The General Theory of Particle Mechanics

The General Theory of Particle Mechanics:

A Special Course

Ву

Alexander P. Yefremov

Cambridge Scholars Publishing

The General Theory of Particle Mechanics: A Special Course

By Alexander P. Yefremov

This book first published 2019

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2019 by Alexander P. Yefremov

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-2711-5 ISBN (13): 978-1-5275-2711-9

SO R

SU

SO R SU

×

SU

#refresh-your-brain

#gain-new-technology

#explore-new-world

_

_

-

-

_

PART I MATHEMATICAL PRELIMINARIES

Algebraic systems		One binary operation
Magma (groupoid)	$a, b \in M$:	$a \bullet b \in M$ multiplication
Semi-group	$a, b, c \in S$:	$(a \bullet b) \bullet c = a \bullet (b \bullet c) \in S$
Group	$a, b, c \in G$: $e \bullet a = a \bullet e = a$	$(a \cdot b) \cdot c = a \cdot (b \cdot c) \in G$ $a^{-1} \cdot a = a \cdot a^{-1} = e$
Ring	$a, b \in R$:	$a \bullet b \in R$ — multiplication
	Two binary operations	$a+b=b+a\in R \iff {}^{addition}$

Algebra

$$x, y \in A$$
 α, β – scalars

structure of linear space

$$x + y = y + x \in A$$

$$\alpha(x+y) = \alpha x + \alpha y$$

$$(\alpha + \beta) x = \alpha x + \beta x$$

Ferdinand Georg Frobenius 1849 – 1917

Adolf Hurwitz 1859 – 1919

Real numbers

R:

 $\label{eq:Addition-commutative} Addition-commutative \ and \ associative$

Neutral element (addition)

 $\label{eq:multiplication} \textbf{Multiplication} - \textbf{commutative} \ \textbf{and} \ \textbf{associative}$

Neutral element (multiplication) 1

Division exists

Dimension $D = 2^0 = 1$

Distributive properties

Field – Algebra – **R**

 $a \in \mathbf{R}$

(the only unit – scalar unit 1)

Norm $||a|| \rightarrow a^2$

 $Modulus |a| = \sqrt{\|a\|} = +\sqrt{a^2}$

R

Complex numbers

Field – Algebra – **C**

C:

Addition – commutative and associative

Neutral element (addition)

Multiplication – commutative and associative

 $z = a + bi \in \mathbf{C}$ $||z|| \rightarrow a^2 + b^2$

 $\text{Modulus} \quad \left|z\right| = \sqrt{\left\|z\right\|} = +\sqrt{a^2 + b^2}$

Neutral element (multiplication) 1

Division exists

Dimension

 $D = 2^1 = 2$

(two scalar units -1 and i)

Norm

Distributive properties

 \mathbf{C}

Q

Н

Quaternion numbers

Ring – Algebra – **Q**

 $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbf{Q}$

Norm $||q|| \to a^2 + b^2 + c^2 + d^2$

Q:

Addition – commutative, associative Neutral element (addition) 0

<u>Multiplication</u> – associative, non-commutative

Neutral element (multiplication) 1

Division exists

<u>Dimension</u> $D = 2^2 = 4$ four units: 1 (scalar) and *i*, *j*, *k* (vectors)

Distributive properties

R

Q

 \mathbf{C}

Q

Octonions

Algebra – **O**

O:

Addition – commutative, associative

Neutral element (addition)

0

1821 - 1895

Multiplication - non-commutative, non-associative ("alternative")

Neutral element (multiplication) 1

Division exists

Dimension

 $D = 2^3 = 8$ eight units: 1 (scalar) and 7 (vectors)

Distributive properties

Hamilton's formula for multiplication of quaternion units

16 axiomatic equalities: multiplication of quaternion units

Hamilton's notation

Four Q-units:

1; i, j, k

1.1 = 1

 $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = -\mathbf{1}$

 $i \cdot j = -j \cdot i = k$

 $\mathbf{j} \cdot \mathbf{k} = -\mathbf{k} \cdot \mathbf{j} = \mathbf{i}$

 $\mathbf{k} \cdot \mathbf{i} = -\mathbf{i} \cdot \mathbf{k} = \mathbf{j}$

 $1 \cdot i = i \cdot 1 = i$

 $1 \cdot j = j \cdot 1 = j$

 $1 \cdot \mathbf{k} = \mathbf{k} \cdot 1 = \mathbf{k}$

1	i	j	k
i	-1	k	-j
j	-k	-1	i
k	i	-i	-1

Traditional multiplication table

A quaternion number

Product of two quaternions

$$q_1 = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$
 $q_2 = e + f\mathbf{i} + g\mathbf{j} + h\mathbf{k}$

$$\begin{split} &q_1q_2=(a+b\mathbf{i}+c\mathbf{j}+d\,\mathbf{k}\,)(e+f\,\mathbf{i}+g\,\mathbf{j}+h\,\mathbf{k})=\\ &=ae-bf-cg-dh+(af+eb+ch-dg)\,\mathbf{i}+(ag+ec+df-bh)\,\mathbf{j}+(ak+ed+bg-cf)\,\mathbf{k} \end{split}$$

$$\begin{split} q_2q_1 = &(e+f\,\mathbf{i}+g\,\mathbf{j}+h\,\mathbf{k})(a+b\mathbf{i}+c\mathbf{j}+d\,\mathbf{k}) = \\ &= ae-bf-cg-dh+(af+eb-ch+dg)\mathbf{i}+(ag+ec-df+bh)\,\mathbf{j}+(ak+ed-bg+cf)\mathbf{k} \end{split}$$

Addition of quaternions

$$q_1 = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$
 $q_2 = e + f\mathbf{i} + g\mathbf{j} + h\mathbf{k}$

$$q_1 + q_2 = a + e + (b + f)\mathbf{i} + (c + g)\mathbf{j} + (d + h)\mathbf{k}$$

$$\mathbf{q}$$
 \mathbf{q} $a+e$ $b+f$ \mathbf{i} $c+g$

Quaternion conjugation

$$q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$

$$\Longrightarrow$$

$$\Rightarrow \overline{q} = a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}$$

Norm

$$q\overline{q} = (a+b\mathbf{i}+c\mathbf{j}+d\mathbf{k})(a-b\mathbf{i}-c\mathbf{j}-d\mathbf{k}) = a^2+b^2+c^2+d^2 = \|q\|$$

<u>Modul</u>us

$$|q| = \sqrt{q\overline{q}} = \sqrt{a^2 + b^2 + c^2 + d^2}$$

Conjugate product of two quaternions

$$q_1 = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$
 $q_2 = e + f\mathbf{i} + g\mathbf{j} + h\mathbf{k}$

$$\overline{q_1q_2} = \overline{q}_2\overline{q}_1$$

Homework!