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PREFACE 
 
 
 
The book is based on original works of the authors of the book published 

in peer-reviewed scientific journals. Problems of quantum optics in simple 

optical systems are studied in the book, namely, generation of the second 

and third harmonics and generation of the second and third subharmonics, 

as well as two- and three-photon absorption in the case of two- and three-

photon perturbations of the absorbing modes, respectively. Quantum 

optics problems, such as quantum behaviour of unstable optical systems 

(second and third harmonic generation), as well as problems related to 

obtaining squeezed, superposition, and entangled states of optical fields in 

simple optical systems, are considered. Although the authors tried to write 

fewer formulas and gave a lot of graphic illustrations of the behaviour of 

the considered optical systems, some knowledge in the field of quantum 

optics and Monte Carlo algorithms for studying quantum behaviour of 

systems is required in order to understand the materials. The authors are 

grateful to Helen Edwards for the idea of writing this book and the moral 

support shown during the work on the book. 



CHAPTER 1 

QUANTUM THEORY OF UNSTABLE BEHAVIOR 
OF THE INTRACAVITY SECOND HARMONIC 

GENERATION PROCESS 
 
 
 

Introduction 

All materials in this chapter are taken from [1–7].  

This section investigates the dynamics of quantum fluctuations of the 

number of photons and phases of the fundamental and second harmonic 

modes in the unstable region of the system for the process of intracavity 

generation of the second harmonic. The phase and the number of photon 

distribution functions of these modes are calculated in the positive P-

representation [8]. Joint distribution functions of the number of photons 

and phases of the field modes are also calculated. It is shown that the 

dynamics of the semiclassical value of the number of photons of the field 

modes can differ considerably from the dynamics of the solution to the 

Langevin equations for the number of photons of the same modes. In 

particular, in the unstable region, depending on the initial state of the 

system, the dynamics of the semiclassical value of the number of photons 

can be without oscillations, whereas the solution to the Langevin equations 

for the same initial state of the system may have strong oscillations. 

Algorithms for calculating the distribution functions of photon numbers, 

as well as for calculating the joint distribution function of photon numbers 

of the interacting modes of the field, are given in the positive P-
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representation. These algorithms can also be applied to calculate both the 

phase and the joint distribution function of the number of photons and 

phases of the interacting modes. It is shown that, at the critical point, the 

distribution functions of the number of photons of the fundamental mode 

and of the second harmonic mode have single-peak structures, which are 

asymmetric with respect to the most probable value of the number of 

photons of the corresponding modes. In the unstable region, the 

distribution functions of the number of photons of both modes gradually 

transform into a two-component structure. Each of the components of the 

distribution functions represents a state of the mode in which it persists 

most of the time. In the unstable region, the joint distribution function of 

the photon numbers of the fundamental and second harmonic mode also 

has a two-peak structure. The above results were obtained in the case of 

system evolution from an initial state, which has a normal distribution of 

stochastic amplitudes of the field modes. It is shown that, in the P-

representation, in the unstable region of interaction of the system and in 

the region of large interaction times, the distribution functions of the 

phases of the field modes also have a two-component structure, which is in 

contrast to the stable region. Unlike the corresponding photon number 

distribution functions, the heights of the peaks of the two components of 

the state of the phase are equal; this means that the system spends the same 

amount of time in these components of the state. It is shown that the 

dynamics of the average value of the phase of the field modes depends 

strongly on the initial state in the unstable region. In the case of evolution 

of the system from an initial state, which has a normal distribution of 

stochastic amplitudes of the field modes, the average values of the phases 

of the field modes do not change in time in the region of large interaction 

times, whereas in the case of a coherent initial state of both modes and in 
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the case of a nonzero average value of the phases of the initial state of the 

system, the average values of the phase oscillate around zero (around the 

phase of the perturbation field). In the region of instability, in the case of 

coherent initial states of the field modes, oscillation is observed for both 

the phase and joint distribution functions of the number of photons and 

phases, as well as the joint phase distribution functions of the interacting 

modes of the field. The behaviour of the joint distribution function of the 

phases of the field modes was studied depending on the system’s distance 

from the critical point. It is shown that, in the unstable region, the joint 

distribution function of phases of the field modes has a wide dip around 

the point representing the classical phase matching of the field modes. The 

latter shows that the classical phase matching has a zero probability of 

realization in the unstable region. When the system changes into the stable 

region, a peak is obtained instead of a dip at this point, which corresponds 

to the classical phase matching of interacting modes. 

The dynamics of the quantum entropy, of the Wigner functions, and of the 

quadrature amplitudes of the field modes are investigated, applying the 

Monte Carlo wave-function method. It is shown that, depending on the 

increase in the amplitude of the perturbation field, the quantum entropy of 

the field modes increases, and the field modes can localize in coherent, 

squeezed, and unstable states. In the region of a strong perturbation field, 

the modes of the field first localize in squeezed states, followed by a decay 

of the squeezed states and a gradual localization of the modes in unstable 

states. 

For the process of intracavity generation of the second harmonic, the 

dynamics of correlation of quadrature amplitude fluctuations of the 

fundamental and second harmonic modes is studied, depending on the 
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nonlinear coupling coefficient between the modes. It is shown that, in this 

system, depending on the nonlinear coupling coefficient, entangled states 

of the field in relation to variables of quadrature amplitudes may be 

obtained. It is also shown that, depending on the value of the nonlinear 

coupling coefficient, the entanglement of the states of field modes, which 

is related to one quadrature amplitude, may vanish, whereas the states of 

the field modes remain entangled in relation to the other quadrature 

amplitude. 

1.1 Nonlinear System, Langevin Equations,  
and Quantum Noise 

We consider a model of second harmonic generation inside a two-mode 

resonator. A nonlinear medium is placed inside a cavity tuned to the 

frequencies of the fundamental mode 𝜔ଵ and the second harmonic mode 𝜔ଶ = 2𝜔ଵ. The system is perturbed externally by a coherent field at a 

frequency of the fundamental mode. The equations for the density matrix 

of the optical field of this system may be written in the interaction picture 

as follows: 

డఘడ௧ = (𝑖ℏ)ିଵ[𝐻୧୬୲,𝜌] + 𝐿ଵ(𝜌) + 𝐿ଶ(𝜌).    (1.1.1) 

 Here, the first term represents the external perturbation of the system and 

the nonlinear interaction of optical fields. 𝐻୧୬୲ = 𝑖ℏ𝐸(𝑎ଵ − 𝑎ଵା) + 𝑖ℏ𝜒(𝑎ଵଶ𝑎ଶା − 𝑎ଵାଶ𝑎ଶ),  (1.1.2) 

where 𝑎௜ା and 𝑎௜ (𝑖 = 1,2) are the creation and annihilation operators for 

the corresponding modes, respectively;𝜒 is the coefficient of coupling 

between the modes, which is proportional to the nonlinear susceptibility 



Quantum Theory of Unstable Behavior of the Intracavity Second 
Harmonic Generation Process 

5 

𝜒(ଶ); and 𝐸 is the amplitude of the classical perturbing field at the 

frequency 𝜔ଵ. 

The 𝐿ଵ(𝜌) and 𝐿ଶ(𝜌) superoperators describe the damping of the 

fundamental and second harmonic modes through the resonator mirrors: 

 𝐿௜(𝜌) = −𝛾௜(2𝑎௜𝜌𝑎௜ା − 𝑎௜ା𝑎௜𝜌 − 𝜌𝑎௜ା𝑎௜), (𝑖 = 1,2).  (1.1.3) 

Here, 𝛾ଵ and 𝛾ଶ are the damping rates of the respective modes. 

From Eqs. (1.1.1)–(1.1.3), in the positive P-representation [8], the 

following Langevin equations may be derived for the stochastic 𝛽௜ ,𝛼௜ 
amplitudes  of the field: 

డఈభడ௧ = 𝐸 − 𝛾ଵ𝛼ଵ − 2𝜒𝛽ଵ𝛼ଶ + (−2𝜒𝛼ଶ)ଵ/ଶ𝜉ଵ(𝑡), 

డఉభడ௧ = 𝐸 − 𝛾ଵ𝛽ଵ − 2𝜒𝛼ଵ𝛽ଶ − (−2𝜒𝛽ଶ)ଵ/ଶ𝜉ଶ(𝑡), 

డఈమడ௧ = −𝛾ଶ𝛼ଶ + 𝜒𝛼ଵଶ, 

డఉమడ௧ = −𝛾ଶ𝛽ଶ + 𝜒𝛽ଵଶ,     (1.1.4) 

where 𝜉ଵ(𝑡) and 𝜉ଶ(𝑡) are independent Langevin sources of noise with the 

following nonzero correlation functions:     < 𝜉௜(𝑡)𝜉௝(𝑡 ′) >= 𝛿௜௝𝛿(𝑡 − 𝑡 ′).    (1.1.5)  

In terms of the stochastic variables of the photon number and phase,   

𝑛௞ = 𝛼௞𝛽௞, 𝜙௞ = ଵଶ௜ 𝑙𝑛 ቀఈೖఉೖቁ (𝑘 = 1,2).   (1.1.6) 
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From Eq. (1.1.4) and with the help of the Ito formulas, we get 𝜕𝑛ଵ𝜕𝑡 = 2𝐸𝑛ଵଵ/ଶ − 2𝛾ଵ𝑛ଵ − 4𝜒𝑛ଵ𝑛ଶଵ/ଶ 𝑐𝑜𝑠(𝜙ଶ − 2𝜙ଵ) +  (−2𝜒)ଵ/ଶ𝑛ଵଵ/ଶ𝑛ଶଵ/ସ ×  ሼ𝜉ଵ(𝑡) 𝑒𝑥𝑝[ 𝑖(𝜑ଶ − 2𝜑ଵ)/2] − 𝜉ଶ(𝑡) 𝑒𝑥𝑝[ − 𝑖(𝜙ଶ − 2𝜙ଵ)/2]ሽ, 
డ௡మడ௧ = −2𝛾ଶ𝑛ଶ + 2𝜒𝑛ଵ𝑛ଶଵ/ଶ 𝑐𝑜𝑠(𝜙ଶ − 2𝜙ଵ), 

𝜕𝜙ଵ𝜕𝑡 = − 𝐸𝑛ଵଵ/ଶ 𝑠𝑖𝑛(𝜙ଵ) − 2𝜒𝑛ଶଵ/ଶ 𝑠𝑖𝑛(𝜙ଶ − 2𝜙ଵ) + 
 𝜒𝑛ଵି ଵ𝑛ଶଵ/ଶ 𝑠𝑖𝑛(𝜙ଶ − 2𝜙ଵ) + 12𝑖 (−2𝜒)ଵ/ଶ𝑛ଵି ଵ/ଶ𝑛ଶଵ/ସ ×  ሼ𝜉ଵ(𝑡) 𝑒𝑥𝑝[ 𝑖(𝜙ଶ − 2𝜙ଵ)/2] − 𝜉ଶ(𝑡) 𝑒𝑥𝑝[ − 𝑖(𝜙ଶ − 𝜙ଵ)/2]ሽ , 

డథమడ௧ = 𝜒𝑛ଵ𝑛ଶି ଵ/ଶ 𝑠𝑖𝑛( 2𝜙ଵ − 𝜙ଶ).    (1.1.7) 

In a semiclassical approach, i.e., neglecting the noise sources in (1.1.7), for 

average photon numbers in the steady-state limit (𝛾ଵ,ଶ𝑡 >> 1), we obtain  𝐸(𝑛ଵ଴)ଵ/ଶ − 𝛾ଵ𝑛ଵ଴ − 2𝜒𝑛ଵ଴(𝑛ଶ଴)ଵ/ଶ = 0,  −𝛾ଶ𝑛ଶ଴ + 𝜒𝑛ଵ଴(𝑛ଶ଴)ଵ/ଶ = 0,

 𝜙ଵ଴ = 𝜙ଶ଴ = 0.     (1.1.8)  

After linearization with respect to small fluctuations (𝛿𝑛௜ = 𝑛௜ − 𝑛௜଴, 𝛿𝜙௜ = 𝜙௜ − 𝜙௜଴) near the steady-state solutions 𝑛௜଴, 𝜙௜଴ (𝑖 = 1,2), equations 

(1.1.7) are converted to  

డడ௧ ൤𝛿𝑛ଵ𝛿𝑛ଶ൨ = 𝐴௡ ൤𝛿𝑛ଵ𝛿𝑛ଶ൨,     డడ௧ ൤𝛿𝜙ଵ𝛿𝜙ଶ൨ = 𝐴థ ൤𝛿𝜙ଵ𝛿𝜙ଶ൨,  (1.1.9) 

where 𝐴௡ and 𝐴థ are as follows: 
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𝐴௡  =   ቈ−𝛾ଵ − 2𝜒(𝑛ଶ଴)ଵ/ଶ  − 2𝛾ଶ 2𝜒(𝑛ଶ଴)ଵ/ଶ    𝛾ଶ ቉ , 
𝐴థ = ൤−𝛾ଵ + 2𝜒(𝑛ଶ଴)ଵ/ଶ(1 − (𝑛ଵ଴)ିଵ)  − 𝜒(𝑛ଶ଴)ଵ/ଶ(2 − (𝑛ଵ଴)ିଵ)   2𝛾ଶ            − 𝛾ଶ ൨. 
             (1.1.10) 

We assume that the classically characterized driving field phase is equal to 

zero. The eigenvalues 𝜆ଵ and 𝜆ଶ of the 𝐴௡matrix and 𝜆ଷand 𝜆ସ of the 𝐴ఝ 

matrix for 𝑛ଵ >> 1 are 

𝜆ଵ,ଶ = −12 (𝛾ଵ + 𝛾ଶ + 2𝜒(𝑛ଶ଴)ଵ/ଶ) ±  ଵଶ ൣ(𝛾ଵ − 𝛾ଶ + 2𝜒(𝑛ଶ଴)ଵ/ଶ)ଶ − 16𝜒𝛾ଶ(𝑛ଶ଴)ଵ/ଶ൧ଵ/ଶ, 

𝜆ଷ,ସ = − 12 (𝛾ଵ + 𝛾ଶ − 2𝜒(𝑛ଶ଴)ଵ/ଶ)  ± ଵଶ ൣ(𝛾ଵ − 𝛾ଶ − 2𝜒(𝑛ଶ଴)ଵ/ଶ)ଶ − 16𝜒𝛾ଶ(𝑛ଶ଴)ଵ/ଶ൧ଵ/ଶ.        (1.1.11) 

The real parts of 𝜆ଵand 𝜆ଶ are always negative, but the 𝜆ଷ and 𝜆ସ 

coefficients at the critical values 

 𝑛ଶ௖௥ = ቀఊభାఊమଶఞ ቁଶ, 𝑛ଵ௖௥ = ఊమ(ఊభାఊమ)ଶఞమ ,  𝐸௖௥ = (2𝛾ଵ + 𝛾ଶ) ቂఊమ(ఊభାఊమ)ଶఞమ ቃଵ/ଶ
       

       (1.1.12) 

become imaginary. It means that, at this point (the Hopf bifurcation point), 

the small fluctuations of the phase do not damp. This is a physical reason 

for the unstable behaviour of the entire optical system (to right of the 

bifurcation point). 
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 The Langevin system of equations (1.1.4) can be written in the following 

differential form: 𝑑𝛼ଵ = (𝜀 − 𝛼ଵ − 2𝑘𝛽ଵ𝛼ଶ)𝑑𝜏 + (−2𝑘𝛼ଶ)ଵ/ଶ𝑤ଵ(𝜏)(𝑑𝜏)ଵ/ଶ, 𝑑𝛽ଵ = (𝜀 ∗ −𝛽ଵ − 2𝑘𝛼ଵ𝛽ଶ)𝑑𝜏 + (−2𝑘𝛽ଶ)ଵ/ଶ𝑤ଶ(𝜏)(𝑑𝜏)ଵ/ଶ, 𝑑𝛼ଶ = (−𝑟𝛼ଶ + 𝑘𝛼ଵଶ)𝑑𝜏, 𝑑𝛽ଶ = (−𝑟𝛽ଶ + 𝑘𝛽ଵଶ)𝑑𝜏.     (1.1.13) 

Here, the quantity 𝜏 = 𝛾ଵ𝑡 is the scaled time, 𝑟 = 𝛾ଶ 𝛾ଵ⁄  is the ratio of the 

damping rates of the modes inside the cavity, 𝑘 = 𝜒 𝛾ଵ⁄  is the scaled 

constant of coupling between the modes, and 𝜀 = 𝐸 𝛾ଵ⁄  is the scaled 

perturbation at the frequency of the fundamental mode. The independent 

noise sources 𝑤ଵ(𝜏) and 𝑤ଶ(𝜏) have zero mean values: < 𝑤ଵ(𝜏) >=<𝑤ଶ(𝜏) >= 0. Nonzero values only have the means of squares of these 

quantities: < [𝑤ଵ(𝜏)]ଶ >=< [𝑤ଶ(𝜏)]ଶ >= 1.    (1.1.14) 

Without noise sources and at long times of interaction, the system of 

equations (1.1.13) has a stable stationary solution only for small values of 

the perturbing field (𝜀 < 𝜀௖௥). The quantity 𝜀௖௥is the Hopf bifurcation 

point and is determined by the formula  𝜀௖௥ = (2 + 𝑟)[𝑟(1 + 𝑟)/(2𝑘ଶ)]ଵ/ଶ.    (1.1.15) 

When 𝜀 > 𝜀௖௥, small time fluctuations of phases of the fundamental and 

second harmonic modes cease damping. The system loses its stability 

around the stationary solutions to Eqs. (1.1.13) without noise terms. In this 

region, classical solutions for numbers of photons get into a self-
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oscillation regime. Our calculations are based on a simulation of noise 

sources. We model these sources by the following formulas [9]: 𝑤ଵ(𝜏) = [−2 𝑙𝑛( 𝑧ଵ)]ଵ/ଶ 𝑐𝑜𝑠( 2𝜋𝑧ଶ), 𝑤ଶ(𝜏) = [−2 𝑙𝑛( 𝑧ଵ)]ଵ/ଶ 𝑠𝑖𝑛( 2𝜋𝑧ଶ),   (1.1.16) 

 where 𝑧ଵ and 𝑧ଶ are independent random numbers with a uniform 

distribution in the interval (0;1). For the random quantities in expression 

(1.1.16), we have < 𝑤௜(𝜏) >= 0,  < 𝑤௜(𝜏)𝑤௝(𝜏) >= 𝛿௜௝ (𝑖, 𝑗 = 1,2).  (1.1.17) 

For the solution of the system of equations (1.1.13), the Euler numerical 

technique for differential equations is used, which is not quick; however, 

unlike Runge-Kutta methods, it is more correct for solving equations with 

Langevin noise sources [10]. This approach was initially developed in [11] 

to calculate the dynamics of the photon numbers in SHG. The lack of 

numerical solutions to the Langevin equations, in particular, the 

appearance of nonphysical spikes at large times and at a sufficient distance 

to the right of the bifurcation point, is discussed in [10]. It was shown in 

[12] that the deterministic part of the quantum stochastic equations for a 

wavefunction can be solved with the Runge-Kutta methods, but the 

stochastic part should be simulated with the more reliable Euler’s method. 

1.2 Semiclassical and Quantum Solutions of Langevin 
Equations 

Let us consider the semiclassical solutions of Eqs. (1.1.13) for photon 

numbers that were for the first time discovered in [13]. Figure 1.1 (curve 

1) shows the photon number dynamics of the second harmonic with the 
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initial conditions 𝛼௜(0) = 𝛽௜(0) = 1, (𝑖 = 1,2), using the semiclassical 

approach (the noise sources in (1.1.13) are neglected). As one can see, 

under such conditions, the self-pulsing regime is absent. Curve 2 

represents the real part of the photon number 𝑅𝑒(𝛽ଶ𝛼ଶ) = 𝑅𝑒 𝑛ଶ     (1.2.1) 

for a single solution of Langevin equations (with noise sources) under the 

same conditions. The imaginary part 𝐼𝑚(𝛽ଶ𝛼ଶ)  is not taken into account, 

as it becomes zero when averaged over an ensemble with a large number 

of realizations.  

The absence of a self-pulsing regime in the semiclassical approach can be 

connected with the fact that the initial values 𝛽௜ ,𝛼௜ are absolutely real, so 

the initial phase is equal to the phase in the steady-state solution (𝛿𝛷 = 0) 

[13]. Meanwhile, the presence of quantum noise in realizations of 

Langevin equations leads to small phase fluctuations around the steady-

state solution. This is the reason for the change of the system into the self-

pulsing region in a separate solution. That is why it is interesting to 

consider the quantum dynamics of the phase in SHG in order to describe 

and further investigate the instability in this process. 

In the region of instability 𝐸 > 𝐸௖௥, the temporal behaviour of the number 

of photons of the fundamental mode is analogous to the temporal 

behaviour of the number of photons of the second harmonic mode. 

1.3 Quantum Dynamics of Photon Numbers of the Modes 

First, let us study the temporal behaviour of the photon numbers of the 

fundamental mode and of the second harmonic in the instability region of 
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the system. The average value of the number of photons of the optical 

system is calculated as the mathematical expectation of the stochastic 

quantities: 𝑛௜(𝜏) = 𝑅𝑒ሼ𝛼௜(𝜏)𝛽௜(𝜏)ሽ, where 

⟨𝑛௜(𝜏)⟩ = 𝑙𝑖𝑚ே→∞ ቀଵே ∑ 𝑛௜(௝)(𝜏)ே(௝)ୀଵ ቁ,    (𝑖 = 1,2).  (1.3.1) 

Here, (𝑗) is the realization number and N is the total number of 

realizations of the set of equations (1.1.14). 

In this section, we calculate the quantum dynamics of the number of 

photons of the system in the case of a normal distribution of the initial 

values of stochastic amplitudes of the fundamental mode and of the second 

harmonic. 𝛼ଵ(0) = [−2 𝑙𝑛( 𝑧ଵ)]ଵ/ଶ 𝑐𝑜𝑠( 2𝜋𝑧ଶ) + 𝑖[−2 𝑙𝑛( 𝑧ଵ)]ଵ/ଶ 𝑠𝑖𝑛( 2𝜋𝑧ଶ),  𝛽ଵ(0) = 𝛼ଵ∗(0),   𝛼ଶ(0) = [−2 𝑙𝑛( 𝑧ଷ)]ଵ/ଶ 𝑐𝑜𝑠( 2𝜋𝑧ସ) + 𝑖[−2 𝑙𝑛( 𝑧ଷ)]ଵ/ଶ 𝑠𝑖𝑛( 2𝜋𝑧ସ), 𝛽ଶ(0) = 𝛼ଶ∗(0) ,     (1.3.2) 

where 𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ are independent random numbers with a uniform 

distribution on the interval (0…1). In particular, for these initial values of 

the amplitudes of the optical field modes, we have < 𝛼௜(0) >=< 𝛽௜(0) >= 0, < 𝛽௜(0)𝛼௝(0) >= 2𝛿௜௝ (𝑖, 𝑗 = 1,2).    (1.3.3)  

We also investigate the quantum dynamics of photon numbers of the 

interacting modes of the optical system in the case of evolution of the 
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system from initial coherent states of the fundamental and second 

harmonic modes. 

Figure 1.2 demonstrates the dynamics of the average value of the number 

of photons of the fundamental mode in the region of unstable behaviour of 

the system (curve 1). According to (1.1.15), the critical perturbation of the 

system is 𝜀௖௥ = 30.  The function was calculated for the value of 

perturbation 𝜀 = 50. To calculate the quantum dynamics of the number of 

photons of the fundamental mode, we used 1000 realizations for the set of 

equations (1.1.13) with initial values given in (1.3.2). Curve 2 represents 

the behaviour of the number of photons of one of the realizations of the set 

of equations (1.1.13) with the initial values of the stochastic amplitudes of 

the field modes 𝛼௝(0) = 𝑖 and 𝛽௝(0) = −𝑖 (𝑗 = 1,2). Curve 2 was 

calculated for the same parameter values as for curve 1. At large 

interaction times, oscillations of curve 2 show that, in this region, the 

system is in a self-oscillating regime. In the region of instability, the 

dynamics of the number of photons of the fundamental mode, averaged 

over an ensemble of realizations of the system (described by the set of 

equations (1.1.13)), has no oscillations (curve 1), if the interacting modes 

develop from an initial state that has a normal distribution of stochastic 

amplitudes (1.3.2) for both modes. 

Figure 1.3 shows the time behaviour of the average number of photons of 

the second harmonic mode (curve 1) in the case of evolution of both 

modes of the system from an initial state with a normal distribution of the 

stochastic amplitudes. To calculate this function, we used 1000 

independent realizations for the set of equations (1.1.13). The function was 

calculated for the same parameters and perturbation of the system as the 

curves in Fig. 1.2. The time behaviour of the second harmonic mode in the 
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region of instability is similar to the behaviour of the fundamental mode. 

Curve 2 in Fig. 1.3 represents one realization of the second harmonic 

mode for the case where the system evolves from the same initial values of 

the stochastic amplitudes for which curve 2 in Fig. 1.2 was calculated. 

Figure 1.4 demonstrates the quantum dynamics of the number of photons 

of the fundamental mode (curve 1) and of the second harmonic (curve 2) 

for the case of evolution of the system from the following initial values of 

the stochastic amplitudes of the field modes: 𝛼௝(0) = 1 + 𝑖 and 𝛽௝(0) =1 − 𝑖 (𝑗 = 1,2). To obtain each curve, we used 20 000 independent 

realizations for the set of equations (1.1.13). Here, unlike in the previous 

cases, the average numbers of photons of the modes oscillate in the region 

of large evolution times. The amplitude of oscillations of the fundamental 

mode is larger than the amplitude of oscillations of the second harmonic. 

These two cases of evolutions of the system show that, in the region of 

instability and in the region of long interaction times, the quantum 

behaviour of the number of photons of the modes depends strongly on the 

initial state of these modes. 

1.4 Distribution Functions for Photon Numbers 
 of the Modes 

In this section, we study distribution functions for the number of photons 

of the fundamental mode and the second harmonic in the vicinity of the 

bifurcation point of the system. First, let us study the distribution functions 

of the fundamental mode in the region of large interaction times. Let us 

describe the algorithm for calculating this function. To calculate the 

distribution function, first, a segment in the phase space of the number of 

photons of the fundamental mode should be chosen. This is the region 



Chapter 1 
 

14

outside of which the distribution function vanishes. This region can be 

easily found by studying the dynamics of several realizations of the 

number of photons of the fundamental mode. We divide the length of this 

segment into 𝑁௣ equal parts and calculate the quantity 𝛥𝑛ଵ = (𝑛ଵ୫ୟ୶ − 𝑛ଵ୫୧୬)/𝑁௣.     (1.4.1) 

Then, we choose an array of numbers 𝐴(𝑖) with the dimension 𝑁௣ + 1 (𝑖 = 0,𝑁௣) and equate all of its elements to zero. 

Next, a cycle of calculations begins, and one of its steps is presented 

below. We calculate the number of photons of the fundamental mode for 

an instant of time by using the solution to the set of equations (1.1.13). 

After this, we calculate 𝑖 = 𝐼𝑛𝑡[(𝑛ଵ(𝜏) − 𝑛ଵ୫୧୬)/𝛥𝑛ଵ],    (1.4.2) 

where Int means the calculation of the integer part of the expression in 

square brackets. The value of the array element should be increased by 

unity as follows: 𝐴(𝑖) → 𝐴(𝑖) + 1.      (1.4.3) 

Then, calculations are repeated until the necessary number of realizations 

N is obtained. The array elements 𝐴(𝑖) represent approximate values of 

the unnormalized distribution function for the number of photons of the 

fundamental mode for the instant of time 𝜏 at the points 𝑛ଵ௠௜௡ + 𝑖Δ𝑛ଵ, ൫𝑖 = 0,𝑁௣൯. We construct a curve that passes through these points and 

normalizes the obtained function to unity. The normalized curve represents 

an approximate plot of the distribution for the number of photons of the 

fundamental mode in the positive P representation. 
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Figure 1.5 shows the distribution function for the number of photons of the 

fundamental mode (𝑛ଵ = 𝑅𝑒(𝛽ଵ𝛼ଵ)) at the critical point of the system 

(𝜀 = 𝜀௖௥ = 30). To calculate this function, we used 100 000 independent 

numerical solutions of the set of Langevin equations (1.1.13) with the 

initial values of stochastic amplitudes of the field modes (1.3.2). The 

function was calculated in the range of large interaction times (𝜏 = 10) 

and for the parameter values k = 0.1 and r = 1. This function is asymmetric 

relative to the most probable value. To the right of the point of the most 

probable value of the number of photons, the probability of realization is 

larger than that observed to the left.  

Figure 1.6 demonstrates the distribution function for the number of 

photons of the fundamental mode in the instability region (ε = 50) and for 

large interaction times (τ = 10). To calculate this function, we used 100 

000 independent numerical realizations of the set of Langevin equations 

(1.1.13). The function was calculated for the same values of the 

parameters k = 0.1 and r = 1. In this case, the distribution function for the 

number of photons has two most probable values, each of which 

corresponds to a state in which the system mostly resides. After the 

passage of the critical point, as the system penetrates deep into the 

unstable region, the distribution function of the number of photons 

gradually changes from the single-component asymmetric structure 

(Fig.1.5) to the two-component structure (Fig.1.6). 

In the region of long interaction times and in the region of instability, the 

behaviour of the distribution function of the number of photons of the 

second harmonic is analogous to the behaviour of the distribution function 

for the number of photons of the fundamental mode. In Fig.1.7, the 

distribution function for the number of photons of the second mode is 
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presented in the region of large interaction times (τ = 10) and at the critical 

point of the system (𝜀 = 𝜀௖௥ = 30). The function was calculated for the 

same parameters of the system that were used to calculate the distribution 

function shown in Fig. 1.5 (k = 0.1 and r = 1). To obtain this function, we 

used 100 000 independent realizations of the set of Langevin equations 

with the initial values (1.3.2). Similarly to the distribution function for the 

number of photons of the fundamental mode at the critical point (Fig.1.5), 

this function is also asymmetric relative to the most probable value. 

However, in this case, the probability of realizing a number of photons that 

is smaller than the most probable number is greater than the probability of 

realizing a number of photons that is greater than the most probable 

number. 

Figure 1.8 presents a distribution function for the number of photons of the 

second harmonic in the region of large interaction times and in the 

instability region. The function was obtained using 100 000 independent 

realizations of the set of Langevin equations (1.1.13) with the initial 

independent values (1.3.2). The function was calculated for the parameters 

k = 0.1 and r = 1. The distribution function of the number of photons of 

the second harmonic has a two-peak structure, as well as the distribution 

function of the number of photons of the fundamental mode. Each of the 

most probable values of the distribution function corresponds to a state in 

which the system resides most of the time. 



Quantum Theory of Unstable Behavior of the Intracavity Second 
Harmonic Generation Process 

17 

1.5 Joint Distribution Functions for Photon Numbers  
of the Modes 

In this section, we study the behaviour of the joint distribution function of 

the number of photons of the fundamental mode and of the second 

harmonic. 

To calculate this function, we use the following algorithm. In the phase 

space of the number of photons of the fundamental mode and of the 

second harmonic, we choose a rectangle with the vertices (𝑛1min,  𝑛2min),  (𝑛1min,  𝑛2max), (𝑛ଵ୫ୟ୶,  𝑛ଶ୫ୟ୶), and  (𝑛ଵ୫ୟ୶,  𝑛ଶ୫୧୬). This is the region 

of the phase space outside of which the joint distribution function of the 

number of photons of the fundamental and second harmonic modes 

vanishes. We divide the edges of this rectangle into 𝑁௣ equal parts and 

calculate the quantities 𝛥𝑛ଵ = (𝑛ଵ୫ୟ୶ − 𝑛ଵ୫୧୬)/𝑁௣ and 𝛥𝑛ଶ = (𝑛ଶ୫ୟ୶ −𝑛ଶ୫୧୬)/𝑁௣. Then, we determine the two-dimensional array of numbers 𝐴(𝑖, 𝑗) with the dimension (𝑁௣ + 1) × (𝑁௣ + 1), where 𝑖, 𝑗 = 0,𝑁௣, and 

equate all its elements to zero. Next, a cycle of calculations begins (one of 

its steps is presented below). Using the solution to the set of equations 

(1.1.13), we calculate the number of photons of the fundamental mode and 

of the second harmonic at the instants of time 𝜏, 𝑛ଵ(𝜏) and 𝑛ଶ(𝜏). Then, 

we use the following formulas: 𝑖 = 𝐼𝑛𝑡[(𝑛ଵ(𝜏) − 𝑛ଵ୫୧୬)/𝛥𝑛ଵ],      𝑗 = 𝐼𝑛𝑡[(𝑛ଶ(𝜏) − 𝑛ଶ୫୧୬)/𝛥𝑛ଶ].    (1.5.1) 

 Here, as in formula (1.4.2), Int means the calculation of the integer part of 

the expression in square brackets. We increase the value of the array 

element 𝐴(𝑖, 𝑗) with the number (𝑖, 𝑗) by 1 as follows: 
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𝐴(𝑖, 𝑗) → 𝐴(𝑖, 𝑗) + 1.     (1.5.2) 

After this, calculations are repeated until the required number of 

realizations N is obtained. 

The array elements 𝐴(𝑖, 𝑗) represent approximate values of the 

unnormalized joint distribution function of the number of photons of the 

fundamental mode and of the second harmonic at the points (𝑛1min +𝑖𝛥𝑛1,  𝑛2min + 𝑗𝛥𝑛2). 

Further, we construct a surface that passes through the points (𝑛ଵ୫୧୬ +𝑖𝛥𝑛ଵ,  𝑛ଶ୫୧୬ + 𝑗𝛥𝑛ଶ,  𝐴(𝑖, 𝑗)) of the three-dimensional space. This surface 

represents the unnormalized joint distribution function of the number of 

photons of the fundamental mode and of the second harmonic at the 

instant of time 𝜏. Then, we normalize this function. 

Figure 1.9 demonstrates the joint distribution function of the number of 

photons of the fundamental mode and of the second harmonic at the 

critical point (𝜀 = 𝜀௖௥ = 30 ) and in the region of large interaction times (𝜏 = 10). The function was calculated using 50 000 independent 

realizations of the set of equations (1.1.13) with the initial values (1.3.2) 

and for the values of the parameters of the system k = 0.1 and r = 1. The 

function has a single peak structure but is asymmetric relative to the most 

probable value of the distribution function. A combination of larger values 

of the photon number of the fundamental mode with smaller values of 

photon number of the second harmonic relative to the most probable value 

of the distribution function has a larger probability of realization than a 

combination of smaller values of the photon number of the fundamental 

mode with larger values of the photon number of the second harmonic. 
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Figure 1.10 demonstrates a joint distribution function of the number of 

photons of the fundamental mode and of the second harmonic in the region 

of instability (𝜀 = 50) and in the range of large interaction times (τ = 10). 

To calculate this function, we used 50 000 independent numerical 

solutions to the set of Langevin equations (1.1.13) with the initial values 

(1.3.2). The function was calculated for the parameters of the system k = 

0.1 and r = 1. It has a two-peak structure. Each of the most probable values 

of the distribution function corresponds to a state in which the system 

spends the majority of its time. 

1.6 Dynamics of Phase Fluctuations 

In this section, we study the behaviour of the distribution function of 

phases (1.1.6) 𝑅𝑒𝜙௜ (𝑖 = 1,2) of the fundamental and second harmonic 

modes in the case of different initial states of the interacting modes. The 

algorithm for calculating the phase distribution function of the field modes 

is similar to the algorithm for calculating the photon number distribution 

function; hence, we do not provide it here. 

Figure 1.11 shows the dynamics of the fundamental mode phase 

distribution function in the case of the initial coherent states of interacting 

modes 𝛼௝(0) = √2 and 𝛽௝(0) = 𝛼௝(0)∗, where 𝑗 = 1,2. The function is 

calculated based on 100 000 independent trajectories of Eqs. (1.1.13) for 

the following parameter values: 𝜀 = 50, 𝑘 = 0.1, and 𝑟 = 1. At these 

values, we have 𝜀௖௥ = 30. At the moment 𝜏 = 0, the phase distribution 

function of this mode is infinitely narrow. The distribution function 

broadens gradually with time and, after some time (𝜏 = 5), passes from a 

single-peak to a two-peak shape. After acquiring a two-peak structure, it 

does not change its shape later. The two peaks are symmetric with respect 
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to the zero phase and determine the two components of the phase state of 

this mode. The phase distribution function of the second harmonic 

displays a similar time behaviour. 

In Fig. 1.12 the dynamics of a certain realization of the fundamental mode 

phase is shown. The dashed lines correspond to the two most probable 

values of the phase. The time of transition of the system between these 

states is about the stay time in them. 

Figure 1.13 shows the dynamics of the phase distribution function of the 

second harmonic mode in the case of Gaussian initial conditions (1.3.2) of 

the interacting modes and for the following values of parameters: 𝜀 = 50, 𝑘 = 0.1, and 𝑟 = 1. The function was calculated using 50 000 independent 

realizations for the set of equations (1.1.13). At the beginning (t = 0), the 

function has a sharp single peak form. It is seen in Fig. 3 that the 

distribution function gradually widens as time progresses and eventually 

acquires a two-peak form. These two peaks are the two most probable 

values of the stochastic phase; in fact, with the further evolution of the 

system, a new macroscopic state is formed. 

Figure 1.14 shows the dynamics of the average value of the real part of the 

second harmonic mode phase in the case of evolution of the system from 

an initial coherent state with the values of stochastic amplitudes 𝛼ଵ(0) =1 + 𝑖, 𝛽ଵ(0) = 1 − 𝑖, 𝛼ଶ(0) = 1 − 𝑖, and 𝛽ଶ(0) = 1 + 𝑖 (curve 1) and in 

the case of evolution from an initial state, which has a normal distribution 

of stochastic amplitudes of the field modes (1.3.2) (curve 2). Both curves 

represent the temporal behaviour of the average value of the phase of the 

second-harmonic mode in the unstable region and are calculated for the 

following values of system parameters: 𝜀 = 50, 𝑘 = 0.1, and 𝑟 = 1. Each 
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curve is calculated using 5000 independent solutions of the system of 

equations (1.1.13). In the case of evolution from an initial state with a 

normal distribution of the stochastic amplitudes of the field modes, the 

average value of the phase of the second harmonic mode does not change 

with time and is zero (the value of the phase of the perturbation field). In 

the case of evolution of the system from initial coherent states of the field 

modes (curve 1), the average value of the phase of the mode does not have 

a stationary value and oscillates in time around the zero value of the phase. 

These curves show that, in the unstable region, the dynamics of the 

average value of the phases of the interacting modes depend strongly on 

the initial state of these modes. In the case of system evolution from the 

initial states mentioned above, the average value of the phase of the 

fundamental mode has a similar temporal behaviour: in the case of normal 

distributions of the initial values of stochastic amplitudes of the interacting 

modes, the average value of the phase of the fundamental mode does not 

change in time and is zero, whereas in the case of coherent initial states of 

both modes it oscillates around the zero value of the phase. 

In the unstable region, not only the dynamics of the average values of the 

phases but also the dynamics of the phase distribution function of the 

interacting modes of the field, depend strongly on the initial state of the 

optical system. In the region of large times, if the system evolves from 

initial coherent states with zero values of phases of both modes of the 

system (see Fig. 1.11), as well as if the system evolves from an initial state 

in which the stochastic amplitudes of the interacting modes of the field 

have normal distributions (see Fig. 1.13), the distribution functions of the 

stochastic phases of the modes do not change in time and have a two-

component structure. 
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However, the dynamics of the phase distribution of the field modes 

changes dramatically in the case of evolution of the optical system from 

initial coherent states of both modes with a nonzero phase. Figure 6.15 

shows the temporal behaviour of the distribution function of the second 

harmonic mode phase in the case of evolution of the optical system from 

an initial coherent state with the following values of the stochastic 

amplitudes of the field modes: 𝛼ଵ(0) = 1 + 𝑖, 𝛽ଵ(0) = 1 − 𝑖, 𝛼ଶ(0) =1 − 𝑖, and 𝛽ଶ(0) = 1 + 𝑖. Here, Figs. 6.15a to 6.15d represent the 

distribution function of the real part of the phase of the second harmonic 

mode 𝑅𝑒(𝜙ଶ) at the times of evolution of the system 𝛾𝑡 = 5.3, 𝛾𝑡 = 6, 𝛾𝑡 = 6.6, and 𝛾𝑡 = 7.3, respectively. These time points correspond to 

points a, b, c, and d in Fig. 1.14. The dynamics of the distribution function 

is calculated for the parameter values 𝑘 = 0.1, 𝑟 = 1, and 𝜀 = 50. For 

calculating the dynamics of this function, 50 000 independent realizations 

of the Langevin system of equations (1.1.13) were used. At the time point 𝛾𝑡 = 5.3, the average value of the phase of the second harmonic mode is 

zero (see Fig. 1.14). At this point, the second harmonic mode is localized 

in a two-component state with the same probability of detection of this 

mode of the field in each component of the state (Fig. 1.15a). Then, from a 

two-component state, the system gradually localizes into one component 

of the state in which the average value of the phase of the second harmonic 

mode has a positive value (Fig. 1.15b). From here, the system changes 

back into a two-component state with the same probability of detection of 

the second harmonic mode in each component of the state (Fig. 1.15c). 

The average value of the phase of the second harmonic mode in this state 

is reset to zero. After that, the system localizes in the other component of 

the state, where the average value of the phase of the second harmonic 

mode is negative. This behaviour of the phase distribution function of the 



Quantum Theory of Unstable Behavior of the Intracavity Second 
Harmonic Generation Process 

23 

second harmonic mode repeats itself with the further evolution of the 

optical system. 

In the unstable region, in the case of evolution of the optical system from 

initial coherent states with nonzero phases of stochastic amplitudes of both 

modes, the temporal behaviour of the distribution function of the phase of 

the fundamental mode 𝑅𝑒𝜙ଵ is similar to the temporal behaviour of the 

distribution function of the second harmonic mode phase. 

In Fig. 1.16 we demonstrate the dynamics of the phase distribution 

function for the fundamental mode in the case of the initial coherent states 

of both modes 𝛼௝(0) = 𝑖√2 and 𝛽௝(0) = 𝛼௝(0)∗ (𝑗 = 1,2), and for the 

following parameter values: 𝜀 = 50, 𝑘 = 0.1, and 𝑟 = 1. The function 

was calculated using 100 000 independent realizations for the set of 

equations (1.1.13). In this case, there is no stationary solution for the 

distribution function, and it passes to an oscillation regime after 

broadening. The fundamental mode localizes gradually in one component 

of the state from the two-component state, which has the same probability 

of detecting the mode in each component of the state. Next, the system 

returns to the two-component state, and after that localizes in the other 

component of the state. 

In Fig. 1.17 we plot the phase distribution function of the fundamental 

mode at the moment of time 𝜏 = 9 in the case of initial coherent states of 

both modes 𝛼௝(0) = √2 and 𝛽௝(0) = 𝛼௝(0)∗, where 𝑗 = 1,2 (𝑘 = 0.1 and 𝑟 = 1), versus the amplitude of the driving field 𝜀. The function was 

calculated using 100 000 independent realizations for the set of equations 

(1.1.13). At 𝜀 = 30 (point of bifurcation), the system is in a one-

component state with zero phase values. When the system passes the 
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bifurcation point, the system branches into a two-component state with 

opposite values of the phases of the components. The fundamental mode 

can be detected with the same probability in both of these two components 

of the state of the mode. 

In the region of large interaction times, the dependence of the distribution 

function of the phase of the second harmonic mode on the amplitude of the 

perturbation field is similar to the dependence of the distribution function 

of the phase of the fundamental mode shown in Fig. 1.17. 

1.7 Dynamics of Joint Phase Fluctuations of the Modes 
and Self-Phase Matching 

The above-described technique can also be applied for the calculation of 

the joint distribution function of the phases of the fundamental mode and 

second harmonic. This function characterizes the phase matching between 

the interacting modes. Below the critical point, where the system has 

stable classical solutions for the photon numbers and phases, the phase 

fluctuations are considerably smaller than unity. In this case, the most 

probable values of phase pairs coincide with their classical values, and the 

equality 𝑅𝑒𝜙ଵ = 𝑅𝑒𝜙ଶ = 0 determines the classical phase matching 

between the modes. Figure 1.18 shows the joint distribution function of 

phases of the fundamental mode and second harmonic in the case of initial 

vacuum states of both modes (𝛼௝(0) = 𝛽௝(0) = 0, where 𝑗 = 1,2) and for 

the following parameter values: 𝑟 = 1, 𝑘 = 0.1, and 𝜀 = 10. The function 

was calculated using 100 000 independent realizations for the set of 

equations (1.1.13). Тhe function shows the classic matching of the system 

mode phases. 


