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1 Preface

A less known aspect of the quasi-classical approximation to quantum-
mechanical motion is presented in this book.

As it is well known, the quasi-classical approximation exists when-
ever the relevant amount of mechanical action is large in comparison
with the quantum of action ~ (Planck’s constant). This happens at
high values of energy, associated with large quantum numbers, where
the wavefunction exhibits many oscillations in time and space. Under
these circumstances, Bohr’s correspondence principle holds and the
quantum-mechanical motion is approaching the classical limit. Ac-
cording to Dirac, the quantum-mechanical commutators become the
classical Poisson brackets in this case. Similarly, in the limit ~ → 0,
the quantum waves may exhibit a trajectory, like the wave rays in the
approximation of the geometrical optics, and the Bohr-Sommerfeld
quantization conditions of the Old Quantum Mechanics (related to the
adiabatic invariants) are valid; this is known as the Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) approximation. Moreover, in the same
conditions, a superposition of waves yields wavepackets localized in
space, with sharp values in energy (extended in time), which mimic
classical particles; moving with the group velocity and obeying the
classical equations of motion, according to Ehrenfest.

All these aspects refer mainly to stationary states. The investigations
presented in this book refer especially to the quasi-classical aspect of
the quantum-mechanical transitions (quantum jumps).

The starting point of the matters discussed here is the equation of
motion

Ȯ(t) =
i

~
[H,O(t)] (1.1)

for Heisenberg’s representation O(t) = e
i
~
HtOe−

i
~
Ht for operators O,

where H is the time-independent hamiltonian; in the energy represen-
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1 Preface

tation, equation (1.1) reads

Ȯnm =
i

~
(En − Em)Onm , (1.2)

where En, Em are the energies of the states n, m, or

Ȯnm = i(ωn − ωm)Onm , (1.3)

where ωn,m = En,m/~. For large n, m (En,Em), where small devi-
ations s = m − n are relevant, we may write approximately ωm =
ωn+s = ωn + s(∂ωn/∂n) and, denoting ωs = s(∂ωn/∂n) for fixed n,
we get

Ȯn,n+s = −iωsOn,n+s . (1.4)

On the other hand, the matrix elements On,n+s of the dynamical
variables vanish rapidly with increasing s and depend slightly on n so
we may approximate On,n+s by On,n+s ≃ Os.1 Therefore, we have

Ȯs = −iωsOs . (1.5)

With Os = O
(1)
s + iO

(2)
s we get Ȯ(1)

s = ωsO
(2)
s , Ȯ(2)

s = −ωsO(1)
s and

Ö(1)
s = −ω2

sO
(1)
s , Ö(2)

s = −ω2
sO

(2)
s . (1.6)

This is the classical equaton of motion of a free harmonic oscillator
with the eigenfrequency ωs. The classical quantity corresponds either
to O(1)

s or O(2)
s . This observation opens the possibility to approximate

the quantum-mechanical operators by classical harmonic oscillators in
the quasi-classical conditions. The effective hamiltonian which gov-
erns the motion of O(1,2)

s is

Heff =
1

2m
P (1,2)2
s +

1

2
mω2

sO
(1,2)2
s , (1.7)

where P (1,2)
s is the momentum associated to the dynamical variable

O
(1,2)
s . We may drop out the suffix s and the upper indices 1, 2 and

write equations (1.6) as

Ö + ω2
0O = 0 , (1.8)

1Angular coordinates like ϕ or θ of the rotation motion are an exception; rather
their trigonometric functions like cosϕ, cos θ are representative for the assertion
made in the text.

2



1 Preface

where we introduced the notation ω0 = ωs. Equation (1.8) has a
twofold nature: classical and quantum-mechanical. On one hand, it
is the classical equation of a harmonic oscillator; on the other hand,
it contains the oscillator eigenvalue ω0 which is the difference ω0 =
ωs = (Em−En)/~ of two quantum-mechanical frequencies (two energy
levels), which may be involved in a quantum transition. For this
reason, and taking into account the conditions used in deriving it, we
call this equation a quasi-classical equation of motion.

In the presence of an external interaction Hint equation (1.5) acquires
an additional term Ȯcls ,

Ȯs = −iωsOs + Ȯcls , (1.9)

which denotes the part in the time derivative of the classical quantity
O that arises from the external interaction; the harmonic-oscillator
quasi-classical equation of motion becomes

Ö + ω2
0O =

(
∂

∂t
Ȯcl
)

int

; (1.10)

the rhs of this equation is a generalized force, the suffix int indicat-
ing explicitly that this force is generated exclusively by the external
interaction. The calculation of the generalized force is performed by
means of the Poisson brackets:
(
∂
∂t Ȯ

cl
)

int
= {{O,Heff}, Hint}++{{O,Hint}, Heff} , (1.11)

where we retain only the first-order contribution of the interaction
hamiltonian. Indeed, we are interested in the particular solution of
equation (1.10), which, under these circumstances, has the charac-
ter of a small perturbation; consequently, it is convenient to use the
symbol δO in equation (1.10),

δÖ + ω2
0δO =

(
∂

∂t
Ȯcl
)

int

, (1.12)

indicating the variation of the quantity O for small changes in the
quantum numbers (s ≪ m). If δO appears in the generalized force,
it should be neglected for consistency. If, for some special forms of

3



1 Preface

Hint, the variable O or/and its conjugate momentum P appear in the
generalized force, then approximate schemes should be used, which
depend on the specific problem. For other special prblems there may
not exist a classical hamiltonian of interaction, but only equations
of motion (for instance, for magnetic moments); in that cases, the
generalized force is computed according to the basic meaning of the
time derivative.

One of the most simple forms for the interaction hamiltonian is

Hint = fO cosωt , (1.13)

which corresponds to the interaction of a harmonic oscillator with
an external field of strength f and frequency ω. The quasi-classical
equation of motion reads

δÖ + ω2
0δO + 2αδȮ = − f

m
cosωt (1.14)

(Ȯ = P/m, Ṗ = −ω2
0O− f cosωt), where the friction (damping) term

2αδȮ is introduced. The particular solution of this equation is

δO = a cosωt+ b sinωt ,

a = f
2mω0

ω−ω0

(ω−ω0)2+α2 , b = − f
2mω0

α
(ω−ω0)2+α2 ,

(1.15)

for ω near ω0. This is a typical resonance solution. From equation
(1.14) we get

d

dt

(
1

2
mδȮ2 +

1

2
mω2

0δO
2

)
+ 2αmδȮ2 = −fδȮ cosωt , (1.16)

which shows that

δPosc = −fδȮ cosωt = −1

2
fbω (1.17)

is the mean rate of energy absorption (dissipated power) of the oscil-
lator. Making use of equation (1.15) we get

δPosc = − 1
2fbω ≃

f2

4m
α

(ω−ω0)2+α2 →

→ πf2

4m δ(ω0 − ω) , α→ 0+ .

(1.18)

4



1 Preface

The power given by equation (1.18) should be compared with the mean
power absorbed by the oscillator in quantum transitions. For the
interaction hamiltonian Hint = h cosωt the amplitude of transition
n→ k is given by

ckn = −hkn
2~

ei(ωkn−ω)t+αt

ωkn − ω − iα
; (1.19)

the rate of transition is

∂|ckn|2
∂t = |hkn|2

2~2
α

(ωkn−ω)2+α2 →

→ π|hkn|2
2~2 δ(ωkn − ω) , α→ 0+

(1.20)

and the absorbed power is

P =
π |hkn|2

2~
ωknδ(ωkn − ω) . (1.21)

For h = fO, the matrix elements On+1,n =
√
~(n+ 1)/2mω0 of the

harmonic oscillator and ωkn = ωn+1 − ωn = ω0 we get

P =
πf2

4m
(n+ 1)δ(ω0 − ω) ; (1.22)

we can see that δP = δPosc given by equation (1.18) for large n.

For other, simple quantum-mechanical motions the difference between
the two powers is only a numerical factor; the planar rotator and
the spatial rotator (spherical top) analyzed in this book illustrate
this point. The difference indicates the deviation of the quantum-
mechanical motion from the motion of the harmonic oscillator; it
originates in the approximations made in deriving the quasi-classical
equation of motion given by equation (1.12).

The extension of the quasi-classical equation of motion to condensed
matter exhibits a few particularities. Because of the residual interac-
tions the quantum-mechanical motion in condensed matter has certain
limitations; the energy levels are not well defined, the wavefunctions
are wavepackets superpositions and the elementary quasi-particle and
collective excitations (with their finite lifetime) are relevant for the

5



1 Preface

quantum-mechanical motion. In addition, in condensed matter we
measure quantum-mechanical expectation values and statistical aver-
ages, a situation which bring us close to a quasi-classical approxima-
tion. Moreover, the rapid oscillations in space and time of the wave
functions and the fields in condensed matter are locally averaged in
a coarse-graining average, which enables a quasi-classical description.
Let Oi be a dynamical variable of the i-th atomic constituent in a
set of N such constituents placed around any point in a sample of
condensed matter, and let O = N−1

∑N
i=1Oi be the coarse-graining

average. The motion of any Oi may imply a small amount of mechan-
ical action, of the order of ~, but only large amounts of mechanical
action are relevant, corresponding to the average O. Consequently, we
may apply a quasi-classical approximation in these conditions. Mo-
erover, we can see that even for small quantum numbers correspond-
ing to the motion of any Oi this approximation is now valid. Such a
quasi-classical approximation is described in this book for magnetic
resonance and nuclear quadrupole resonance. In addition, by means
of this method of quasi-classical description, a new feature, called
parametric resonance, is revealed in the rotation spectra exhibited by
molecules endowed with an electric dipole moment or a magnetic mo-
ment and placed in a static electric field or a static magnetic field,
respectively.

In conclusion, we may say that a new method of quasi-classical ap-
proximation is presented in this book, for treating the interaction
of quantum-mechanical motion with an external time-dependent in-
teraction; the method, which is derived from Heisenberg’s equation
of motion, belongs to the class of quasi-classical approximations in
Quantum Mechanics (correspondence principle, the JWKB approxi-
mation, ~→ 0 limit), and it may prove useful in various spectroscopies
in condensed matter.
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2 Introduction

The Maxwell equations in vacuum read

divE = 4πρ , divH = 0 ,

curlE = − 1
c
∂H
∂t , curlH = 1

c
∂E
∂t + 4π

c j ,
(2.1)

where E and H are the (real) electric and magnetic field, respectively,
ρ and j are the charge and current densities, respectively, and c is
the speed of light in vacuum (c = 3 × 1010cm/s); the charge and the
current are related by the continuity equation

∂ρ

∂t
+ divj = 0 (2.2)

(charge conservation); they originate in the elementary charges and
currents associated with the atomic structure of matter. For a point
charge q placed at r0 the density is ρ = qδ(r − r0) and the current
density is j = qṙ0δ(r− r0) (convection current).

Equations (2.1) tell that ρ and j generate electromagnetic fields. In-
deed, we introduce the scalar potential Φ and the vector potential A
through E = −(1/c)∂A/∂t− gradΦ and H = curlA and see immedi-
ately that two Maxwell equations are satisfied identically (divH = 0
and curlE = − 1

c
∂H
∂t ), while the remaining two equations lead to the

wave equations

1
c2
∂2Φ
∂t2 −∆Φ = 4πρ , 1

c2
∂2A
∂t2 −∆A = 4π

c j , (2.3)

providing the Lorenz gauge divA+(1/c)∂Φ/∂t = 0 is satisfied; under
the gauge transformationsA→ A+gradχ, Φ→ Φ−(1/c)∂χ/∂twhich
preserve the fields, the Lorenz condition amounts to (1/c2)(∂2χ/∂t2)−
∆χ = 0. Particular solutions of the wave equations are given by

7



2 Introduction

Kirchhoff’s retarded potentials

Φ(r, t) =
´

dr′
ρ(r′,t−|r−r′|/c)

|r−r′| ,

A(r, t) = 1
c

´

dr′
j(r′,t−|r−r′|/c)

|r−r′| .

(2.4)

The general solution is obtained by adding the free fields which satisfy
the homogeneous (source-free) equations (2.3). It is worth noting that
the fields given by equations (2.4) propagate (and are extended), while
the charge and current distributions are localized. The Lorenz gauge
in equations (2.4) is ensured by the charge conservation (continuity
equation).

Free fields are generated conventionally by charges and currents placed
at infinity; in the regions of interest they satisfy the free Maxwell
equations; they act with the Lorentz force

f = ρE+
1

c
j×H (2.5)

upon charges and currents placed in the regions of interest; these fields
are external fields for these charges and currents. Under the action of
the Lorentz force the state of motion of the charges and currents is
changed.

The field generated by a charge and a current localized at some point
in space acts upon the charges and currents localized at other points in
space; this amounts also to saying that the fields generated by a charge
and current distribution act upon the distribution that created them;
this can be called an internal field. Therefore, there is an interaction
between charges and currents on one side and their corresponding
fields on the other, incorporated in the Maxwell equations. Indeed,
we get easily from equations (2.1)

1

8π

∂

∂t

(
E2 +H2

)
+ jE+

c

4π
div(E×H) = 0 , (2.6)

which tells that the electromagnetic energy (E2 + H2)/8π plus the
mechanical work jE done by the field upon charges per unit time
plus the energy radiated through the surface by the Poynting vector
S = c

4π (E ×H) is zero: the total energy of the electromagnetic field

8



2 Introduction

and charges and currents is conserved. It is easy to see that a convec-
tion current is j = ρv, which justifies the interpretation of the term
jE as the work done by the Lorentz force f given by equation (2.5)
per unit time (and per unit volume). Such an equation of conserva-
tion of the energy can be written either for the fields produced by the
distributions ρ and j (particular solutions of the Maxwell equations,
internal fields), or for external fields, or for the total fields which are
the sum of internal and external fields. We can see that energy conser-
vation implies quadratic quantities in fields, while the fields obey the
superposition principle (Maxwell equations are linear in fields); the
energy of two superposed fields is not the sum of the energies of the
two fields, which amounts to say that the fields interact. Similarly,
we get from Maxwell equations (2.1)

ρE+ 1
c j×H+ 1

4πc
∂
∂t (E×H)+

+ 1
4π (E× curlE+H× curlH−EdivE−HdivH) = 0 ,

(2.7)

which tells that the Lorentz force plus the reaction of the field (field
momentum (E×H)/4πc) plus the stress force of the field is zero; the
total momentum of the charges, currents and field is conserved, as for
a closed system. The components of the last term in equation (2.7)
can be written as ∂jσij , where

σij =
1

8π
δij(E

2 +H2)− 1

4π
(EiEj +HiHj) (2.8)

is a stress tensor. It is worth noting that energy conservation given by
equation (2.6) shows that the electromagnetic field, apart from acting
upon charges and currents, has and carries energy. Similarly, the mo-
mentum conservation given by equation (2.8) suggests the existence
of a medium, similar with an elastic medium, which sustains an elec-
tromagnetic field which carries momentum and produces a stress; this
medium is suggestive of a luminiferous aether.

In matter, there appear internal electromagnetic fields, produced by
the charges and currents of the atomic constituents. Some of these
charges and currents are permanent, some other are induced by ex-
ternal fields. By analogy with Gauss’s law divE = 4πρ, we admit the
existence of an electric field P, called polarization, which generates a

9



2 Introduction

"material" charge density ρm = −divP, such that we write Gauss’s
law in matter as

divE = 4πρ− 4πdivP , div(E+ 4πP) = 4πρ ; (2.9)

since matter is usually electrically neutral, it is easy to see that the
polarization P is in fact a density of dipoles moments. A current
density jp = ∂P/∂t corresponds to the charge density ρp = −divP,
such that the continuity equation is satisfied; therefore, the Maxwell-
Ampere equation curlH = 1

c
∂E
∂t + 4π

c
j will include the term 4π

c
∂P
∂t ; in

addition, this equation suggests also the existence of another current
density given by a magnetic field M, called magnetization, through
curlM = 1

c j
′

m; the continuity equation admits such a current density,
since div · curl = 0. It follows that the Maxwell-Ampere equation in
matter can be written as

curlH =
1

c

∂E

∂t
+

4π

c
j+

4π

c

∂P

∂t
+ 4πcurlM ; (2.10)

in matter, instead of H, we denote this magnetic field by B, and call it
magnetic induction; the magnetic field is H = B− 4πM. Introducing
also the electric displacement D = E + 4πP we get the Maxwell
equations in matter

divD = 4πρ , divB = 0 ,

curlE = − 1
c
∂B
∂t , curlH = 1

c
∂D
∂t + 4π

c j ,
(2.11)

where ρ and j are external charge and current densities, respectively.
We have here two independent equations and four unknowns. Addi-
tional knowledge is necessary in order to solve these equations. It is
easy to see that magnetization is the density of magnetic moments,
similar with the polarization, which is the density of dipole moments.
Indeed, the density of magnetic moments is 1

2cr × jm and the total
magnetic moment is

1

2c

ˆ

dr · r× jm =
1

2

ˆ

dr · r× curlM =

ˆ

drM . (2.12)

In this respect, the "magnetic" current density is reminiscent of Am-
pere’s molecular currents (or "electric vortices"). From equations

10



2 Introduction

(2.11) we get the energy conservation

1

4π

(
E
∂D

∂t
+H

∂B

∂t

)
+ jE+

c

4π
div(E×H) = 0 (2.13)

and the momentum conservation

ρE+ 1
c j×B+ 1

4πc
∂
∂t (D×B)+

+ 1
4π (D× curlE+B× curlH−EdivD−HdivB) = 0 .

(2.14)

11





3 Electric and Magnetic

Moments

3.1 Electric dipole and quadrupole

moments

With usual notations the scalar electromagnetic potential is given by
Kirchhoff’s solution

Φ(r, t) =

ˆ

dr′
ρ(r′, t− |r− r′| /c)

|r− r′| , (3.1)

where ρ is the charge density (and c denotes the speed of light); it is
a particular solution of the wave equation

1

c2
∂2Φ

∂t2
−∆Φ = 4πρ . (3.2)

In matter charges perform a finite motion, so we can average equation
(3.2) over this motion and get the static equation

∆Φ = −4πρ (3.3)

and the Coulomb potential

Φ(r) =

ˆ

dr′
ρ(r′)

|r− r′| ; (3.4)

in this limit the electric field is given by

E = −gradΦ =

ˆ

dr′
ρ(r− r′)

|r− r′|3
. (3.5)

13



3 Electric and Magnetic Moments

Similar results are obtained in the quasi-static limit, where the wave-
lengths are much larger than the relevant distances. For charges dis-
tributed over distances much smaller than the distance of observa-
tion r we may limit ourselves to ρ(r′, t − r/c)/ |r− r′| in equation
(3.1); this quantity can be expanded in powers of r′. For a classi-
cal charge q localized at r0 the charge density is ρ(r) = qδ(r − r0),
and we have to expand the function q/ |r− r0| in powers of r0. A
quantum charge density is ρ = q |ψ(r, t)|2, where ψ is the wavefunc-
tion, and we need to expand the function q |ψ(r′, t− r/c)|2 / |r− r′|
in powers of r′; similarly, for several charges the charge density is
given in terms of the multi-particle wavefunction (or the field oper-
ator for identical particles). Usually, the particle density |ψ(r, t)|2
is localized over a limited space region of some extension r0, which
amounts to an integration over this region of the expansion of the
function |ψ(r′, t− r/c)|2 / |r− r′| in powers of r′. We can see that the
expansion in multipoles of the electromagnetic field is an expansion
with generic coefficients (the multipoles), which are determined by
the particular structure of the charge distribution. In this context
it is worth recalling the quantum nature of the field equations like
equation (3.2).

Let us consider a classical point charge q placed at r0; the potential
becomes

Φ =
q

|r− r0|
=
q

r
+
qr0r

r3
+

1

2
qx0ix0j

3xixj − r2δij
r5

+ ... , (3.6)

where we have expanded in powers of x0i (r ≫ r0) (and summation
over repeated indices is included). We may also sum over several
charges. The first term Φ0 = q/r is the Coulomb law, the second
term

Φ1 =
qr0r

r3
=

dr

r3
, d = qr0 (3.7)

is the dipole contribution, the third term

Φ2 =
1

2
qx0ix0j

3xixj − r2δij
r5

(3.8)

is the quadrupole contribution; d = qr0 is the dipole moment, its

14



3 Electric and Magnetic Moments

electric field is

E1 = −graddr
r3

=
3(dr)r− r2d

r5
. (3.9)

Since

∆
1

r
= δij

3xixj − r2δij
r5

= 0 , (3.10)

we can write the quadrupole contribution as

Φ2 = 1
6q(3x0ix0j − r20δij)

3xixj−r2δij
r5 =

= 1
2q(3x0ix0j − r20δij)

xixj

r5 = 1
2Dij

xixj

r5 ,

(3.11)

where
Dij = q(3x0ix0j − r20δij) (3.12)

is the quadrupole moment; it is a traceless tensor with five compo-
nents. The quadrupole electric field is given by

E2i =
3

2
Dij

xj
r5

. (3.13)

The quadrupole moment can be brought to its principal axes; since
it is traceless, only two diagonal components are independent. If the
charge distribution is symmetric about the z-axis, we have

Dxx = Dyy = −1

2
Dzz (3.14)

and
Φ2 =

1

4r3
D(3 cos2 θ − 1) =

1

2r3
DP2(cos θ) , (3.15)

where θ is the angle between r and the z-axis, D = Dzz and P2 is the
Legendre polynomial of the 2-nd order.

If the total charge is zero, the dipole moment does not depend on
the origin of coordinates; if the total charge and the dipole moment
are zero, the quadrupole moment does not depend on the origin of
coordinates.

15
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In general, we have the expansion

1
|r−r0| =

∑∞
l=0

rl0
rl+1Pl(cosΘ) =

=
∑∞

l=0

∑+l
m=−l

rl0
rl+1

4π
2l+1Ylm(θ0, ϕ0)Y

∗
lm(θ, ϕ)

(3.16)

in spherical functions, which allows the representation

Φ =
∑

lm

√
4π

2l+ 1

1

rl+1
QlmY

∗
lm(θ, ϕ) , (3.17)

where

Qlm =

√
4π

2l + 1

∑

a

qar
l
aYlm(θa, ϕa) (3.18)

is the electric moment of the 2l-th order; it includes summation over
all charges a. We have

Q00 =
∑

a qa , Q10 = i
∑
a qara cos θa = idz ,

Q1±1 = ∓ i√
2

∑
a qara sin θae

±iϕa = ∓ i√
2
(dx ± idy)

(3.19)

and
Q20 = 1

2

∑
a qar

2
a(1− 3 cos2 θa) = − 1

2Dzz ,

Q2±1 = ±
√

3
2

∑
a qar

2
a cos θa sin θae

±iϕa =

= ± 1√
6
(Dxz ± iDyz) ,

Q2±2 = − 1
2

√
3
2

∑
a qar

2
a sin

2 θae
±2iϕa =

= − 1
2
√
6
(Dxx −Dyy ± 2iDxy) .

(3.20)

Let us assume that a charge distribution is placed in an external field
with scalar potential Φ; the energy of the charge distribution in this
external field is given by

U =
∑

a

qaΦ(ra) . (3.21)

16
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We may expand Φ(ra) in powers of the coordinates xai,

U = U0 + U1 + U2+ , (3.22)

where
U0 = Φ0

∑

a

qa , (3.23)

U1 = gradΦ0

∑

a

qara = −dE0 (3.24)

and U2 is the quadrupole contribution. The suffix 0 denotes the origin
(around which the distribution is placed), d is the dipole moment and
E0 is the electric field at the origin. Up to the first-order approxima-
tion the force acting upon the charge distribution is given by

F = E0

∑

a

qa + (dgrad) E|0 + ... (3.25)

and the torque is given by

K =
∑

a

qara ×E0 = d×E0 . (3.26)

The rotation of a rigid dipole d = ql under the action of the torque
of forces given by equation (3.26) implies the motion of the angular
momentum L = mvl, dL/dt = K = d×E0. If we leave aside the az-
imuthal motion, the equation of motion is ml2θ̈ = −qlE0 sin θ, where
θ is the angle between d and E0; for small angles θ and a constant
field, this is the equation of motion of a harmonic oscillator with fre-
quency ω =

√
qE0/ml =

√
dE0/I, where I = ml2 is the moment of

inertia; the quantum counterpart reads Iω2 = ωL = dE0 (L = Iω)
and ω = dE/~, where ~ is Planck’s constant; such a frequency is
known as the Rabi frequency.1

The energy of a dipole in the field generated by another dipole is

U = −d1E2 =
(d1d2)r

2 − 3(d1r)(d2r)

r5
, (3.27)

1I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324 (1936);
I. I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51

652 (1937).
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where we have used the dipole field given by equation (3.9). Similarly,
for a charge q in the field of a dipole we have the energy

U = q
dr

r3
. (3.28)

The quadrupole contribution to the interaction energy is

U2 = 1
2

∑
a qaxaixaj

∂2Φ0

∂xi∂xj
= 1

2

∑
a qa(xaixaj − 1

3δijr
2
a)

∂2Φ0

∂xi∂xj
=

= 1
6Dij

∂2Φ0

∂xi∂xj
.

(3.29)
In general, since

Φ(ra) =
∑

lm

rl
√

4π

2l+ 1
almYlm(θa, ϕa) (3.30)

we get
U =

∑

a

qaΦ(ra) =
∑

lm

almQlm , (3.31)

where Qlm is the moment given by equation (3.18) and alm are the
coefficients of the expansion of the potential in spherical harmonics.

3.2 Magnetic Moments

With usual notations the vector potential is given by Kirchhoff’s so-
lution

A(r, t) =
1

c

ˆ

dr′
j(r′, t− |r− r′| /c)

|r− r′| , (3.32)

where j is the curent density (and c denotes the speed of light); it is
a particular solution of the wave equation

1

c2
∂2A

∂t2
−∆A =

4π

c
j . (3.33)

In the quasi-static limit it becomes

∆A = −4π

c
j , (3.34)
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hence

A(r, t) ≃ 1

c

ˆ

dr′
j(r′, t)

|r− r′| ; (3.35)

this is the Biot-Savart law for the magnetic field

H = curlA =
1

c

ˆ

dr′
j× (r− r′)

|r− r′|3
. (3.36)

If we take the average of equation (3.33) over finite motion of charges
in matter we get the static equation ∆A = 0, since j = 0. It is worth
noting that the quasi-static potentials Φ and A satisfy the Lorenz
gauge divA + (1/c)∂Φ/∂t = 0 (due to the the continuity equation
∂ρ/∂t+ divj = 0).

According to equation (3.35), the quasi-static vector potential A gen-
erated by a point charge qa moving at ra with velocity va (i.e. a
current density ja = qvaδ(r− ra)) is given by

A(r, t) =
1

c
qa

va

|r− ra|
; (3.37)

far away from the charge we have the expansion

A =
1

c
qa

va

r
+

1

c
qa

va(rar)

r3
+ ..., (3.38)

where we can write

va(rar) =
1

2

d

dt
[ra(rar)] +

1

2
[va(rar)− ra(var)] ; (3.39)

the classical Electromagnetism admits that the macroscopic fields
arise from macroscopic charges and currents, i.e. from microscopic
charges and currents averaged over their finite motion in matter; con-
sequently, we have va = 0 and

va(rar) =
1

2
[va(rar)− ra(var)] =

1

2
(ra × va)× r , (3.40)

i.e.

A =
1

2c
qa

(ra × va)× r

r3
=

m× r

r3
, (3.41)
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where
m =

1

2c
qara × va (3.42)

is the magnetic momentum of the charge qa; we can sum over all
charges (and can even admit a continuous charge and current distri-
bution). From equation (3.41) we get easily the magnetic field

H = curlA =
3(mr)r−mr2

r5
(3.43)

(by using εijkεilm = δjlδkm − δjmδkl), which indicates that the mag-
netic moment acts as a magnetic dipole. If the ratio charge-to-mass
is the same for all particles (q/m) we can write

m =
q

2mc

∑

a

mara × va =
q

2mc
L , (3.44)

where L is the (mechanical) angular momentum. Since (1/2)r× v =
∆S/∆t, where ∆S is the area covered by a macroscopic rotation in
time ∆t, we get from equation (3.42) m = I∆S/c for the magnetic
moment of a macroscopic current I = q/∆t (a coil). Indeed, the
magnetic moment m = IS/c = qνπr2/c = qωr2/2c of a charge q
moving in a circular orbit (radius r, area S = πr2, frequency ν =
ω/2π, current I = qν) is related to the angular momentum L =
mvr = mωr2 through m = (q/2mc)L (where m is the mass of the
particle).

It is worth noting that a statistical average of the orbital currents
or magnetic moments with classical statistics gives vanishing currents
and magnetic moments, a result which is known as Bohr-van Leuween
theorem (it is due to the kinetic energy in the classical statistical
distribution, which is quadratic in velocities); classically, there is no
magnetic moment (and no magnetism).2 The quantum average of
orbital currents (momenta) over bound states in centrally symmetric
fields is also vanishing, due to the conservation of parity; in general,
the (averaged) orbital currents in matter are "quenched", i.e. they
are vanishing.

2N. Bohr, Disertation, Copenhagen (1911); J. H. van Leeuwen, Disertation, Lei-
den (1919); J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities,
Oxford (1932).
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The force acting upon an assembly of moving charges placed in a
constant magnetic field H is zero:

F =
∑

a

qa
c
va ×H =

∑

a

qa
c

d

dt
(ra ×H) = 0 ; (3.45)

the torque is given by

K =
∑

a
qa
c ra × (va ×H) =

∑
a
qa
c va(raH)− 1

2H
d
dt (r

2
a) =

=
∑
a
qa
c va(raH) ,

(3.46)

or
K =

∑
a
qa
2cva(raH)− ra(vaH) =

=
∑

a
qa
2cH× (va × ra) = m×H

(3.47)

(by using the same averaging procedure as given above for the mag-
netic moment); we can compare this magnetic torque with the electric
torque acting upon a dipole as given by equation (3.26).

The lagrangian of the charges in a uniform magnetic field H with the
vector potential A = (H× r)/2 includes the additional term

LH =
∑

a

qa
c
Ava =

∑

a

qa
2c

(H× r)va , (3.48)

which, on averaging, leads to

LH = mH ; (3.49)

the corresponding energy is

EH = −mH ; (3.50)

it is similar with the dipole energy (EE = −dE) in an electric field,
as given by equation (3.24).

Let us assume an assembly of charges with the lagrangian

L =
∑

a

1

2
mav

2
a − U (3.51)
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with usual notations, where U is their potential energy (including a
centrally symmetric field and interaction). In a frame rotating with
angular velocity

−→
Ω the velocity is given by

v = v
′

+
−→
Ω × r

′

, (3.52)

while the potential energy does not change. The lagrangian becomes

L =
∑

a

[
1

2
mav

′2
a +ma

−→
Ω(r

′

a × v
′

a) +
1

2
ma(
−→
Ω × r

′

a)
2]− U ; (3.53)

for the same ratio charge-to-mass (q/m) and for
−→
Ω = q

2mcH we can
see that the lagrangian acquires a magnetic term mH (on averaging
over the finite microscopic motion of charges), providing the magnetic
field H (and angular velocity

−→
Ω ) are sufficiently small as to neglect

the quadratic term in H2 (Ω2). This is known as Larmor’s theorem;
the angular velocity Ω = |q|H/2mc is called the Larmor frequency.

The torque given by equation (3.47) moves the angular momentum,

dL

dt
= K = m×H ; (3.54)

using equation (3.44) (for the same ratio charge-to-mass) we get

dm

dt
=

q

2mc
m×H (3.55)

and
dL

dt
=

q

2mc
L×H = −−→Ω × L . (3.56)

Equation (3.55) is known as Larmor’s equation of motion (precession);
γ = q/2mc is called the gyromagnetic ratio (factor).

It is worth noting that the motion of a charge q in a constant mag-
netic field H proceeds according to the equations mv̇x = q

cvyH ,
mv̇y = − qcvxH , i.e. v̈x = (qH/mc)2vx; this motion oscillates with
the frequency qH

mc , which is known as the cyclotron frequency. It is
the average over microscopic motion which makes the magnetic mo-
ment and the angular momentum to precess with Larmor’s frequency
qH
2mc . Quasi-classical motion in matter in the presence of a magnetic
field proceeds with cyclotron frequency.
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