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PREFACE 

  
 
 
This book is in the form of lecture notes and was originally created for two 
semesters of 6 credit hours courses taken by senior undergraduates and 
first year graduate students majoring in mechanical engineering. The 
proposed book initially consisted of 15 chapters. They are based on the 
lecture notes for a required course with similar titles given to junior (and 
occasionally senior) undergraduate students by the author in the 
Department of Mechanical Engineering at the University of Calgary from 
1981 and at the University of Nebraska, Lincoln since 1996. The emphasis 
is on fundamental concepts, theory, analysis and design of mechanisms 
with applications. While it is aimed at senior undergraduates and first year 
graduate students majoring in mechanical engineering, it is also suitable 
for senior undergraduates and first year graduates in biological system 
engineering, ocean engineering, naval architectural engineering, and 
aerospace engineering. 

The original framework of this book was intended to draft for four 
parts and fifteen chapters in 2018 and its proposed delivery date was 
October 30, 2020. The title of the proposed book would be: Vibration, 
Dynamics, Stability and Bifurcation in Mechanical Systems. The four 
parts included: Part I. Vibration in Mechanical Systems, Part II. 
Balance, Dynamics in Rotors, Engines, and Machines, Part III. Contact 
Dynamics in Machinery, and Part IV. Stability and Bifurcation 
Analysis in Mechanical Systems. 

By February 2020. Part I. Vibration in Mechanical Systems had 
mostly been completed while the author was still active. Now the book is 
named after Part I. Vibration in Mechanical Systems. Owing to the 
absence of the original author, the author’s excellent writing habit of 
careful and detailed styles might meet challenge in the production of this 
book.      

The author’s first book Nonlinear Random Vibration was published 
in 2000. Vibration in Mechanical Systems will become his 8th book to 
be published. 

 
Cho W. S. To   
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CHAPTER 1 

INTRODUCTION 
 
 
 

1.1 Background 

Vibration or oscillation often refers to the time-varying motion about an 
equilibrium configuration which is often the stopping configuration of the 
vibration. Vibrations are important in our daily life. For instance, swings 
are popularly provided in playgrounds, mechanical clocks and watches keep 
time by making use of the constant time intervals or periods of the vibrations 
in their components, vibrations in the musical instruments lead to music, we 
hear because our eardrums vibrate, etc. Not all vibrations are desirable. 
Vibrations of land vehicles over bumpy roads and marine vehicles over 
rough seas may induce motion sickness. Transverse vibrations of high-rise 
and long-span structures under strong wind can be scary. Excessive 
vibrations can lead to screw loosening and material fatigue failures which 
may be catastrophic to the pertinent machines and structures.  

1.2 Organization of Presentation 

This book is organized into six chapters. The remaining chapters will cover 
the following content on mechanical vibrations: 
 
• Chapter 2 mentions that the elements capable of holding the kinematic 

and potential energies are required for mechanical vibrations. The 
equations of motion for some simple examples of vibration are derived 
from the energy consideration. Damping which is inevitable in real-
world vibrations is also introduced.  

• Chapter 3 presents free and forced vibrations of single-degree-of-
freedom systems. The equations of motion are derived from not only 
energy consideration but also Newton’s Second Law of Motion. The 
method for analyzing forced vibrations under non-harmonic and non-
periodic excitation forces is introduced.  

• Chapter 4 is involved with free and forced vibrations of two-degrees-
of-freedom systems. It starts from the forced harmonic vibration and 
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dynamic absorber. Normal modes and normal mode analysis for forced 
vibration systems under proportional damping are then introduced. 
Non-proportional damping is considered by the state vector approach.   

• Chapter 5 deals with free and forced vibrations of many degrees of 
freedom systems. It introduces the Lagrange’s equations approach as a 
generalization of the energy consideration for deriving equations of 
motion. General treatments of the normal mode analysis and the space 
vector approach for many degrees of freedom systems are presented.  

• Chapter 6 is concerned with continuous systems. Unlike the discrete 
systems considered in the previous chapters, kinematic and potential 
energies are distributed in continuous systems which possess an infinite 
number of degrees of freedom. Free and forced vibration analyses of 
continuous systems including cables, rods and beams are presented. 
 

 
 
 
     



 

CHAPTER 2 

OSCILLATORY MOTION 
 
 
 
Vibration or oscillation is a continuous exchange of kinematic and potential 
energy. In Section 2.1 the basic elements capable of storing kinematic 
and/or potential energy are introduced. The equations of motion for, 
perhaps,  the two simplest vibration systems formed by these elements are 
derived from energy conservation. Section 2.2 introduces degrees of 
freedom, discrete systems and continuous systems. Section 2.3 reviews the 
common forms of damping which dissipate the energy in vibrating systems. 
In Section 2.4 harmonic and periodic motions are defined. The 
mathematical procedure for expressing a periodic function into a compound 
harmonic function is also introduced. Section 2.5 gives a simple example of 
non-periodic oscillatory motion. 

2.1 Elements of Oscillatory Systems  

To enable mechanical vibrations, one needs at least a means to store kinetic 
energy T and a means to store potential energy U. Vibration is a continuous 
exchange of kinetic energy to and for potential energy. While kinematic 
energy is held by an object because of its speed, potential energy is held by 
an object because of its position or deformation.  

In mechanical vibrations, the two major forms of potential energy are 
gravitation energy and elastic energy. From high school physics, we know 
that when a mass m is raised to a height h above the ground level, the 
gravitational energy it holds relative to the ground level is mgh where g is 
the acceleration due to gravity. On the other hand, when a spring with spring 
constant k is elongated by e relative to its unstretched length, the elastic 
energy it holds is ke2/2.  

In the classical spring-trolley system shown in Figure 2.1(a), a rigid 
trolley of mass m on light wheels is attached to a rigid wall by a light spring 
of spring constant k. The upper half of the figure shows the system in which 
the spring assumes its unstretched length l. The lower half of the figure 
shows the system in which the trolley is displaced by x towards the right 
and x would also be the spring extension. Thus, the kinetic and potential 
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energies are  
𝑇𝑇 =  1

2
𝑚𝑚𝑥̇𝑥2  and  𝑈𝑈 =  1

2
𝑘𝑘𝑥𝑥2 

 
As usual, a quantity with one and two overdots denote the first and second 
time derivatives of the quantity under the dot, respectively. In the absence 
of energy dissipation, the sum of the two energies is a constant, i.e. 
 

1
2
𝑚𝑚𝑥̇𝑥2 + 1

2
𝑘𝑘𝑥𝑥2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (2.1) 

 
The time derivative of the above equation is 
 

(𝑘𝑘𝑘𝑘 + 𝑚𝑚𝑥̈𝑥)𝑥̇𝑥 = 0 
 
The trivial solution of 𝑥̇𝑥 = 0 does not involve any motion. Our concern is  
 

𝑥̈𝑥 + 𝑘𝑘
𝑚𝑚
𝑥𝑥 = 0            (2.2)  

 

 
(a)                       (b) 

Figure 2.1: (a) A trolley of mass m on a smooth horizontal floor,  
l is the unstretched length of the spring. (b) A simple pendulum,  

l is the length of the inextensible string. 
    
The solution to the equation of motion in Equation (2.2) is 
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𝑥𝑥 = 𝐴𝐴 sin𝜔𝜔𝜔𝜔 + 𝐵𝐵 cos𝜔𝜔𝜔𝜔          (2.3) 
or, equivalently, 
 

 𝑥𝑥 = 𝑋𝑋 sin(𝜔𝜔𝜔𝜔 + ∅)         (2.4) 
 
in which 𝑡𝑡 denotes time, 𝜔𝜔 = �𝑘𝑘/𝑚𝑚 is known as the angular velocity of 
the motion, 𝑋𝑋 = √𝐴𝐴2 + 𝐵𝐵2 is the amplitude of motion and tan∅ = 𝐵𝐵/𝐴𝐴. 
(A, B) or (𝑋𝑋,∅) can be determined by the initial values, i.e. the values at t 
= 0, of x and 𝑥̇𝑥. Equation (2.4) is plotted in Figure 2.2. It can be seen that x 
oscillates about x = 0 and repeats itself at a fixed time interval of 𝜏𝜏 = 2𝜋𝜋/𝜔𝜔 
which is known as the period of the vibration. Furthermore, x becomes zero 
when 𝜔𝜔𝜔𝜔 + ∅ = 0,𝜋𝜋, 2𝜋𝜋, … , etc. 

  

  
 

Figure 2.2: A graphical illustration for 𝑋𝑋 sin(𝜔𝜔𝜔𝜔 + ∅) where 𝜏𝜏 = 2𝜋𝜋/𝜔𝜔. 
 

Figure 2.1(b) shows the simple pendulum which is another simplest 
vibration system. A small mass m is tied to a fixed point above it by an 
inextensible light and taut string of length l. The mass oscillates about the 
fixed point. When the string makes an angle θ to the vertical, the gravitation 
energy of the mass relative to its lowest point is  
 

𝑈𝑈 = 𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). 
 
On the other hand, the speed of the mass is 𝑙𝑙𝜃̇𝜃. Thus, the kinematic energy is 
 

T = 1
2
𝑚𝑚(𝑙𝑙𝜃̇𝜃)2. 

 
Assuming no energy dissipation, the sum of the two energies is a constant, 
i.e.   
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𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 
1
2
𝑚𝑚(𝑙𝑙𝜃̇𝜃)2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
 

and the time derivative of the energy sum is 
 

𝑚𝑚�𝑙𝑙𝜃̇𝜃��𝑙𝑙𝜃̈𝜃� + 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃̇𝜃 = 0 
 
The trivial static solution given by 𝜃̇𝜃 = 0 can be rejected. By adopting the 
small-angle approximation 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 𝜃𝜃, the above equation reduces to 

 
𝜃̈𝜃 + 𝑔𝑔

𝑙𝑙
𝜃𝜃 = 0.      (2.5) 

 
Equation (2.5) is of the same form as Equation (2.2) and its solution can 
again be expressed as 

𝜃𝜃 = Θ sin(𝜔𝜔𝜔𝜔 + ∅)   (2.6) 
 

where 𝜔𝜔  equals �𝑔𝑔/𝑙𝑙  is the angular velocity. Thus, the period of the 
vibration is 2𝜋𝜋�𝑙𝑙/𝑔𝑔.  

2.2 Degrees of Freedom in Mechanical Systems 

Degrees of freedom (dofs) are often geometric parameters such as 
coordinates, displacements and angles of inclination used to describe the 
time-varying configuration of a vibrating system and, thus, the configurations 
of all its components. A dof can be dependent or independent. Taking the 
simple pendulum in Figure 2.1(b) as an example, the horizontal 
displacement x of the point mass from its lowest point, given by θ = 0, can 
be taken as a dof. However, one can note that x = l sin θ. If θ is taken as the 
independent dof, x will be a dependent dof and vice versa. Unless specified 
otherwise, dofs often refer to independent dofs. Based on the number of 
dofs it possesses, a vibration system can be classified as a single dof (sdof), 
a two dof (tdof) or a many dof (mdof) system. While the vibration systems 
in Figure 2.1 are sdof systems, those in Figure 2.3 are their generalizations 
and they are tdof systems.  

The systems portrayed in Figures 2.1 and 2.3 are also known as discrete 
vibration systems in the sense that the configuration and, thus, the energies 
of the system can be fully specified by a finite number of dofs. In these 
systems, the components carrying the kinematic and elastic energies are 
typically taken to be rigid and light, respectively. Contrary to the discrete 
system is the continuous system in which the configuration and, thus, the 
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energies of the system cannot be fully specified by a finite number of dofs. 
 

             (a)                       (b) 
 

Figure 2.3: (a) A two-trolley system. (b) A double pendulum. 
 
Taking the beam with both ends simply-supported in Figure 2.4 as an 
example, its kinematic and elastic energies (Rao, 2004, 864) are  

 
𝑇𝑇 = 1

2 ∫ 𝜇𝜇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
�
2
𝑑𝑑𝑑𝑑  , 𝑈𝑈 = 1

2 ∫𝐸𝐸𝐸𝐸 �
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

�
2
𝑑𝑑𝑑𝑑 

 
in which w, µ and EI are the vertical deflection, the mass per unit length and 
the flexural rigidity of the beam, respectively. Both energies are distributed 
in every infinitesimal segment of the beam. In principle, the beam can take 
up any admissible configurations that satisfy the zero-deflection w = 0 and 
zero-moment 𝑑𝑑2𝑤𝑤/𝑑𝑑𝑥𝑥2 = 0 conditions at x = 0 and x = L as well as the 
combinations of these configurations. A set of admissible configurations 
specified in terms of the w is 
  

{𝑤𝑤 = sin(𝑛𝑛𝑛𝑛/𝐿𝐿) ,𝑛𝑛 = 1,2,3, …}, 
 

see Figure 2.5 for n = 1 to 5, and their combination deals to 
 

𝑤𝑤 = �𝑐𝑐𝑛𝑛 sin(𝑛𝑛𝑛𝑛/𝐿𝐿)
∞

𝑛𝑛=1

 

 
in which 𝑐𝑐𝑛𝑛 s are the dofs. Though the summation index can go up to 
infinity, only the first few terms are of practical importance as the 
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subsequent terms will die out quickly due to energy dissipation or damping 
to be introduced in Section 2.3. The dof used in a continuous system often 
refers to the amplitude of a displacement mode. For this reason, these dofs 
are sometimes termed as modal dofs or coefficients. 
  

 
 

Figure 2.4: A beam with both ends simply supported. 
 

 
 

Figure 2.5: Some admissible configurations for the beam with both ends 
simply supported. 

2.3 Viscous, Structural and Coulomb Damping 

Damping which opposes the motion and dissipates the energy of a vibration 
system has not been considered in the discussed examples. In this section, 
viscous, structural and Coulomb dampings which are the most abundant 
forms of damping are introduced (Rao, 2004, 139,157) (Thomson and 
Dahleh, 1993, 27,35,72). 

Viscous force or drag is experienced by a body moving in a fluid 
medium. Consider the viscous fluid between two plates at separation h 
shown in Figure 2.6. The lower plate is fixed and the upper plate is moving 
at velocity V. The velocities of the fluid in contact with the two plates will 
move at the same velocities as the plates. Between the plates, the fluid 
velocity u can be approximated as linearly varying, i.e.  
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𝑢𝑢 =
𝑉𝑉𝑉𝑉
ℎ

 
 
where y is the distance from the lower fixed plate.  

Applying the Newtonian law of viscosity, the horizontal shear stress 
would be proportional to the velocity gradient du/dy of the fluid, i.e.  
 

𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜇𝜇
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜇𝜇𝜇𝜇
ℎ

 

 
 

 
 
 
 
 

 
 

              (a) 
                                   (b) 

 
Figure 2.6: (a) Two parallel plates with a viscous fluid in between. (b) The 

viscous force F experienced by the moving plate. 
 
In the relation, µ is the fluid property known as viscosity and is a measure 
of how “sticky” the fluid is. Thus, the force resisting the motion of the upper 
plate of area A is  

 

𝐹𝐹 = 𝐴𝐴 × 𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝜇𝜇𝜇𝜇
ℎ
𝑉𝑉 = 𝑐𝑐𝑐𝑐 

 
in which c = µA/h is the damping coefficient. In vibration control, viscous 
damping is mostly realized in a dashpot in which fluid flows through the 
narrow gap between the piston and the cylinder and/or orifice(s) connecting 
the two sides of the piston. The velocity of the fluid flow and, thus, the 
damping force is proportional to the time derivative of the dashpot’s 
extension. A commonly adopted symbol for the dashpot is shown in Figure 
2.7 in which the single-dof spring-trolley system is damped by a dashpot of 
damping coefficient c.  

 

h 
Viscous 

fluid 

 

moving plate of area 
 V 

fixed plate 
 

y u = Vy/h 

moving plate of area 
 V 

fixed plate 

y u = Vy/h 

F F 
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Assuming the displacement takes up the form of Equation (2.4), the 
viscous damping force would be 

  
 𝐹𝐹 = 𝑐𝑐𝑥̇𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 + ∅).     (2.7) 

 
The energy dissipated by dashpot per vibration cycle is 
 

𝑊𝑊𝑑𝑑 = � 𝐹𝐹𝐹𝐹𝐹𝐹
𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= � 𝑐𝑐𝑥̇𝑥2𝑑𝑑𝑑𝑑

𝑡𝑡𝑜𝑜+
2𝜋𝜋
𝜔𝜔

𝑡𝑡𝑜𝑜

= 𝑐𝑐(𝑋𝑋𝑋𝑋)2 � 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜔𝜔𝜔𝜔 + ∅)𝑑𝑑𝑑𝑑

𝑡𝑡𝑜𝑜+
2𝜋𝜋
𝜔𝜔

𝑡𝑡𝑜𝑜

 

                                                   = 𝜋𝜋𝜋𝜋𝜔𝜔𝑋𝑋2.       (2.8) 
 

 
 

Figure 2.7: A spring-trolley system damped by a dashpot 
with damping coefficient c. 

 
In structural or material damping, the energy dissipated per vibration 

cycle takes the following form  
 

𝑊𝑊𝑑𝑑 = 𝛼𝛼𝑋𝑋2           (2.9) 
 
in which α is a constant independent of the angular frequency of the 
vibration. Figure 2.8 shows a typical hysteresis loop in the stress-strain plot 
of solid materials. The area inside the loop is the energy dissipated per unit 
volume of the material in a loading-unloading or vibration cycle. It is trivial 
that the area inside the loop is proportional to the square of the vibration 
amplitude if the loop contracts or expands equally in all directions for 
different vibration amplitudes, 

Comparing Equation (2.8) and Equation (2.9) leads to the following 
equivalent viscous damping coefficient for the structural damping, 

𝑐𝑐𝑒𝑒𝑒𝑒 =
𝛼𝛼
𝜋𝜋𝜔𝜔
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Figure 2.8: Hysteresis effect in the stress-strain and  
force-displacement plots. 

 
Coulomb damping occurs when two dry solid surfaces rub against each 

other. The magnitude of the Coulomb damping force or, simply, dry friction 
is proportional to the normal reaction force between the two contacting 
surfaces. Assuming the normal reaction force is constant, Figure 2.9 plots 
the viscous damping force(in solid line) and dry friction force(in chained 
line) against the velocity. As the forces always oppose the velocity, they are 
negative when the velocity is positive and vice versa. For the Coulomb 
damping, the energy dissipation per vibration cycle of amplitude X is 

 
𝑊𝑊𝑑𝑑 = 4𝑋𝑋 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 

 
 

Figure 2.9: Viscous damping force (in solid line) and dry friction force  
(in chained line) versus the velocity.  
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2.4 Harmonic and Periodic Motions 

An oscillatory motion is termed a harmonic or a simple harmonic motion if 
the dof, say x, describing the motion can be expressed as  
 

𝑥𝑥 = 𝑋𝑋 sin(𝜔𝜔𝜔𝜔 + ∅) 
 
Hence, the spring-trolley and the simple pendulum sdof systems discussed 
in Section 2.1 are undergoing simple harmonic motions. An oscillatory 
motion x is periodic if it repeats itself at a fixed interval of time, i.e. 
 

𝑥𝑥(𝑡𝑡 + 𝜏𝜏) = 𝑥𝑥(𝑡𝑡)      (2.10) 
 
where τ is the fixed time interval and is known as the period of the motion. 
It is trivial that harmonic motion is a special type of periodic motion with 
period 2π/ω.  

A periodic function of period τ can always be expressed as a Fourier 
series which is a summation series of sine and cosine functions of periods 
𝜏𝜏/n where n = 0, 1, 2, 3, …, i.e.  
 

𝑥𝑥(𝑡𝑡) = 𝑎𝑎0
2

+ ∑ �𝑎𝑎𝑛𝑛 cos(2𝑛𝑛𝑛𝑛
𝜏𝜏
𝑡𝑡) + 𝑏𝑏𝑛𝑛 sin(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)�∞

𝑛𝑛=1     (2.11) 
 
and the first term arises from n = 0 [1,2]. In other words, a periodic motion 
can be regarded as a compound harmonic motion. Furthermore,  

 
𝑎𝑎𝑛𝑛 cos(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)  and  𝑏𝑏𝑛𝑛 sin(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡) 

 
are termed as the n-th harmonic components of x(t). To find ans and bns for 
a given x(t), both sides of (2.11) can be multiplied with 1, cos(2𝑚𝑚𝑚𝑚

𝜏𝜏
𝑡𝑡) and 

sin(2𝑚𝑚𝑚𝑚
𝜏𝜏
𝑡𝑡), and integrated from 𝑡𝑡𝑜𝑜 to 𝑡𝑡𝑜𝑜 + 𝜏𝜏, namely 

 

    ∫ 𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑡𝑡𝑜𝑜+𝜏𝜏
𝑡𝑡𝑜𝑜

= ∫ 𝑎𝑎0𝑑𝑑𝑑𝑑
𝑡𝑡𝑜𝑜+𝜏𝜏
𝑡𝑡𝑜𝑜

 

          +∑ ∫ �𝑎𝑎𝑛𝑛 cos(2𝑛𝑛𝑛𝑛
𝜏𝜏
𝑡𝑡) +  𝑏𝑏𝑛𝑛 sin(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)� 𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
∞
𝑛𝑛=1 , 

   ∫ 𝑥𝑥(𝑡𝑡) cos(2𝑚𝑚𝑚𝑚
𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
= ∫ 𝑎𝑎0 cos(2𝑚𝑚𝑚𝑚

𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
 

+∑ ∫ cos(2𝑚𝑚𝑚𝑚
𝜏𝜏
𝑡𝑡) �𝑎𝑎𝑛𝑛 cos(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡) + 𝑏𝑏𝑛𝑛 sin(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)� 𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
∞
𝑛𝑛=1 , 

   ∫ 𝑥𝑥(𝑡𝑡) sin(2𝑚𝑚𝑚𝑚
𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
= ∫ 𝑎𝑎0 sin(2𝑚𝑚𝑚𝑚

𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
 

+∑ ∫ sin(2𝑚𝑚𝑚𝑚
𝜏𝜏
𝑡𝑡) �𝑎𝑎𝑛𝑛 cos(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡) + 𝑏𝑏𝑛𝑛 sin(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)� 𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
∞
𝑛𝑛=1     (2.12) 
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in which m is a non-zero positive integer and to is an arbitrary instant of 
time. By invoking 
  
∫ cos(2𝑚𝑚𝑚𝑚

𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
= ∫ sin(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
= ∫ cos(2𝑚𝑚𝑚𝑚

𝜏𝜏
𝑡𝑡) sin(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
= 0 , 

 
∫ cos(2𝑚𝑚𝑚𝑚

𝜏𝜏
𝑡𝑡) cos(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
= ∫ sin(2𝑚𝑚𝑚𝑚

𝜏𝜏
𝑡𝑡) sin(2𝑛𝑛𝑛𝑛

𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
= 𝛿𝛿𝑚𝑚𝑚𝑚

2
  

 
where 𝛿𝛿𝑚𝑚𝑚𝑚  is equal to unity when m = n and zero otherwise, the three 
relations in Equation (2.12) yield 
 

𝑎𝑎0 = 2
𝜏𝜏 ∫ 𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
 , 𝑎𝑎𝑛𝑛 = 2

𝜏𝜏 ∫ 𝑥𝑥(𝑡𝑡) ∙ cos(2𝑛𝑛𝑛𝑛
𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
, 

 
𝑏𝑏𝑛𝑛 = 2

𝜏𝜏 ∫ 𝑥𝑥(𝑡𝑡) ∙ sin(2𝑛𝑛𝑛𝑛
𝜏𝜏
𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑜𝑜+𝜏𝜏

𝑡𝑡𝑜𝑜
,  

 
respectively. 

2.5 Non-Periodic Motion  

Contrary to the periodic motion, the non-periodic motion is a type of motion 
that does not repeat itself as described in Equation (2.10).  

A typical example of non-periodic motion is a ball dropping vertically 
downward from a height. The ball will be rebounded by the floor. Let the 
coefficient of restitution be e < 1, the velocity (upward as positive) of the 
ball before the first rebound be -u and the air resistance be negligible, the 
following list shows the velocity, the time of flight and the maximum height 
reached by the ball after each rebound. 

 
              velocity after  time of flight    maximum height 
       the rebound         after the rebound    after the rebound 
 Rebound 1     eu  2eu/g     (eu)2/(2g) 
 Rebound 2     e2u  2e2u/g     (e2u)2/(2g) 
      :         :    :              :  
 Rebound n     enu  2enu/g     (enu)2/(2g) 
 
The motion of the ball is non-periodic because both the time of flight and 
the maximum height of the ball after each rebound are diminishing. Of 
course, the motion becomes periodic if e = 1 which implies no energy is lost 
in the rebound.  
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Exercise Questions 

   Q1. A light rigid rod OA of length 3l is hanged to a smooth pivot O. A 
mass m is attached to A whilst two horizontal springs of spring constant k 
are attached to the rod at l and 2l from O as shown in Figure 2Q1. When the 
rod is vertical, the spring force is zero. Assuming that the swinging angle is 
small, derive the kinematic, gravitational and elastic energies of the system. 
Hence, find the frequency of the oscillation. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2Q1: A light rod OA pivoted at O with attached mass and springs. 

    
   Q2. A pendulum is formed by hanging a uniform rigid rod of mass m 
and length l to a smooth pivot. Assuming that the swinging angle is small, 
derive the kinematic and potential energies of the rod. Hence, find the 
frequency of the oscillation. 
 
   Q3. The initial displacement and initial velocity of a simple harmonic 
motion of frequency 5 Hz are 0.01 m and 0.1 m/s, respectively. Determine 
the displacement solution. 

o 
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   Q4. The following figure shows a rectangular waveform x(t) of period 
2π/ω and magnitude A. Determine the Fourier series of x(t).  

 

 
 

Figure 2Q4: A rectangular waveform x(t). 



 

CHAPTER 3 

FREE AND FORCED VIBRATION OF SINGLE 
DEGREE OF FREEDOM SYSTEMS 

 
 
 
In translating the oscillatory or oscillatory mechanical systems in the 
physical world into mathematical models in the conceptual world there is 
always a question of how accurate and realistic of representation of the 
physical system. It is generally logical to approach the problem by choosing 
a simplest model and if one desires, more realistic model can be formulated 
at a later stage. The simplest model is generally governed by the economy 
of solution. This simplest model can often provide information and insight 
to the problem at hand. 
    The present chapter therefore begins with the presentation of 
translational and rotational elements of oscillatory systems, formulation and 
analysis of simplest dynamic systems. The single degree-of-freedom (dof) 
systems without applied forces are dealt with in Section 3.1. Section 3.2 
deals with single dof linear systems under harmonic forces. Section 3.3 
introduces single dof linear systems under periodic forces. Section 3.4 is 
concerned with non-harmonically and non-periodic forced single dof linear 
systems. Questions and their solutions are included in Section 3.5. 

3.1 Free Vibration of Single Degree of Freedom Systems 

The presentation in this section is as follows. First, the systems in the 
physical world as shown in Figure 3.1 are given. Second, their 
corresponding models in the conceptual world are presented in Figure 3.2. 
Third, the formulation and analysis of one of the models in the conceptual 
world is selected to illustrate the solution steps. 
 
Stage 1: Systems in Physical World 

 There are many systems in the engineering physical world. It suffices to 
give two common examples for the purpose of illustrating the process of 
modelling. These two systems in the physical world are the automobile and 
television tower as sketched in Figure 3.1. 
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Stage 2: Systems in Conceptual World 
The systems in Figure 3.1 may be represented by the simplest mathematical 
models, known as lumped-parameter models or discrete systems, in the 
conceptual world. They are illustrated in Figure 3.2. 
 

 
 

Figure 3.1: Systems in physical world. 
 
Stage 3: Formulation and Solution 
The equation of motion governed each of the conceptual world models 
sketched in Figure 3.2 may now be derived. In general, the equation of free 
vibration for a single dof system may be obtained by one of the following 
approaches: 
• Definition of simple harmonic motion, 
• Knowledge of oscillatory motion, 
• Law of conservation of energy, 
• Newton's second law of motion, and 
• Method of virtual work or virtual power. 
 
Consider the discrete system on the left-hand side (lhs) in Figure 3.2. The 
latter and its free-body diagram (FBD) are included in Figure 3.3. 
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Figure 3.2: Single dof models of systems in Figure 3.1. 
 
By Newton's second law of motion for the lumped mass, 
 

𝑚𝑚𝑥̈𝑥 =  �𝐹𝐹 = 𝑚𝑚𝑚𝑚 − 𝑘𝑘(∆ + 𝑥𝑥) −  𝑐𝑐𝑥̇𝑥, 
 
in which m is the mass, k spring constant, and c damping coefficient of the 
system, respectively. The symbol ∑𝐹𝐹 denotes summing of the forces. The 
spring force kΔ is equal to the gravitational force mg acting on the mass m. 
That is, mg = kΔ.  

 

 
Figure 3.3: Single dof system and free-body diagram. 

 
Therefore, the equation of motion for the above system is 
 

𝑚𝑚𝑥̈𝑥 +  𝑐𝑐𝑥̇𝑥 +  𝑘𝑘𝑘𝑘 = 0.                                               (3.1) 
 
The first, second and third terms on the lhs of Equation (3.1) are the inertia, 
damping, and restoring forces, respectively. 


