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Differential representation of the most important formula in this book: 
Equation (1). It determines both structure and electronic transport in 

amorphous alloys and nano-scaled composites.
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PREFACE 
 
 
 
Each epoch has its dominant scientific themes. Since 1900, there have 
been three major epochs in physics that have particularly shaped scientific 
research:  
 

1) Quantum Theory and Theory of Relativity (1900 - ca. 1950),  
2) Disordered Electronic Systems (1950 - 2000),  
3) Nanotechnology (since about 2000).  

 
While the first half of the 20th century was dominated by quantum theory, 
beginning in 1900 with Planck's groundbreaking ray theory and 
culminating in the 1920s and 1930s, the dominant scientific theme in the 
second half of the 20th century was electronic processes in disordered 
electronic systems, on which tens of thousands of articles have appeared in 
scientific journals. Towards the end of the 20th century, this area of 
research gradually faded into the background. One reason for this was that 
the most important questions and problems on this subject (Mooij 
correlation, metal-insulator transition, etc.) could not really be answered or 
could only be answered with additional assumptions. Another reason was 
new breakthrough discoveries (e.g., high temperature superconductors, 
quantum Hall effect, graphene tubes, and fullerenes).  

A major milestone in the field of disordered electronic systems was the 
famous book “Electronic Processes in Non-Crystalline Materials” by Mott 
& Davis, published by Oxford University Press in 1970 as part of the 
Oxford Classic Texts series IN THE PHYSICAL SCIENCES and 1979 
the second edition [1]. Ten years later, a publication [2] appeared that 
added a new aspect to this topic, namely that amorphous transition-metal–
metalloid alloys consist of two different phases that differ in short-range 
order and bonding properties and that between these phases there is an 
electron transfer which has an essential effect on the electronic transport. 
Already in the year 1980 Mangin et al. [3] have discussed such an 
“amorphous phase separation” for amorphous Au1-xSix alloys. This 
“amorphous phase separation” was initially only a hypothesis derived 
from experimental data on electrical conductivity and Hall coefficients. A 
few years later, however, this hypothesis was confirmed for a series of 
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amorphous transition-metal–metalloid alloys using high-resolution structural 
analyses. [4-7] 

On the basis of this confirmed hypothesis, a set of formulas was then 
developed with which the electronic transport coefficients in phase-
separated alloys (short: composites) can be described mathematically. The 
thermopower (Seebeck coefficient) in amorphous Cr-Si alloys calculated 
with these formulas can be regarded as an outstanding result that describes 
the experimental findings with surprising accuracy. [8, 9]    

In this context, previously unsolved physical questions could also be 
answered, for example what is the reason for the phenomenon of the 
“Giant Hall effect” in metal-insulator layers? What is the reason for 
Mooij’s correlation? What are the reasons for the different structures in 
sputtered and vapor-deposited thin layers: amorphous, granular or fractal 
structures depending on the composition of the alloy? Why does the metal-
insulator transition occur at a relatively small Ge concentration (≃ 0.44) in 
Al-Ge alloys, but at a relatively high Ge concentration (≃ 0.88) in Au-Ge 
alloys? 

Answers also followed to such questions, which basically have nothing to 
do with “amorphous phase separation”: Why are there simple metals with 
positive thermopower? Why does the electrical conductivity σ of very thin 
metal layers decrease exponentially with decreasing layer thickness? 

And further questions related to the Ioffe-Regel criterion could be 
answered: Is there a finite minimal metallic conductivity? Are there 
mobility edges and how can they be calculated? And why does the metal-
insulator transition in man-made (artificially produced) metal-insulator 
compounds occur at much smaller metal concentrations than it follows 
from classical effective medium theory (EMT)?  

The metal-insulator transition (M-I transition) in disordered electronic 
systems is one of the most challenging problems in condensed matter 
science. The fundamental question is whether the electrical conductivity at 
the transition disappears discontinuously or smoothly at the transition 
(Edwards et al. [10]). This is immediately connected with the question of 
whether there exists a minimum metallic conductivity σmin as originally 
proposed by Mott [11,12]. After several decades of intensive studies, there 
is general consensus that the M-I transition is continuous and that there is 
no σmin in agreement with the predictions of the scaling theory of 
localization [1, 13–21], where the potential disorder plays the most 
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important role (Anderson localization) [22, 23]. For metal-metalloid alloys 
this view seems to be in good agreement with experimental results [24–
26]. This view applies to homogeneous alloys. It can, however, also be 
extended to each individual phase in a phase-separated alloy. However, 
there is one key difference. As a result of electron transfer, the total 
number of electrons is not evenly distributed between the two phases.  

To make matters worse, also hole conduction is possible in one of the 
phases, depending on both the structure and the amount of electron 
transfer. If you think this through, you have to ask yourself anew whether 
there is a minimum metallic conductivity or not. N. F. Mott's original 
thesis that there is a minimum metallic conductivity, but which he 
retracted under the influence of Anderson's 1958 paper [22], is now 
supported by the new arguments presented in this book. And time will tell 
if the revival of Mott's original hypothesis will last. 
 
Finally, I would like to thank my former teachers during my studies at the 
Technical University of Dresden, Professors A. Recknagel, G.E.R. 
Schulze, G. Wenzel and G. Heber. Through them I learned to work 
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Professor Dr.-Ing. A. Ludwig from the Institute for Materials Science at 
the Ruhr University Bochum and his colleagues A. Savan, Dr. M. 
Kieschnick and Dr. S. Thienhaus as well as Dr. P. Ziolkowski from the 
Institute for Materials Research in Cologne for the exciting collaboration 
that led to the experimental confirmation of the additional term to the 
thermopower, equation (96). My thanks also go to the Professors H. Keiter 
and J. Stolze (Faculty of Physics at the University of Dortmund) for 
reading the manuscripts to the subjects of this book. I thank also my 
former employer and managing director of HL-Planartechnik GmbH, Mr. 
J. Herrnsdorf, who has supported my work on this book for many years. 
And finally I would like to thank my former colleagues at the IFW 
Dresden (formerly the Zentralinstitut für Festkörperphysik und 
Materialforschung), my group leader Dr. Wich and Dr.-Ing. G. Weise 
supporting my early experimental works to the systems Cr-Al and Cr-Si as 
well as D. Kraut, Dr. W. Hinüber, H. Waydbrink, J. Trost, Ms. C. 
Hornauf, Ms. U. Rauschenbach, Dr. K.-H. Mueller, Dr. Hemschik, Dr. A. 
Möbius, Dr. H Vinzelberg, Dr. J. Schumann, Dr. R. Voigtmann, Dr. J. 
Edelmann, Dr. L. Illgen, Dr. G. Zies, Dr. S. Roth and many others.  
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I 

INTRODUCTION 
 
 
 
Until 1989 there was a general consensus that 
 

a)  the approximation of nearly free electrons (NFE) is not an 
appropriate method for description of the electrons in strongly 
scattering systems as, e.g., metal-metalloid alloys. The same point 
of view has been also consolidated regarding the 

b)  Boltzmann transport equation (BTE): when the mean free path of 
the carriers, L, becomes comparable with the average atomic 
distance, d, the wave number k is no longer a good quantum 
number for describing the eigenstates and the BTE cannot be 
applied [1, 15].  

 
However, with the appearance of a publication from 1989 [2] this general 
consensus was questioned and shaken by new findings. The main finding 
from this publication was that many of the alloys under consideration are 
composed of different phases and that these must also be treated separately 
in the transport equations. The essential conclusions were especially 
related to amorphous transition-metal--metalloid alloys. For large ranges 
of concentration in the metallic regime of amorphous transition-metal--
metalloid alloys there is 
 

(i)  amorphous phase separation between two different amorphous 
phases called phase A and phase B, where each phase has its “own” 
short range order (SRO), 

(ii)  the amorphous phase separation leads to band separation in the 
conduction band (CB) and valence band (VB) connected with the 
phases A and B, respectively, and the electrons are freely 
propagating and the corresponding wave functions are extended 
with respect to connected phase ranges. 

(iii) Between the two coexisting phases there is electron redistribution 
(electron transfer) which can be described by 
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               (1) 
 
where ζ = B/A is the quotient of the volume fractions B and A of the 
two coexisting phases. n(ζ) is the electron density in the phase A with nA = 
n(0). Phase A is the phase with the larger potential. β is a constant for a 
given alloy, which is determined by the average potential difference 
between the two phases, ∆V.  

An electron moving through the alloy is not restricted to a single phase, 
but it can overcome the phase boundaries, provided both the CB and the 
VB are incompletely occupied. The crucial point is that in the two 
different phases, this electron is exposed to different local band structures 
(1) with different densities of states at the Fermi level (2) depending on the 
local band structure and the distribution of the electrons to the available 
electronic bands. 

The conclusion (i) amorphous phase separation is now confirmed 
experimentally for a series of amorphous transition-metal--metalloid 
alloys: Edwards et al. [28] reported on measurements of rf reactive co-
sputtered a-Ni1-xSix:H using Raman spectroscopy, IR absorption and 
extended x-ray absorption fine structure (EXAFS) that for x > 0.7 there is 
indication for close-packed Si:Ni clusters beside an a-Si matrix and they 
speculated that the system contains two amorphous phases: one being 
semiconducting and the other being semi-metallic. For a-Au1-xGex (x > 
0.63) Edwards et al. [4] concluded from EXAFS that regions of an Ge-Au 
alloy are embedded in amorphous Ge host network. From small-angle x-
ray scattering (SAXS) and x-ray-absorption near-edge spectroscopy 
(XANES) experiments at co-sputtered a-Fe1-xGex films with 0.28 < x < 
0.63 Lorentz et al. [5] concluded phase separation into two phases likely to 
be a-FeGe2 and a-Fe3Ge. Applying anomalous small-angle x-ray 
scattering (ASAXS), Regan et al. [6] found in co-sputtered a-W1-xGex, a-
Fe1-xGex, a-Fe1-xSix, and a-Mo1-xGex films phase separated regions of the 
order of 1 nm in the growth plane and 1.5-2.0 nm in the growth direction. 
They could show that their measurements are in agreement with the 
assumption of two coexisting amorphous phases, a-Ge or a-Si, on the one 
side and a metallic phase with FeGe2, FeSi2, or MoGe3 compositions for 
the last three systems, respectively, on the other side. Raap et al. [7] found 
amorphous phase separation in co-sputtered a-Fe1-xSix films into regions of 
a-Si and an intermetallic close in composition to a-FeSi2 with ∼0.6 nm in 
the film plane and ∼1 nm in size in the growth direction using ASAXS. 
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Support for the conclusion (ii) comes from measurements of the electronic 
specific heat coefficient γ of a-Mo1-xGex (Yoshizumi et al.29,30), a-Au1-xSix 
(Fischer and Löhneysen [31]), a-V1-xSix (Mizutani et al. [32]), and a-Ti1-

xSix (Rogatchev et al. [33]): γ does not go to zero at the M-I transition, but 
varies smoothly across the M-I transition.  

Support for the conclusion (ii) comes also from the result by Abkemeier et 
al. [34, 35] who found by an analysis of conductivity data in a-Ni-Si:H on 
the insulating side that a consistent interpretation is obtained, if it is 
assumed that the wave functions of the electrons contributing to 
conduction are extended through clusters of metal atoms and only 
localized by longer-range disorder, where the metal atoms are assumed to 
be Ni. 

The conclusion (iii) is not yet confirmed or supported by independent 
authors. However, as will be shown later, there is a series of experimental 
findings supporting this conclusion indirectly. On the basis of these 
conclusions (i) - (iii), a number of previously unsolved problems can be 
solved. On the one hand, this concerns the question of whether there is a 
minimum metallic conductivity or whether the metal-insulator transition is 
continuous or discontinuous. On the other hand, this also applies to 
questions/problems that, at first glance, have nothing to do with disorder 
or phase separation. Here is a brief overview of these unresolved 
questions/issues: 

1)  Why are there simple metals with positive thermopower, although 
according to classical theory the thermopower of simple metals 
should always be negative? (section IV B, short Sec. IV B) 

2)  What is the reason for the phenomenon of the Giant Hall effect in 
metal insulator layers? (Sec. V D) 

3)  Why does the metal-insulator transition in man-made (artificially 
produced) composites appear at much smaller metal concentrations 
than follows from classical effective medium theory (EMT)? (Secs. 
III G and III H) 

4)  Why can amorphous metal layers exist at all, although the 
crystalline state is the more stable? (Sec. V C) 

5)  Is there a finite minimum metallic conductivity? (Sec. II D) 
6)  What is the secret to good adhesion of thin metal films to insulator 

substrates? (Sec. V G) 
7)  Why does the electrical conductivity σ of a thin metal layer 

decrease exponentially with decreasing layer thickness? (Proximity 
effect; Sec. V G) 
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8)  What is the reason for Mooij’s correlation? (Sec. V F) 
9)  What are the reasons for the different structures in sputtered, 

respective evaporated, thin films: amorphous, granular or fractal 
structures depending on the composition of the film alloys? (Sec. 
VIII) 

10) Why does the metal-insulator transition occur at a relatively small 
Ge concentration in disordered Al1-xGex alloys (xc ≃ 0.44), but at a 
relatively high Ge concentration in disordered Au1-xGex alloys (xc ≃ 
0.88)? (Sec. VIII) 

 
Applying known valence band spectra a microscopical model has been 
developed for describing the electronic structure and electronic transport 
in metal-metalloid alloys which takes into account in particular 
 

1. the internal surfaces (phase boundaries), 
2. the average compositions of the two phases, and 
3. electron redistribution (electron transfer) between the phases. 

 
Based on this microscopical model, the effect of both the local band 
structure and the electron distribution between the phases on the electronic 
conductivity σ is studied applying effective medium theory (EMT) and the 
Boltzmann transport equation (BTE). Formulas for the concentration 
dependence of the thermopower (Seebeck coefficient) and Hall coefficient 
are derived as well as for the electron-electron interaction in alloys with 
phase separation (composites). It will be shown that the classical 
thermopower formula is incomplete. It is proposed to supplement this with 
an additional “thermodynamic” term. σ(x) closed to the M-I transition is 
calculated and compared with experimental results published in the 
literature.  

In Sec. II the central equation (1) (short Eq. (1)) will be derived and a 
quantitative form of the Ioffe-Regel criterion applying Heisenberg’s 
uncertainty principle which provide formulas for the minimum metallic 
conductivity and for the mobility edges. 

In Sec. III the transport equations for the electrical and thermal 
conductivity in composites are derived, supplemented by new formulas for 
the Hall coefficient and the thermopower. It will be shown, that the 
thermopower formulas applied earlier are incomplete. This is founded 
theoretically and experimentally. An additional term is proposed, the 
socalled thermodynamic term, which also explains why there are simple 
metals in nature with positive thermopower. A bridge is built from the 
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Effective Medium Theory (EMT) to the classical Percolation Theory 
through special consideration of incomplete packing densities in 
artificially generated composites, but also in naturally thin films produced 
by co-sputtering or co-evaporation. (More to this point in Sec. VI.) 

In Sec. IV, a new thermopower formula is derived for homogeneous 
materials, a special case of the thermopower formula derived in Section III 
for the limit cases i = 0. Using this thermopower formula, band edge 
shifts are calculated for simple metals and liquid metals. 

Sec. V deals with nanocomposites under special consideration of island 
formations for small i. It will be shown that Mooij’s correlation is a 
consequence of phase separation and that the Giant Hall effect (GHE) in 
granular metals is a consequence of Eq. (1). A formula for consideration of 
the electron-electron interaction will be proposed. What is the secret for 
good adhesion of thin layers and why there are amorphous metal layers at 
all is discussed. It is shown that discontinuities in the concentration 
dependence of the thermopower can occur and how they can be used to 
characterize the microstructure in alloys with phase separation. 

In Sec. VI, a problem associated with the co-sputtering or co-evaporation 
process is addressed, namely that the layers produced on these ways can 
have other physical properties than single coatings with only one alloy 
target. It is hypothesized that the structure of the forming layer is not only 
determined by the diffusivity of the atoms and whether there is a relative 
minimum in the Gibbs’ free energy. The structure realized depends also on 
the fact whether it is compatible with the demand that continuity of the 
entropy and energy flux densities and their gradients is saved during the 
solidification process, a consequence of the Gibbs equation and its 
conditions of validity.  

Sec. VII is dedicated to the atomic structure, short range order, bonding, 
and band structure in naturally grown metal-metalloid alloys. These 
considerations form the basis for quantitative calculations of the electronic 
transport properties of phase-separated alloys. The practical application of 
that is shown in the Appendix, an example calculation for the 
thermopower and conductivity in a-Cr1-xSix alloys. In Sec. VIII the 
influence of equation (1) on structure formation and the metal-insulator 
transition is considered. For some metal-metalloid alloys the concentration 
dependence of the conductivity σ near to the metal-insulator transition is 
calculated for T ≈ 0 and compared with experimental data.  



II 

THEORY OF ELECTRONS IN A  
NON-CRYSTALLINE MEDIUM 

 
 
 

A. Introduction 

As in the monograph by Mott & Davis, [1] the Ioffe-Regel criterion also 
plays a central role in the present book. Starting with a derivation of the 
central electron transfer formula Eq. (1), it follows a quantitative 
consideration of the Ioffe-Regel criterium leading to a lower limit for the 
wave number at the Fermi surface, kF, where metallic conductivity is still 
possible. Based on this lower limit a minimum metallic conductivity and 
mobility edges separating extended states in a conduction band or valence 
band from localized states can be defined.  

B. Derivation of the electron transfer formula  
for Nanocomposites 

The derivation of the formula Eq. (1) was obvious after it had been 
recognized that numerous amorphous alloys such as a-Au1-xSix, a-Cr1-xSix, 
a-Cu1-xGex, a-Au1-xGex, a-Mo1-xSix, a-Fe1-xSix, a-Fe1-xBx showed a simple 
relationship between the electrical resistance ρ and the concentration ratio 
x/(1 - x):[2] 

 

              (2) 
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FIG. 1: Experimental data ρ versus x/(1 - x) (upper diagram) and ρ versus XB/XA 
(lower diagram) in logarithmic representation for a-Cr1-xSix thin films at T = 300K 
taken from Helms et al. [36]. XB/XA is calculated by Eq. (4) with xA = 0.25 and xB = 
1.00. XB and XA are the atomic fractions of the amorphous phases a-Cr3Si (= phase 
A) and a-Si (= phase B). 
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The upper diagram in Fig.1 shows an example of the concentration 
dependence of ρ of a-Cr1-xSix thin films as a function for x/(1 – x). Eq. (2) 
suggests a simple relationship to the concentration dependence of the 
electron density n in these alloys according to the transport equation for 
the conductivity (BTE) 

               (3) 

(NFE-approximation, h is Planck’s constant and e the elementary charge.) 
 
In order to recognize this, one simply had to admit that the electron 
scattering in these amorphous alloys is very strong, which is why the mean 
free path L of the electrons is already at its lower physical limit, the mean 
atomic distance d was reached, L ≈ d. This immediately led to the 
assumption that  lg n ∝ -x/(1-x), which would mean a strong, exponential 
decrease in electron density with increasing metalloid content in the alloy. 
The question was, where did the electrons go? The answer was: these 
amorphous alloys were not homogeneous alloys, but were composed of 
different (amorphous) phases, in one phase the electron density n 
determines the resistance, while the other, the second phase, the loss of 
electrons took over. This part of the “disappeared” electrons could no 
longer or only to a very small extent participate in the transport of 
electricity. Thus the picture of the two-phase nature of these amorphous 
alloys, whose phases we call A and B, was born. The logical conclusion 
was now the formula Eq. (1), where the electron density is assigned to the 
phase A, while the phase B is the one in which the redistributed electrons 
were absorbed. In other words, with these amorphous alloys we were 
dealing with two-phase alloys, so-called composites, or more 
appropriately with “nanocomposites”, since, as it turned out later, the 
phases are present as microscopic grains with an expansion of   ≈ 1 - 2 nm. 
 
The two phases in a-Cr1-xSix thin films can be characterized by a-Cr1-xASixA 
and a-Cr1-xBSixB, where xA and xB are the silicon concentrations in the two 
phases A and B. By comparison with the phase diagrams of the 
corresponding crystalline alloys, xA and xB are suggested to be xA ≈ 0.25 
and xB ≈ 1, i.e. a-Cr3Si (= phase A) and a-Si (= phase B). In the 
concentration range 0 ≤ x < 0.25, the films are assumed to be one-phase. 
This assumption was confirmed by Hall coefficient measurements for the 
related system a-(Au0.5Cu0.5)1-xGex. (see Fig. 2 (b) in [2] based on 
experimental Hall coefficient data taken from [37]). The transition from a 
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concentration dependence represented by Eq. (2) to ζ as given in Eq. (1) 
follows from the well-known lever rule for two-phase alloys,  
 

               (4) 

As can be seen in Fig.1 (lower diagram), ρ follows an exponential 
dependence on XB/XA. And considering the empirical fact that generally 
XB/XA ≈ B/A it follows Eq. (1) if the effect of σB can be neglected.  
 
But now two further questions arose: 1) Why do these transferred 
electrons in the phase B not or hardly contribute to the conductivity? 2) If 
so, why can the phase A determine the resistance, respective conductivity, 
almost alone, when the total conductivity of a composite is composed of 
the contributions of both phases, according to 

 

               (5) 

(i = A, B), where σA and σB mean the conductivities of phase A and phase 
B. (Details on the formula Eq. (5) in Sec. III A). 

If the phase B does not contribute to the current transport, then lg σ should 
not be proportional to x/(1 - x), but rather deviate from such a dependency, 
the more so the volume fraction of phase B, B, is greater. This aspect 
remained unclear for a long time. A solution was only found in 2006, in 
[8]. The special feature of these amorphous transition-metal–metalloid 
alloys in the two-phase range is that both phases in the metallic range are 
to be regarded as metallic phases or as degenerate semiconductors, and 
that phase B usually has hole conductivity in contrast to phase A, which 
has electron conductivity. Using the example a-Cr1-xSix thin films it could 
be shown that the phase B also contributes to the conductivity and that this 
decreases as x increases, however not exponentially, as in the phase A, but 
only in a tendency. But this tendency to decrease was sufficient within the 
scope of the measurement accuracy that this linear concentration 
dependency “lg σ vs. x/(1-x)”, respective “lg ρ vs. x/(1-x)”, was retained 
even with larger x. The exponential dependence dominated the 
concentration dependence of σ even with larger x.  
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The validity of formula Eq. (1) is also confirmed for metal-insulator 
nanocomposites, although the insulator phase (= phase B) does not 
contribute to σ. In the metal-insulator composite materials, however, the β 
values are very large due to the very large potential difference between the 
two phases, so that σ, respective ρ, is dominated by phase A. Details see 
Sec. V D, Fig. 10. 

C. Ioffe-Regel criterion quantitative 

The Ioffe-Regel criterion states that values of L with kL < 1 are 
impossible. Based on this plausible statement, it was the general consensus 
that NFE approximation and the Boltzmann transport equation (BTE) 
cannot be applied (the points a) and b) in Sec. I). This consensus is 
appropriate for homogeneous alloys.  

We will now show that considering phase separation in disordered 
metallic alloys can lead to an alternative view to this consensus. We give 
two arguments, a theoretical argument and an experimental example.  

Historically seen, the view b) cited above was concluded from the fact that 
in metals38 

               (6) 

is a lower limit for extended states, where kF is the wave number at the 
Fermi surface. Inserting Eq. (6) and measured σ data of any metal-
metalloid alloy on the metallic side, but close to the M-I transition, in the 
BTE, 

               (7) 

and assuming a spherical Fermi surface SF = 4πkF
2, then it follows L < d, 

which is physically not possible, because the average free path cannot be 
smaller than the average distance of the scattering centres. However, 
considering phase separation, with decreasing fraction of the “metallic” 
phase (in the two-phase range), Eq. (6) is no longer valid and Eq. (7) is to 
be applied to the two phases separately, where each phase has its “own” 
Fermi surface, if υA > 1/3 or υB > 1/3 (Sec. V B). And the carrier densities 
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in the two phases are essentially different from a situation corresponding 
to Eq. (6). 

Since the electron density in the metallic phase decreases with increasing x 
(or with increasing ζ), kF in the phase A decreases as well according to 

               (8) 

(spherical Fermi surface and NFE approximation). For the hole density p 
in the phase B, the situation is analoguous, because p decreases with 
increasing x as well (see Secs. VII and VIII). This leads to the fact that 
application of the BTE in NFE approximation and σ(x)-data for any 
metallic alloy remains compatible with the condition “L ≥ d” even near the 
M-I transition.  

Experimental example: Mizutani and Yoshida [37] have shown for a-
(AgCu)1-xGex alloys that for x < 0.3 there is a good agreement between the 
measured Hall coefficient data, R, and the free-electron values 

               (9) 

derived from the BTE in NFE-approximation, where n0 is the total valence 
electron density in the alloy (Eq. (8) in [2]). This agreement between R 
and R0 gives the justification for application of the BTE in NFE-
approximation to the conductivity for x < 0.3 as well. Applying Eq. (3) to 
the measured σ-data [37] of a-(AgCu)1-xGex for x < 0.3, where σA = σ (one-
phase-range), it follows that L ≃ d for 0.2 < x < 0.3 (see [2], Sec. II B and 
Fig. 2 (b) in it). In other words, in the concentration range 0 < x < 0.3 the 
BTE in NFE-approximation provides a good description for the Hall 
coefficient, although L ≃ d is already reached. This is in contradiction to 
the view that kF is no longer a good quantum number, since L is 
comparable with d.  

With these two arguments, and in agreement with the points (i)-(iii) stated 
in Sec.I, we propose an alternative interpretation: L cannot be smaller than 
d; therefore in disordered electronic systems, d is the lower limit for L, and 
k can be considered as a good quantum number for describing the 
eigenstates, as long as 

             (10) 
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where c∗ is of the order of 1 (Ioffe-Regel criterion). The decisive 
difference to the point of view b) cited above (page 1) is the fact that 
(independent of the degree of disorder represented by the mean free path 
L) the electronic states can be extended for connected ranges of the same 
phase, and the concept of a Fermi surface is after all applicable, as long as 
Eq. (10) is fulfilled, even for L ≃ d. Considering the experimental example 
a-(AgCu)1-xGex, the abrupt splitting between n0 and nH = (eR) - 1 at x ≃ 0.3 
is a consequence of the beginning phase separation for x > 0.3, because 
only still part of the total electron density is available in the phase A due to 
the electron redistribution to the second phase [Eq. (1)]. On the other hand, 
in granular metal-metalloid alloys (Sec. V) on the metallic side the Fermi 
level lies in ranges of trap states in the phase B, however in ranges of 
extended states in the phase A.  

For consideration of the electronic transport processes in a phase at T = 0 
we concentrate our attention to kF, 

             (11) 

For the case, when scattering is strong, L can approach d, but cannot be 
smaller than d, and with Eq. (11) it follows a lower limit, where kF still can 
be applied for description of the wave functions of the carriers at the Fermi 
surface, given by 

             (12) 

if L ≃ d is realized. kF in Eqs. (11), (12) is limited to continuous range of 
atoms with overlapping wave functions. Outside of this range the wave 
functions decrease exponentially. Now let us consider the question of 
whether and under which conditions the BTE and NFE-approximation can 
be applied for disordered alloys with phase separation. The decrease of n 
with increasing x or ζ [Eq. (1)] leads also to decrease of the Fermi energy, 
EF, in the phase A, and the corresponding Fermi surface approaches a 
spherical form also in crystalline alloys, the smaller n, approaching a NFE 
behaviour, since the Fermi surface for the phase A is sufficiently distant to 
the first Brillouin zone boundary, when n is sufficiently small. The 
situation in the phase B is similar regarding the hole density p for 
sufficiently large υB, where p is small (see Secs. VII and VIII). This is 
especially so near to the M-I transition, provided Eq. (11) is still fulfilled.  
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D. Minimum metallic conductivity 

Because of Eq. (11) - in connection with Eq. (8) - there exists a lower limit 
for n, below it extended electronic states cannot be exist. Regarding Eq. 
(11), in the literature different values for c∗ are given ranging from 1/2π 
until π which differ by a factor 20 corresponding to a factor of 4 orders of 
magnitude for n according to Eq. (8). For the Ioffe-Regel criterion kL ≃ π 
[38] or kL ≃ 1/2π [39] or kL ≃ 1 [1] is given or proposed. And because of 
this large span for n the question of the lowest possibly limit of kFL 
becomes importantly. From Heisenberg’s uncertainty principle it follows 
c∗ = 1/4. This can be shown as following: Let us consider the propagation 
of an electron with the energy EF in a disordered homogeneous system 
characterized by a spherical Fermi surface and a single parabolic band 
with 

             (13) 

(ћ = h/2π). Under influence of an electric field a single electron at EF is 
accelerated between two successive scattering events covering the path L. 
The amount of its momentum before and after an elastic scattering event is 
given by |p| = (2mEF)1/2 and it follows that the amount of the momentum 
change during scattering, |δp|, cannot be larger than 2(2mEF)1/2. In 
accordance with Heisenberg’s uncertainty principle the uncertainties of 
locality, <∆x>, and momentum, <∆p>, of the electron are determined by 
[40] 

             (14) 

The momentum uncertainty cannot be larger than |δp|, otherwise the 
momentum change by scattering would not be defined, i.e.  

             (15) 

must be fulfilled. The locality uncertainty, <∆x>, cannot be larger than L, 
otherwise L would not have a physical sense and with Eqs. (14), (15) it 
follows 2L(2m EF )1/2 > ћ/2 and with Eq. (13) 
 

             (16) 
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i.e., c∗ = 1/4 and it follows the lowest possibly limit where extended 
electronic states still can exist. When n decreases below ncrit given by 

             (17) 

corresponding to a minimum metallic conductivity 

             (18) 

latest then localization in the metallic phase of a disordered alloy must 
occur. Eqs. (17), (18) result from Eq. (3) and Eqs. (8), (11). This limit, 
σmin, applies to each of the two phases separately. Therefore, in a two-
phase alloy (composite), the lower limit can even be fall below the value 
given by Eq. (18), if the second phase is non-metallic and if the (metallic) 
phase i forms an infinite (coherent) cluster in the composite. As long as in 
the composite the phase grains of the phase i are uniformly (even) 
distributed, the lower limit where an infinite (coherent) cluster still exists, 
is given by i = 1/3. For strong scattering characterized by L ≃ d ≃ 0.25 
nm it follows from Eqs. (17), (18) 
 

             (19) 
 

and 

        (20) 
 
Kireyev [41] gives L = 4d/π as the lowest possible limit for the mean free 
path. This relation he has derived using the general theory of quantum 
transitions to determine the effective cross section of the scattering of 
electrons and holes by impurity ions in semiconductors. Although the 
difference compared with “L = d” as the lowest limit is small, let’s use this 
relation. Then we get for the minimum metallic conductivity for strong 
scattering 
 

           (21) 
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For a nearly completely filled band the same equations, Eqs. (10), (12), 
(18), (20), hold, where L has the meaning of the mean free path of the 
holes at the Fermi energy of the nearly completely filled band, and for the 
critical hole density it follows 
 

             (22) 
 
which for strong scattering, i.e. L ≃ d ≃ 0.25nm, again leads to 
 

             (23) 
 
The first equation of Eq. (20) looks like the original relation for a 
minimum metallic conductivity derived by Mott ([1], p.30) 
 

             (24) 
 

derived using the concept of disorder by random potentials. Mott’s 
relation, Eq. (24), leads to σmin ≃ 200 Ω-1cm-1 if d = 0.3 nm is set, i.e. 
about one order of amount greater than get by Eq. (20). 

 
The difference consists in the fact that for the derivation of the Eqs. (17), 
(18), (22) random atomic potentials within a single phase are not assumed. 
In other words, we cannot see any reason for the assumption that in one of 
the two phases of an alloy with phase separation there would be essential 
potential fluctuations growing with increasing υB from υB = 0 to larger 
values until υB,c (the B phase fraction at the M-I transition) or beyond it. 
The disorder effect on the electronic transport properties can be 
characterized alone by the “ordering parameter” L, and, if L ≃ d is already 
realized, σ at T = 0 decreases (with increasing υB) not by further increasing 
“disorder”, but by decrease of n (according to Eq. (1)) or p.  
 
The conclusion of a minimum metallic conductivity σmin seems to be in 
contradiction to the conclusion by Okuma et al. [26] and Hertel et al. [25], 
that the M-I transition in a-Cr1-xSix and a-Nb1-xSix occurs continuously and 
that for T → 0, essentially smaller σ were measured than 20 Ω-1cm-1. This 
finding is, however, not really in contradiction considering the fact that the 
samples are produced by co-evaporation [26] and co-sputterring [25, 26] 
from two locally separated sources, one with the element Cr or Nb and the 
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other with the element Si, and in the samples a concentration gradient is to 
be expected. If there is a concentration gradient perpendicularly to the 
direction of the measuring current for measurement of σ, then a continuous 
M-I transition with increasing (average) x can be pretended, because the 
sample occurs to be metallic as long as there is still a narrow metallic 
current path through the sample. A concentration gradient is connected 
with a gradient of ζ and leads, therefore, also to a gradient of p (according 
to the equations of Secs. VIII B, VIII D). Immediately at the M-I transition 
locally limited metallic ranges (p > pcrit, σ > 0 at T = 0) and locally limited 
insulating ranges (p < pcrit, σ = 0 at T = 0) can coexist leading to an 
average σ < σmin at T = 0, i.e., the M-I transition can be smeared out across 
a concentration range and the resulting conductivity at T = 0 can be 
smaller than given by Eq. (18) or Eq. (20) caused by the “dilution” of the 
metallic fraction within a phase. As long as there is still a connected 
cluster of metallic ranges (of the same phase) through the whole sample, 
this sample shows metallic conductivity (σ > 0 at T = 0). Moreover, we 
have to take into account that L can be larger than d (for instance in 
crystalline alloys) corresponding to a smaller σmin according to Eq. (18) 
compared with Eq. (20). 

 
Möbius et al. concluded from phenomenological considerations of 
conductivity data of a-Ni1-xSix [42] and a-Cr1-xSix [43–47] that the M-I 
transition is very likely discontinuous at T = 0. This conclusion 
corresponds with our result of a minimum metallic conductivity in a 
metallic phase. More details see Sec. VIII. 

E. Mobility edges 

For a nearly empty parabolic band in NFE approximation, the density of 
states is given by N(E) = 4m k/h2, and - replacing k by Eq. (10) - it follows 
for the density of states at the mobility edge, EC, 

             (25) 

and for the energy at the mobility edge, EC,  

             (26) 

m is the effective electron mass, EA characterizes the bottom of the band.  



Theory of Electrons in a Non-Crystalline Medium 17

For a nearly filled parabolic band in NFE approximation it follows for the 
density of states at the mobility edge, EV, 

             (27) 

and for the energy at the mobility edge, EV, 

             (28) 

where m and L have the meaning of an effective mass and mean free path 
of the holes at the Fermi energy of the nearly filled band. EB characterizes 
the top of the band. For the case of strong scattering, in Eqs. (25)-(28), L is 
to be replaced by d (or L by 4d/π [41]). For any (non-parabolic) band, the 
Eq. (26) and Eq. (28) have no longer a physical meaning in this context 
and we apply the terms EC and EV only to characterize the points on the 
energy scale, where N(E) crosses a mobility edge defined by the Eqs. (25) 
and (27). In other words, Eq. (25) and Eq. (27) can be applied to define 
mobility edges also for any (non-parabolic) band, provided effective 
masses can be defined according to 

             (29) 

with a defined E(k)-dependence for kL > c∗. 

 

 



III 

ELECTRONIC TRANSPORT IN ALLOYS WITH 
PHASE SEPARATION (COMPOSITES) 

 
 
 

A. Electrical conductivity 

Let us consider a two phase-composite consisting of the phases i = A, B in 
a symmetrical fashion regarding the average geometric form of the phase 
grains and without preferred orientations. Let us assume that each phase 
can be characterized by a set of transport coefficients σi, κe,i, Si and Ri for 
the phase i, which are the electrical conductivity, electronic contribution to 
the thermal conductivity, Seebeck coefficient and the Hall coefficient, 
respectively, in the phase i. The corresponding transport coefficients of the 
composite, σ, κe, S and R are to be calculated, if the σi, κe,i, Si and Ri are 
known. The discussion will be restricted to small temperature gradients, 
small and constant electric and magnetic fields, E and H, respectively. 

Applying effective medium theory (EMT), let us derive the relation 
between σi and σ, the electrical conductivities in the phases i and the 
composite, respectively. The strategy underlying the EMT is the 
following: a single phase grain of the phase i is considered to be 
completely embedded in an effective medium consisting of the two phases 
randomly arranged and characterized by the total transport coefficients. At 
the boundary face between this single phase grain and the surrounding 
effective medium continuity of the current densities and potentials and 
their gradients are to be saved.  

The local electric current density Ji can be written as 

                (30) 

In analogy to Eq. (30) we write for the electric current density J in the 
specimen 


