Birthing the Computer

Birthing the Computer:

From Relays to Vacuum Tubes

Ву

Stephen H. Kaisler, D.Sc.

Cambridge Scholars Publishing

Birthing the Computer: From Relays to Vacuum Tubes Series: Historical Computing Machine Series

By Stephen H. Kaisler, D.Sc.

This book first published 2016

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2016 by Stephen H. Kaisler, D.Sc.

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-4438-9778-7 ISBN (13): 978-1-4438-9778-5

CONTENTS

List of Figures	XV
List of Tables	xix
Part I Precursor Machines	1
Chapter One	3
Konrad Zuse's Computers	
1.1 The Z1	5
1.2 The Z2	6
1.3 The Z3	7
1.3.1 Z3 Architecture	9
1.3.2 Memory	10
1.3.3 Floating Point Registers	10
1.3.4 Input and Output	
1.3.5 Instruction Execution	11
1.3.6 Instruction Set	11
1.3.7 Programming the Z3	12
1.3.8 Z3 Assessment	12
1.4 The Z4	13
1.4.1 ETH and the Z4	14
1.4.2 The Z5	15
1.5 Plankalkul	16
1.6 The Z11	17
1.7 The Z22	19
1.8 The Z23	20
1.9 The Z31	21
1.10 Assessment of Zuse's Computing Machines	22
Chapter Two	24
The Atanasoff-Berry Computer	
2.1 ABC System Architecture	24
2.2 The Atanasoff-Mauchly Conflict	

vi Contents

2.3 The ABC Reconstructed	28
2.4 ABC Assessment	28
Chapter Three	20
Stibitz's Relay Computers	
3.1 Model I: The Complex Numerical Calculator	32
3.2 Model II: The Relay Interpolator	
3.3 Model III: The Ballistic Computer	
3.4 Model IV: The Error Detector Mark II	
3.5 Model V	35
3.6 Model VI	
3.7 Later BTL Machines	37
3.8 Assessment of Stibitz's Relay Computers	37
Chapter Four	39
Colossus	
4.1 Rebuilding Colossus	44
4.2 Colossus Architecture	
4.3 Colossus and Code Breaking	47
4.4 Assessment of Colossus	49
Chapter Five	51
Aiken's ASCC/Mark I	
5.1 ASCC System Architecture	54
5.1.1 Automatic Sequence Unit	54
5.1.2 Arithmetic Calculations	55
5.1.3 Interpolators	
5.1.4 Special Registers	56
5.2 I/O System	
5.3 Programming the ASCC	
5.4 ASCC Assessment	57
Chapter Six	59
Harvard Mark Machines	
6.1 Mark II	59
6.2 Mark III	61
6.3 Mark IV	
6.4 Mark Machines Assessment	63

Birthing the Computer: From Relays to Vacuum Tubes	vii

	٠	٠
V	1	1

Chapter Seven	64
IBM's Selective Sequence Electronic Calculator	
7.1 SSEC System Architecture	66
7.1.1 Electronic Storage Units	67
7.1.2 Relay Storage	
7.1.3 Tape Storage	
7.1.4 Dial Storage	
7.1.5 Pluggable Storage	
7.1.6 Program Tapes	68
7.2 SSEC Reliability	
7.3 SSEC Assessment	
Chapter Eight	72
Further Reading	73
Exercises for the Reader	76
Part II	79
Chapter Nine	80
ENIAC	
9.1 ENIAC System Architecture	84
9.1.1 Accumulators	85
9.1.2 Control Units	86
9.1.3 Master Programmer	
9.1.4 Arithmetic Units	
9.1.5 Constant Transmitter	
9.1.6 Function Table	
9.1.7 Input/Output Units	
9.2 Later Modifications	
9.3 Applying ENIAC	
9.4 The ENIAC Women	
9.5 Myths and Stories About ENIAC	
9.6 Assessment of ENIAC	91

viii Contents

Chapter Ten	94
EDVAC	
10.1 The Von Neumann Report	95
10.2 The Patent Dispute	97
10.3 The "Real" EDVAC	97
10.4 EDVAC Architecture	99
10.4.1 System Architecture	99
10.4.2 Memory System	
10.4.3 I/O System	
10.4.4 The EDVAC Console	
10.4.5 Debugging Support	103
10.5 EDVAC Instruction Set	
10.6 Physical Challenges	105
10.7 EDVAC Implementation	
10.8 EDVAC Software	108
10.9 EDVAC Applications	
10.9.1 EDVAC Operation	
10.10 EDVAC Assessment	110
Chapter Eleven	111
11.1 EDSAC System Architecture	112
11.2 The EDSAC Order Code	
11.3 Programming the EDSAC	116
11.3.1 Subroutine Libraries	117
11.3.2 The Travails of Paper Tape	
11.3.3 An EDSAC Simulator	
11.4 EDSAC Firsts	
11.5 EDSAC 2	
11.6 EDSAC Assessment	122
Chapter Twelve	123
Manchester SSEM	
12.1 The SSEM Architecture	127
12.2 Assessment of the SSEM	
Chapter Thirteen	130
BINAC	
13.1 System Architecture	
13.2 Instruction Set	
13.3 BINAC Assessment	

Chapter Fourteen	134
Pilot ACE	
14.1 Pilot ACE System Architecture	136
14.2 Programming the Pilot ACE	137
14.3 Pilot ACE Assessment	138
14.4 The ACE	
Chapter Fifteen	140
BRLESC	
15.1 BRLESC I	140
15.2 BRLESC II	143
15.3 BRLESC Assessment	144
Further Reading	146
Exercises for the Reader	149
Part III	151
Vacuum Tube Machines	
Chapter Sixteen	154
Engineering Research Associates	
16.1 ERA 1101 Architecture	158
16.1.1 System Architecture	160
16.1.2 I/O Systems	162
16.1.3 UNIVAC 1101 Instruction Set	162
16.1.4 The Atlas II	164
16.2 UNIVAC 1102	164
16.3 Dissonance at Remington Rand	166
16.4 Assessment of the UNIVAC 1101	166
Chapter Seventeen	168
UNIVAC 1103	
17.1 UNIVAC 1103 System Architecture	168
17.1.1 Control Components	
17.1.2 Arithmetic Registers	171
17.1.3 Master Clock	
17.2 Storage	
17.3 Arithmetic	
17.4 Instruction Format	
17.4.1 Transmissive Instructions	

x Contents

17.4.2 Replace Instructions	175
17.4.3 Split Instructions	175
17.4.4 Q-Controlled Instructions	176
17.4.5 Sequenced Instructions	176
17.4.6 One-Way Conditional Jump Instructions	178
17.4.7 Two-Way Conditional Jump Instructions	178
17.4.8 One-Way Unconditional Jump Instructions	
17.4.9 External Equipment Instructions	
17.4.10 Stop Instructions	180
17.5 I/O Systems	180
17.5.1 I/O Registers	181
17.5.2 Program Interrupts	
17.6 UNIVAC 1103A	
17.7 UNIVAC 1104	
17.8 Assessment of the Early UNIVAC 11xx Machines	184
Chapter Eighteen	185
NBS Computing Machines	
18.1 SEAC	
18.1.1 SEAC System Architecture	
18.1.2 Applications	
18.2 SWAC	
18.2.1 System Architecture	
18.2.2 Instruction Set	192
18.2.3 Software	
18.3 DYSEAC	
18.4 NBS Computer Assessment	195
Chapter Nineteen	100
•	196
MIT Whirlwind	100
19.1 Whirlwind System Architecture	
19.1.1 Arithmetic Unit	
19.1.2 Registers	
19.1.3 Magnetic Core Memory	
19.1.4 Auxiliary Storage	
19.1.5 I/O System	
19.2 Whirlwind Instruction Set	
19.3 Sample Whirlwind Program	
19.4 Whirlwind Assessment	205

Chapter Twenty	206
The IAS Machine	
20.1 IAS System Architecture	
20.2 IAS Orders	
20.3 Assessment of the IAS	211
Chapter Twenty-One	213
MANIAC I	
21.1 MANIAC System Architecture	213
21.2 MANIAC Instruction Set	
21.3 Programming the MANIAC	
21.4 MANIAC II	
21.4.1 MANIAC II System Architecture	
21.4.2 Demand Paging	
21.4.3 Peripherals	
21.5 Chess Playing	
21.6 MANIAC III	
21.6.1 MANIAC III System Architecture	
21.6.2 MANIAC III Instruction Set	
21.7 MANIAC Assessment	
Chapter Twenty-Two	229
The ORDVAC Computer	
22.1 ORDVAC System Architecture	231
22.1.1 Arithmetic and Control Units	
22.1.2 Memory	
22.1.3 I/O Devices	
22.2 Error Checking the ORDVAC	
22.3 ORDVAC Instruction Set	
22.4 Assessment of ORDVAC	
Chapter Twenty-Three	241
UNIVAC I	2 . 1
23.1 UNIVAC I at Lawrence Livermore	242
23.2 Early UNIVAC Orders	
23.3 UNIVAC I at the Census Bureau	
23.4 UNIVAC I Architecture	
23.4.1 UNIVAC I Memory	
23.4.2 UNIVAC I I/O	
23.5 UNIVAC I Instruction Set	
23.6 UNIVAC I and Programming	

xii Contents

23.7 Remington Rand's Problems	255
23.8 UNIVAC II	256
23.9 UNIVAC III	257
23.10 UNIVAC I-III Assessment	260
Chapter Twenty-Four	261
English Electric DEUCE	
24.1 Basic Architecture	263
24.2 Hardware Configuration	264
24.3 The Control	265
24.4 Instruction Highway	
24.5 Main Memory	267
24.6 The Magnetic Store	
24.7 I/O Devices	
24.8 Instruction Set	269
24.9 UTECOM	
24.10 EASICODE	
24.11 Assessment of the DEUCE	274
Chapter Twenty-Five	276
Ferranti Pegasus	
25.1 Pegasus Configuration	278
25.1.1 Control Unit	
25.1.2 The Main Store	
25.1.3 The Computing Store	
25.1.4 Control Panel	
25.1.5 I/O System	281
25.2 Pegasus Instruction Set	
25.3 Pegasus I at the British Science Museum	
25.4 Pegasus Assessment	284
Chapter Twenty-Six	285
Ferranti Mark I/II	
26.1 Ferranti Mark I	
26.2 Mark I Architecture	
26.3 Mark I Instruction Set	
26.3.1 Arithmetic and Logical Orders	
26.3.2 B-Line Manipulation Orders	
26.3.3 Control Transfer Orders	
26.3.4 Peripheral and Miscellaneous Orders	290

Birthing the Computer: From Relays to Vacuum Tubes	xiii
26.4 Programming the Ferranti Mark I	291
26.5 Assessment of the Mark I	
Chapter Twenty-Seven	. 294
Ferranti Mercury	
27.1 System Architecture	296
27.2 Instruction Set	296
27.3 Mercury Autocode	296
27.4 Mercury Installations	298
27.5 Assessment of the Ferranti Machines	299
Chapter Twenty-Eight	300
Univac File Computers	
28.1 The File 0 Machine	
28.2 The File 1/ File 2 Machines	304
28.3 Arithmetic and Control Unit	310
28.4 I/O Systems	310
28.4.1 I/O Storage	. 311
28.4.2 Buffer Storage	
28.4.3 High-Speed Storage	312
28.4.4 Large Capacity Drum	312
28.5 File Computer Operations	314
28.6 File Computer Assessment	316
Chapter Twenty-Nine	. 317
IBM 305 RAMAC	
29.1 RAMAC Origins	318
29.2 IBM 305 System Architecture	319
29.2.1 Processing Unit and Main Memory	320
29.2.2 Input Card Reader	
29.2.3 Output Printer and Punch	
29.2.4 System Console	
29.3 Instruction Format	323
29.3.1 Accumulators	
29.4 Controlling the IBM 305	325
29.5 IBM 350 Disk File	328
29.6 IBM 305 Assessment	328
Further Reading	330
Exercises for the Reader	. 333

xiv	Contents

Glossary	335
References	337
Index	349

LIST OF FIGURES

Note: U. S. Government photographs are public domain information.

1-1	Z1 Architecture	
1-2	Zuse Z3 (Reconstructed)	
1-3	Architecture of the Zuse Z3	
1-4	Z11 Console	
1-5	Z22 at the University of Applied Sciences, Karlsruhe,	
1-6	Z23	
1-7	Z31 Computer	
2-1	The Atanasoff-Berry Computing Machine	
4-1	Lorenz Machine,	
4-2	Main House at Bletchley Park	
4-3	A Colossus Mark 2,	
4-4	Colossus MkII Paper Tape Reader	
5-1	The Automatic Sequence Controlled Calculator	
6-1 6-2	Harvard Mark III at U.S. Navy Installation Harvard Mark III Operators Console	
7-1 7-2	IBM SSEC System Architecture IBM SSEC Sequence Formats	
9-1	The ENIAC	
9-2	ENIAC System Architecture	
9-3	The ENIAC Women	
9-4	Programming the ENIAC	
9-5	50 Years of Computer Technology Commemoration Stamp	
10-1	The EDVAC	
10-2	Mercury Delay Line Structure	
11-1	EDSAC 1 st Operation Entry	
11-2	EDSAC Early Configuration	

- 11-3 EDSAC System Architecture
- 11-4 EDSAC Simulator Interface
- 12-1 Small Scale Experimental Machine
- 12-2 SSEM Replica
- 12-3 SSEM System Architecture
- 14-1 Pilot ACE Computer at the National Physical Laboratory
- 14-2 Pilot Ace Instruction Format
- 15-1 BRLESC Console
- 15-2 BRLESC I Figure
- 15-3 BRLESC I Cabinets
- 15-4 BRLESC Instruction Format
- 16-1 An Early View of ERA 1101 Console
- 16-2 ERA 1101 Console
- 16-3 ERA 1101 Computer (aka Atlas)
- 16-4 ERA 1101 System Architecture
- 16-5 UNIVAC 1102 at Arnold Engineering Center
- 16-6 UNIVAC 1102 Computer System
- 17-1 UNIVAC 1103 System Architecture
- 17-2 UNIVAC 1103 Accumulator Register
- 17-3 UNIVAC 1103 Instruction Format
- 18-1 NBS SEAC Computer System
- 18-2 SEAC Instruction Format
- 18-3 The Standards Eastern Automatic Computer
- 18-4 SWAC Dedication Pamphlet (Front Page)
- 18-5 Harry Huskey at the SWAC Console
- 19-1 Example Use of Oscilloscope
- 19-2 Whirlwind Instruction Format
- 20-1 IAS System Architecture
- 20-2 IAS CPU Architecture
- 20-3 IAS Instruction Format
- 21-1 MANIAC I Computer System
- 21-2 MANIAC Racks

- 21-3 MANIAC Programming Integration via Simpson's Rule
- 21-4 MANIAC Example Box 1
- 21-5 MANIAC Example Box 9
- 21-6 MANIAC II
- 21-7 MANIAC III Instruction Format
- 21-8 MANIAC III System Architecture
- 21-9 MANIAC III Instruction Format
- 22-1 The ORDVAC Computer
- 22-2 ORDVAC System Architecture
- 22-3 ORDVAC Registers
- 22-4 ORDVAC Instruction Format
- 23-1 UNIVAC I on Election Night 1952
- 23-2 UNIVAC I Computer System
- 23-3 UNIVAC I Operator Console
- 23-4 MATH-MATIC Brochure
- 23-5 FLOW-MATIC Brochure
- 23-6 Sample Program in FLOW-MATIC
- 23-7 UNIVAC II Computer System
- 23-8 UNIVAC III Instruction Format,
- 24-1 English Electric DEUCE Brochure Cover
- 24-2 EASICODE Programming Example
- 25-1 Pegasus Main Cabinet
- 25-2 Pegasus Instruction Format
- 25-3 Pegasus Operating
- 25-4 Pegasus Simulator
- 26-1 Mark I Instruction Format
- 26-2 Mark I Drum Transfer Instruction
- 27-1 Ferranti Mercury Core Board
- 27-2 Ferranti Mercury
- 28-1a UNIVAC File Computer Ad, 1956
- 28-1b UNIVAC File Computer Ad, circa 1956
- 28-2 UNIVAC File Computer Advertisement, circa 1960
- 28-3 Remington Rand File Computer System Architecture

28-4	UNIVAC File Computer – High-Speed Drum Layout
28-5	UNIVAC File Computer – Large Capacity Drum Access
29-1	IBM 305 RAMAC
29-2	IBM 305 RAMAC at U.S. Army Red River Arsenal
29-3	IBM 305 – Sample Data Transfer Instruction
29-4	IBM 380 System Console
29-5	IBM 380 Front Panel
29-6	IBM 305 Instruction Format
29-7	IBM 305 Process Control Panel

List of Figures

xviii

LIST OF TABLES

1-2	Z3 Instruction Set
1-3	Z4 – Basic Characteristics
1-4	Z5 – Basic Characteristics
1-5	Zuse Z11 – Basic Characteristics
1-6	Z22 – Basic Characteristics
1-7	Z23 – Basic Characteristics
3-1	Model V – Basic Characteristics
6-1	Mark II – Basic Characteristics
6-2	Mark III – Basic Characteristics
7-1	SSEC Characteristics
7-2	S1 Sequence Fields
7-3	S2 Sequence Fields
9-1	ENIAC – Basic characteristics
10-1	EDVAC – Basic Characteristics
10-2	EDVAC Instruction Set
11-1	EDSAC – Basic Instructions
11-2	EDSAC Order Code
11-3	EDSAC 2 – Basic Characteristics
12-1	Manchester Mark I – Basic Characteristics
12-2	
13-1	BINAC Characteristics
13-1	
13-2	DINAC HISHUCHOH SEL
14-1	Pilot ACE – Basic Characteristics
15-1	BRLESC I – Basic Characteristics
15.2	DDI ECC II Desig Characteristics

1-1 Zuse Z3 – Basic Characteristics

xx List of Tables

- 16-1 ERA 1101/UNIVAC I Basic Characteristics
- 16-2 UNIVAC 1101 Instruction Set
- 16-3 UNIVAC 1102 Basic Characteristics
- 17-1 UNIVAC 1103 Basic Characteristics
- 17-2 UNIVAC 1103 Registers
- 17-3 UNIVAC 1103 Transmissive Instructions
- 17-4 UNIVAC 1103 Replace Instructions
- 17-5 UNIVAC 1103 Shift Instructions
- 17-6 UNIVAC 1103 O-Controlled Instructions
- 17-7 UNIVAC 1103 Sequenced Instructions
- 17-8 UNIVAC 1103 One-Way Conditional Jump Instructions
- 17-9 UNIVAC 1103 Two-Way Conditional Jump Instructions
- 17-10 UNIVAC 1103 One-Way Unconditional Jump Instructions
- 17-11 UNIVAC 1103 External Equipment Instructions
- 17-12 UNIVAC 1103 Stop Instructions
- 18-1 SEAC Basic Characteristics
- 18-2 DYSEAC Basic Characteristics
- 19-1 Whirlwind Basic Characteristics
- 19-2 Whirlwind I/O Instructions
- 19-3 Other Whirlwind Instructions
- 20-1 IAS Characteristics
- 20-2 IAS Registers
- 20-3 IAS Instruction Set
- 21-1 MANIAC Basic Characteristics
- 21-2 MANIAC Instruction Set
- 21-3 MANIAC II Basic Characteristics
- 21-4 MANIAC III Basic Characteristics
- 21-5 MANIAC III Inflectors
- 22-1 ORDVAC Characteristics
- 22-2 ORDVAC Orders
- 23-1 UNIVAC I Basic Characteristics
- 23-2 UNIVAC I Deliveries
- 23-3 UNIVAC I Instruction Set
- 23-4 UNIVAC III Basic Characteristics

- 24-1 DEUCE Basic Characteristics
- 24-2 Delay Line Layout
- 24-3 EASICODE Orders
- 25-1 Pegasus Basic Characteristics
- 25-2 Pegasus Special Registers
- 26-1 Ferranti Mark I Characteristics
- 26-2 Mark I Arithmetic and Logical Orders
- 26-3 Mark I B-Line Orders
- 26-4. Mark I Control Transfer Orders
- 26-5 Mark I Peripheral and Miscellaneous Instructions
- 26-6 The Base-32 Table
- 27-1 Mercury Basic Characteristics
- 28-1 UNIVAC File 0 Computer Basic Characteristics
- 28-2 UNIVAC File 1 Computer Basic Characteristics
- 28-3 File 1 Computer Program Steps
- 28-1 File 1 Computer Instruction Words
- 29-1. Magnetic Drum Track Assignments
- 29-2 IBM 305 Instruction Format Description

PART I

PRECURSOR MACHINES

Chapters 1 to 8

The idea of automated computation has been a concept in the human mind for several thousand years. Discoveries of ancient machines, such as the Antikythera mechanism, reveal that our ancestors had some understanding of the basic concepts of computation, although contemporary technology was not up to the task of performing such computations.

The true history of computing begins in the early 1900s. These early days were largely characterized by electromechanical computing engines rather than true computing systems. However, these systems were replaced in the late 40s and early 50s by vacuum tube machines. The machines discussed here are considered by some not to be true computers because they did not have a provision for storing programs internally. Others, however, do not make such a distinction as they consider such machines to have their primary storage only in external media, e.g., paper tape and magnetic tape. There is no benefit in continuing that debate here and we will not do so.

By the 1930s, after Hollerith's success with tabulating machines, several companies, such as Burroughs (manufacturing calculators) and National Cash Register (manufacturing cash registers), understood the elements of computing. The time seemed ripe for someone to put the pieces together and realize that the process could be automated. Konrad Zuse, John Atanasoff, and George Stibitz were among those people. In England, Alan Turing, aided by Max Newman, Tommy Flowers, and a host of other dedicated civil servants, developed and implemented the Colossus. In the United States, Howard Aiken also realized the utility of automating computation and developed several machines that contributed to a better understanding of how to build computing systems. Finally, IBM was transforming lessons learned from the ASCC into one of its first true computing systems, IBM 650.

2 Part I

The film, Computer Pioneers and Pioneer Computers: Dawn of Electronic Computing: 1935-1945, narrated by Gordon Bell and produced by the Computer History Museum, provides some photos and videos of the machines described in this section.

Chapters:

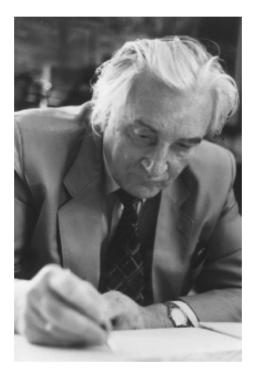
- 1. Konrad Zuse's Computers
- 2. The Atanasoff-Berry Computer
- 3. Stibitz's Relay Computers
- 4. Colossus
- 5. Aiken's ASCC/Mark I
- 6. Harvard Mark Machines
- 7. IBM's Selective Sequence Electronic Calculator
- 8. Who invented the Computer?

CHAPTER ONE

KONRAD ZUSE'S COMPUTERS

Konrad Zuse was one of the "fathers of computing" (Rojas, Speiser, and Zuse 2001). Zuse built several different computing machines – each of increasing complexity and capability. He also created one of the first companies whose sole purpose was to build computing machines.

Zuse started his career working for the German aviation industry. As an engineer, he was familiar with the large number of calculations required to analyze and design the static structures of an aircraft. This led him to think about how he could mechanize some of these monotonous and repetitive calculations. He reasoned that a machine should be able to follow a set of carefully laid out steps in a repetitive fashion. He envisioned that numbers would be entered from an input unit and that results would be placed in an output unit to be read.


The computing machine would be comprised of a memory (*Speicherwerk*), an arithmetic unit (*Rechenwerk*), and a control unit (*Programwerk*). Arithmetic would be performed using a floating point representation, with separate units for handling the exponent and fraction. Numbers and instructions would be represented in the binary number system. The control unit would move the numbers into and out of the memory and specified what arithmetic operations were to be performed. The instructions and numbers would be stored on a strip of punched tape (*Lochstreifen*).

The machine's components would be synchronized by a central clock. Zuse recognized that all operations could be performed logically from combinations of the Boolean operators AND, OR, and NOT. To follow his dream, Zuse quit his job in 1936 in order to develop his ideas further.

Konrad Zuse (1910-1996)

Konrad Zuse was born in Berlin in 1910. He earned his technical education at the Technische Hochschule in Berlin-Charlottenburg, where he majored in architecture and civil engineering. By 1933, he had begun to think about how to build a universal computing machine. As noted below, he developed several models of computing machines through the war

years. At the end of World War II, he founded Zuse Ingenieurboro, Hopferau bei Fussen. Throughout the 1950s, he developed new computers under a contract with Remington Rand. In 1967, he sold Zuse KG to Siemens Corporation and became a professor at the University of Gottingen. He designed one of the first programming languages, Plankalkul. Zuse received many accolades and awards, including the AFIPS Harry Goode Memorial Award in 1965 and the IEEE Computer Pioneer Medal in 1982. The picture below depicts Konrad Zuse circa 1992.

Source: Courtesy of Dr.- Dr.-Ing. Habil. Horst Zuse

In 1949, Zuse formed Zuse KG to design and manufacture digital computers. Over the next 18 years, Zuse KG delivered over 250 computers. However, it had neither the size nor resources to compete with several English and US companies, which had begun to sell to European universities and companies. In 1967, Zuse sold his company to Siemens after it encountered financial problems.

1.1 The Z1

After graduation in 1931, Zuse became a structural engineer with Henschel Flugzeugwerke, but left soon after to pursue his ideas regarding the development of an electromechanical computer. He had not been trained in mechanical calculator construction. This allowed him to pursue his own ideas which represented an original approach unhindered by what the experts said could and could not be done. He designed and assembled this machine, the Z1 in his parent's apartment in Berlin with financing from his parents and various school friends (Weiss 1996).

Zuse's first computing machine was the electromechanical Z1, which demonstrated the limits of mechanical computing systems. It was about the size of a large dining room table. The Z1 used mechanical bistable switching elements for memory and arithmetic/logical circuits. The elements were represented by pins arranged in matrices to signify bit positions. A stack of metal sheets with slots moved over the pins to read data from the memory. The movement of a sheet depended on the positions of the pins in the slots. Zuse enlisted several friends to hand-cut the holes in the metal plates with an electric saw. By 1938, Zuse had a working model of the Z1 that represented sixteen 24-bit numbers and performed floating point binary arithmetic.

However, this machine did not work very well because of the difficulty of precisely hand-machining the parts and having them work together reliably. The memory worked well, but the arithmetic unit was unreliable. The Z1 architecture is depicted in Figure 1-1.

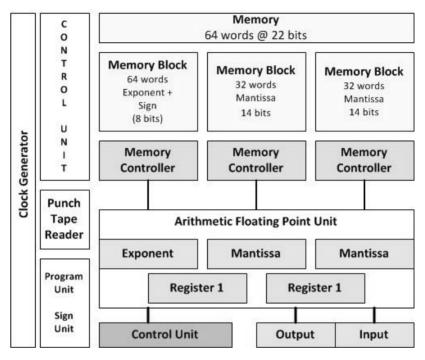


Figure 1-1. Z1 Architecture Source: Adapted from

http://user.cs.tu-berlin.de/~zuse/Konrad Zuse/en/rechner z1.html

1.2 The **Z**2

Source: http://user.cs.tu-berlin.de/~zuse/Konrad Zuse/en/rechner z2.html

The Z2, an enhanced version of the Z1, was designed by Konrad Zuse and Helmut Schreyer and completed in 1939 (Deutsche Teknik Museum 2005a). It was an experimental electromechanical machine that used electronic relays, which were more reliable. However, Zuse retained the mechanical memory of the Z1 in the Z2 implementation. The Z2 used 16-bit words and had a cycle time of about 3 seconds. It required about 8 seconds for an addition.

At the beginning of World War II, Zuse was called up for military duty as an infantryman just as he was completing the Z2. He tried to gain official support for his ideas, but these were often dismissed by the German government. After a year's service, he was discharged from the

German Army and he returned to Henschel Flugzeugwerke as a structural engineer. While continuing development of the Z2, he convinced the German Aeronautical Research Institute (Deutsche Versuchsanstalt für Luftfahrt) in 1940 to fund the development of another machine, the Z3.

1.3 The **Z**3

Source: http://www.horst-zuse.homepage.t-online.de/Konrad_Zuse_index_english_html/rechner z3.html

The Zuse Z3 was completed in 1941. It was based on electromagnetic relays, making it the first functional programmable computer. The Z3 performed about 4 additions per second and required about 5 seconds to perform a multiplication. A program was entered using movie film with eight-hole channels being punched in the reel to represent instructions. The Z3 was one of the first machines to have registers – two floating point registers R1 and R2 – for holding operands for arithmetic operations.

The German Aircraft Research Institute used it to perform statistical analyses of wing flutter. On 12 May 1941, the Z3 was presented to an audience of scientists, including professors Alfred Teichmann and Curt Schmieden of the Deutsche Versuchsanstalt für Luftfahrt in Berlin (KZIA 2015).

In 1960, Zuse KG recreated the Z3 for the Deutsche Museum. Figure 1-2 shows the reconstructed Z3 on display at the Deutsche Museum in Munich (Deutsche Teknik Museum 2005c). The left frame contained the relays for the memory – 64 words of 22 bits each. At the bottom of the right frame one can see the micro-sequencers for instruction execution. They are the core of the Z3's control unit. The frame above them contained the relays for the arithmetic units.

The Z3 was built as a floating point machine. Burks, Goldstine, and von Neumann (1946) questioned whether floating point provided any advantage in performing arithmetic computations given the loss of memory capacity due to the increased number of bits required to represent floating point numbers and the complexity of the electronic circuits required to perform the arithmetic. The types of computations that Zuse was interested in performing with his machines necessitated floating point number representation. Software routines were exceedingly slow to execute and, perhaps, too large to fit in the available memory. What many do not realize is that Zuse had described the concepts of floating point arithmetic in 1934, more than a decade before Burks et al., and, in the Z3,

Zuse implemented his concept and demonstrated its feasibility. Table 1-1 describes the characteristics of the Z3.

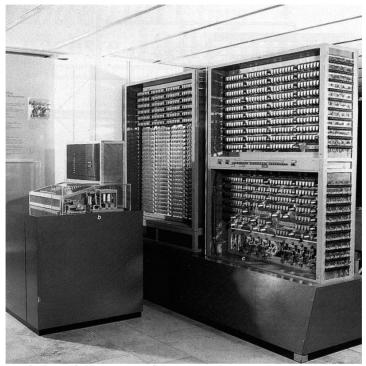


Figure 1-2. Zuse Z3 (Reconstructed) Source: Courtesy of Dr.- Dr.-Ing. Habil. Horst Zuse

Table 1-1. Zuse Z3 – Basic Characteristics

Characteristic	Value/Explanation
Internal	Floating Point Binary
Representation	
# Bits/Word	22
# Instructions/Word	1
# Instructions	9
# Bits/Instruction	22
Instruction Type	One Address (?)
CPU Technology	Electromagnetic Relays: Clock Rate = 5.33 Hz
CPU Registers	Two Floating Point Registers: R1 and R2
Main Memory	Electromagnetic Relays: 64 words