small, and N. R. Wallach have proved in [Kraft et al., 1999]

a number of important results regarding corner rings (however

in [Kraft et al., 1999] the the term ‘corner rings’ has not been

explicitly used). In particular, the authors have showed that

when S is a subring of a ring R with R = S ⊕ V , and V has

certain invariance properties, then some properties of R are

inherited by S. For instance, if S is a subring of a semisimple

ringR, and if S is also a bimodule direct summand ofR then S is

also semisimple i.e., a corner of a semisimple ring is semisimple

(we will use this in Corollary 3.9.2 and in Lemma 3.12.2).
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We shall also point out that there is a different definition

and approach to ‘corners rings’ which was proposed by S. A.

Amitsur and L. W. Small in [Amitsur and Small, 1990]. Here

is the definition:

Definition 2.1.8. Let R be a ring. A subring S of R is called

an Amitsur-Small corner of R if SRS ⊆ S.

Amitsur-Small corners also generalize subrings of the form

eRe to the idea of ‘corners’. In other words, every Peirce corner

eRe is an Amitsur-Small corner. But there exist corners that

are not Amitsur-Small corners and vice versa. For example, the

algebra of finite-rank operators F(H) on an infinite-dimensional

Hilbert space H is an Amitsur-Small corner in B(H) – the alge-

bra of all bounded linear operators on H. Also its norm-closure,

the algebra of compact operators K(H), is an Amitsur-Small

corner in B(H). But neither F(H) nor K(H) are corners of

B(H) in the sense of Definition 2.1.1 because they are not uni-

tal. On the other hand, if R is any ring with a unit-element 1

and S is a unital proper corner of R, then SRS * S and so S

is not an Amitsur-Small corner.

We also note that an unital corner need not be a Peirce

corner in general. For example, let C([−1, 1]) denotes the C∗-

algebra of continuous complex-valued functions on the inter-

val [−1, 1]. Since C([−1, 1]) = Ceven([−1, 1]) ⊕ Codd([−1, 1]),

the direct sum of even and odd functions, and the product

of an even function and an odd function is an odd function,
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it follows that Ceven([−1, 1]) is a unital corner of C([−1, 1])

(in the sense of Definition 2.1.1). But Ceven([−1, 1]) is not

a Peirce corner of C([−1, 1]) because there are no nontrivial

idempotents in C([−1, 1]) (the only idempotents of C([−1, 1])

are the ‘0’ and ‘1’ functions). (Note that Ceven([−1, 1]) is not

an Amitsur-Small corner of C([−1, 1]).) Note also that the

space L2(R) of square-integrable functions with respect to the

Lebesgue measure on the real line R and with the inner product

〈f, g〉 =
∫
R f(x)g(x)dx, for f and g in L2(R), is the orthogonal

direct sum of the space S of even functions and the space M

of odd functions. The orthogonal projection E of L2(R) onto

the corner S along M is given by E(f)(x) = (f(x) + f(−x))/2

for f ∈ L2(R), x ∈ R. (We could also consider the orthogo-

nal projection Eh(f)(x) = h(x)[h(x)f(x)± h(−x)f(−x)] where

|h(x)|2 + |h(−x)|2 = 1.)

2.2 Uniqueness of Complements

In this section we present new proofs of T. Y. Lam’s results

[Lam, 2006, (2.8)(2), (5.11)] on uniqueness of complements in

arbitrary (not necessarily unital) rings.

Theorem 2.2.1. A Peirce corner S = eRe in a ring R (where

e ∈ R is an idempotent) has a unique complement M = R(1−
e) + (1− e)R = eR(1− e)⊕ (1− e)Re⊕ (1− e)R(1− e).

Proof. Let M be any complement for S. Then, for x ∈ R we

have x = s + m with s ∈ S, m ∈ M . So exe = ese + eme =
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s + eme. But eme ∈ M since e ∈ S and so eme = exe − s ∈
S ∩M = {0}. Hence s = exe and m = x − exe = ex(1 − e) +

(1− e)x = ex(1− e) + (1− e)xe+ (1− e)x(1− e).
The summands eR(1− e), (1− e)Re and (1− e)R(1− e) are

easily seen to each have trivial intersection with the sum of the

other two.

Theorem 2.2.2. If R is a ring and e1, e2, . . . , en ∈ R are idem-

potents with eiej = 0 for i 6= j, then the generalised Peirce

corner S =

n⊕
i=1

eiRei has a unique complement.

The unique Lam conditional expectation E : R → R with

range S is given by E(x) =
∑n
i=1 eixei.

Proof. Let M be a complement for S with corresponding Lam

conditional expectation E0. The idempotent e =
∑n
i=1 ei is

the identity element for S and it follows from R 3 x = s + m

(s ∈ S, m ∈ M) that exe = s + eme with eme ∈ M . So

E0(x) = s = E0(exe).

Note that for z ∈ S we have z =
∑n
k=1 ekzek.

For y ∈ eRe we have y = eye =
∑n
i,j=1 eiyej =

∑n
i=1 eiyei+∑

i 6=j eiyej . For i 6= j we have E0(eiyej) =
∑n
k=1 ekE0(eiyej)ek =∑n

k=1 E0(ekeixejek) = 0. Hence eiyej ∈ M for i 6= j and

E0(y) =
∑n
i=1 eiyei.

It follows that for x ∈ R, E0(x) = E0(exe) =
∑n
i=1 eiexeei =∑n

i=1 eixei.
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2.3 Annihilators and Split Corners

For a nonempty subset S of a ring R we define the annihilator of

S as follows S⊥ := {x ∈ R : xs = 0 = sx for all s ∈ S}. Note

that S⊥ is a subgroup of the additive group of R, and if S is a

two-sided ideal of R then so is S⊥.

Proposition 2.3.1. Let R be a ring and S a two-sided ideal of

R such that S ∩ S⊥ = {0}. Then S is a corner of R if and only

if R = S ⊕ S⊥.

Proof. Suppose S is a corner of R. Then R = S ⊕M for some

subgroup M ⊆ R with SM ⊆ M , MS ⊆ M . Since S is a two-

sided ideal of R we also have that SM ⊆ S, MS ⊆ S. Therefore

SM ⊆ S ∩M = {0} and MS ⊆ S ∩M = {0}, so R = S + S⊥

because M ⊆ S⊥. Finally, the assumption S ∩ S⊥ = {0} yields

that R = S ⊕ S⊥.

For the converse, if R = S ⊕ S⊥, then S is a corner of R

since SS⊥ = S⊥S = {0} ⊆ S⊥.

We note that if a corner S in R is complemented by a sub-

ring, say M , of R, then M is automatically a two-sided ideal

of R. Indeed, suppose R = S ⊕M with S a corner of R and

the complement M a subring of R. Then RM = (S ⊕M)M ⊆
SM +MM ⊆M +M = M , so M is a left ideal of R. We also

have that MR = M(S ⊕M) ⊆MS +MM ⊆M +M = M , so

M is a right ideal of R. Hence M is a two-sided ideal of R.
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Corollary 2.3.2. Assume that S is a corner of a ring R. If S

has a complement M that is a ring, then S is a split corner and

R/M ∼= S.

2.4 Graphs of Ring Homomorphisms

The new idea that we present in this section, and which we

will develop further in future sections (§5.5, §4.3), is to consider

graphs of ring homomorphisms φ : R1 → R2 as corner subrings

of R1 ⊕R2 (here R1 and R2 are rings). We will show that one

can always construct a Lam conditional expectation E : R1 ⊕
R2 → R1 ⊕ R2 onto the graph of φ and that this E must be

multiplicative. In a similar way, we show that one can also

construct a Lam conditional expectation E : R ⊕M → R ⊕M
onto the graph of a derivation δ : R→M (here R is a ring and

M is an R-bimodule). Similar constructions are valid in the

context of Lie rings.

Suppose we have a ring homomorphism φ : R1 → R2 where

R1 and R2 are rings.

Let R = R1 ⊕R2, a ring with the summands as ideals. The

subring R1 × {0} of R1 ⊕ R2 is isomorphic to R1 and so is

identified with R1; similarly for {0} ×R2.

Denote by S the graph of φ, that is, S = {(x, φ(x)) : x ∈ R1},
and define E : R → R by E(a, b) = (a, φ(a)) (a ∈ R1, b ∈ R2).

Note the following:
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1. S is a subring of R. Indeed, if x, y ∈ R1 then (x, φ(x)) +

(y, φ(y)) = (x+y, φ(x)+φ(y)) = (x+y, φ(x+y)) ∈ S, and

(x, φ(x))(y, φ(y)) = (xy, φ(x)φ(y)) = (xy, φ(xy)) ∈ S.

2. E ◦ E = E . Indeed, if a ∈ R1 and b ∈ R2 then E ◦ E(a, b) =

E(a, φ(a)) = (a, φ(a)) = E(a, b).

3. E is an S-bimodule map. Indeed, if x, a ∈ R1 and b ∈ R2

then E((x, φ(x))(a, b)) = E(xa, φ(x)b) = (xa, φ(xa)) =

(xa, φ(x)φ(a)) = (x, φ(x))(a, φ(a)) = (x, φ(x))E(a, b). Sim-

ilarly, E((a, b)(x, φ(x))) = E(a, b)(x, φ(x)).

4. E(R) = S (a consequence of the definition of E).

5. E is multiplicative. Indeed, if a, c ∈ R1 and b, d ∈ R2 then

E((a, b)(c, d)) = E(ac, bd) = (ac, φ(ac)) = (ac, φ(a)φ(c)) =

(a, φ(a))(c, φ(c)) = E(a, b)E(c, d).

6. If R1 and R2 are rings with involution, then R = R1⊕R2

becomes a ring with involution (a, b) 7→ (a∗, b∗) (a ∈
R1, b ∈ R2). Moreover, if φ is ∗-preserving then E is
∗-preserving and S is self-adjoint. Indeed, if a ∈ R1

and b ∈ R2 then E((a, b)∗) = E(a∗, b∗) = (a∗, φ(a∗)) =

(a∗, φ(a)∗) = (a, φ(a))∗ = (E(a, b))∗. If x ∈ S then

(x, φ(x)) ∈ S and φ is ∗-preserving then (x, φ(x))∗ =

(x∗, φ(x)∗) = (x∗, φ(x∗)) ∈ S, so S is self-adjoint.

We have shown:
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Proposition 2.4.1 (Lam conditional expectations onto graphs

of ring homomorphisms). If φ : R1 → R2 is a ring homomor-

phism, then the graph of φ, S = {(x, φ(x)) : x ∈ R1} , is a cor-

ner of R := R1 ⊕R2.

If R1 and R2 are rings with involutions and φ is involution-

preserving, then the corner S is self-adjoint.

Proposition 2.4.1 asserts in particular that one can always

find a Lam conditional expectation onto the graph of a ring

homomorphism (between two rings); moreover, this expectation

is multiplicative. In fact, we will show (Proposition 2.4.2) that

a Lam conditional expectation is multiplicative if and only if its

kernel is an ideal.

Proposition 2.4.2. Let R be a ring, E : R → R an additive

map with E ◦ E = E and

E(E(x)y) = E(x)E(y), E(xE(y)) = E(x)E(y)

for x, y ∈ R. Then E is multiplicative if and only if ker E is

an ideal.

Proof. If ker E is an ideal in R, then for x, y ∈ R we have

E(m) = 0, where m = x−E(x), and E(xy) = E((m+ E(x))y) =

E(my + E(x)y) = E(my) + E(E(x)y) = E(x)E(y).

Conversely, if E is multiplicative, then for x ∈ R, m ∈ ker E ,

we have E(xm) = E(mx) = 0 thus xm,mx ∈ ker E .

Question. Is every corner the graph of a ring homomorphism
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if the corresponding Lam conditional expectation E is multi-

plicative?

Proposition 2.4.3 (Lam conditional expectations onto graphs

of derivations). Let R be a ring and let M be an R-bimodule.

Then R⊕M is a ring with the operations: (x,m)+(y, n) = (x+

y,m+n) and (x,m) ·(y, n) = (xy, xn+my) for x, y ∈ R, m,n ∈
M . Let δ : R→M be a derivation (that is: a function satisfying

δ(x + y) = δ(x) + δ(y) and δ(xy) = δ(x)y + xδ(y) for x, y ∈
R). Then the graph of δ, i.e. the set S = {(x, δ(x)) : x ∈ R},
is a (corner) subring of R ⊕ M , and the map E : R ⊕ M →
R ⊕M defined by E(x,m) = (x, δ(x)) for x ∈ R, m ∈ M , is

a Lam conditional expectation onto S. Moreover, E is a ring

homomorphism.

Here is another model for corners and corresponding ‘expec-

tations’ in the context of Lie rings: If R is a ring, write [x, y] =

xy − yx for the Lie product of two elements x, y ∈ R (or con-

sider a ‘general’ Lie bracket on R), and consider R = (R, [·, ·])
as a Lie ring. Then a Lie subring, i.e. a subgroup L ⊆ R of the

additive group of R with [L,L] ⊆ L, may be called a Lie corner

if R = L ⊕M and [L,M ] ⊆ M for some subgroup M ⊆ R.

Note that L is a Lie corner if and only if there exists an addi-

tive group homomorphism E : R → R such that E ◦ E = E and

E([l, x]) = [l, E(x)], E([x, l]) = [E(x), l] for l ∈ L, x ∈ R; such E
may be called a Lie conditional expectation.

An example of a Lie corner is the space Skewn of n-by-n
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skew-symmetric matrices (AT = −A). Indeed, Skewn is a Lie

subring of Matn, the space of all n-by-n matrices, and Matn =

Skewn ⊕ Symn (since A = 1
2 (A−AT )+ 1

2 (A+AT )), where Symn

denotes the space of symmetric matrices (AT = A). The cor-

responding Lie conditional expectation is the map E : Matn →
Matn given by E(A) = 1

2 (A−AT ).

Proposition 2.4.4 (Lie conditional expectations onto graphs

of Lie homomorphisms). Let R1, R2 be rings considered as Lie

rings, and let φ : R1 → R2 be a Lie homomorphism (i.e. an addi-

tive group homomorphism with φ([x, y]) = [φ(x), φ(y)] for x, y ∈
R1). Consider R = R1⊕R2, a Lie ring with [(x1, x2), (y1, y2)] =

([x1, y1], [x2, y2]) for x1, y1 ∈ R1, x2, y2 ∈ R2. Then the graph

of φ, i.e the set L = {(x, φ(x)) : x ∈ R1}, is a Lie corner of

R, and the map E : R → R defined by E(x1, x2) = (x1, φ(x1))

(x1 ∈ R1, x2 ∈ R2) is a Lie conditional expectation onto L.

Moreover E is a Lie homomorphism, i.e. E([(x1, x2), (y1, y2)]) =

[E(x1, x2), E(y1, y2)] for x1, y1 ∈ R1, x2, y2 ∈ R2.

2.5 Q is a Dense Corner in R

Consider R, the set of real number, as a vector space over the

rationals Q. Let B be a Hamel basis for R over Q including 1.

Let M be the Q-linear span of B \ {1}. Then Q1 = Q and

R = Q⊕M.


