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Foreword

This book addresses graduate and postgraduate students, scientists, and engineers
interested in high-intensity laser-plasma interactions and high-energy-density physics.
It is based on the lectures that I and my colleagues are teaching master students
at the University of Bordeaux.

With progress in high-power laser technology, understanding the physics of
laser interaction with plasma is indispensable for many applications, including
inertial confinement nuclear fusion and laboratory astrophysics. Our primary in-
terest concerns the plasmas created with high energy, high power lasers with inten-
sities in the range of 1012 − 1016 W/cm2 and pulse duration ranging from several
picoseconds to a few nanoseconds. Such lasers can heat plasmas to temperatures
of tens of millions of Kelvin (or to a few kiloelectronvolts), so the particles are
hot but non-relativistic. Under special conditions, a part of laser energy through
wave-particle interactions can be transferred to a relatively small number of parti-
cles that can attain relativistic energies. Particle heating and acceleration to high
energies are of great importance for applications of high-energy-density physics,
particularly for inertial confinement fusion and fusion energy production. Read-
ing this book requires general knowledge of plasma physics, electromagnetism, and
statistical mechanics. This information can be found in the standard textbooks.
I would recommend the books by Lev Landau and Evgeny Lifshitz [93, 94, 100],
John David Jackson [77], Frank Chen [35], Paul Bellan [13], Jean-Marcel Rax [140],
I. P. Shkarofsky, T. W. Johnston and M. P. Bachynskii [154] and Hideaki Takabe
[163]. This book contains three chapters: plasma kinetics, waves in plasma, and
laser-plasma interactions. Plasma kinetics is based on the microscopic formula-
tion of the distribution function of particles and provides a theoretical description
of the collective dynamics of charged particles driven by electromagnetic inter-
actions. Two classes of collective phenomena are discussed: first, collisionless,
relatively low-density plasma, where self-consistent electric and magnetic fields
control particle dynamics, the binary collisions can be neglected, and particle dis-
tribution could be far from thermal equilibrium. The second class of phenomena
involves denser plasmas, which are closer to equilibrium, where collisions domi-
nate, and hydrodynamic description is appropriate. Reduction of the fully kinetic
description to a more simple hydrodynamic model is considered, and dynamic and
transport properties are discussed. These features are of great importance for
high-energy-density physics. A detailed description of hydrodynamic processes in
the application to high energy density plasmas can be found in books by Yakov
Zeldovich and Yuri Raizer [188], Stefano Atzeni and Jürgen Meyer-ter-Vehn [7]
and Paul Drake [50].
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x FOREWORD

The second chapter addresses collective excitations – plasma waves – that can
propagate far away from the source and efficiently interact with particles. The
properties of these waves and the characteristics of their interaction with particles
are of great importance for understanding their nonlinear interaction, which is the
subject of the third chapter. Waves in plasmas can often be unstable. An excita-
tion of waves that grow to large amplitudes is a phenomenon of great importance
in plasma physics. These unstable waves may transform plasma into a turbulent
state. This chapter also includes a section describing the emission of electromag-
netic waves by charged particles, which is important for many applications and,
in particular, for remote plasma diagnostics.

Two domains of plasma physics – particle kinetics and electromagnetic waves
– provide the background to the third chapter of this book dedicated to the physics
of laser-plasma interactions. Two major phenomena are discussed: laser propaga-
tion and energy deposition in a spatially inhomogeneous plasma and laser-driven
plasma instabilities. Although these processes are studied already more than 50
years, there are only very few comprehensive reviews and books: well-known re-
view by William Kruer [88] published almost 40 years ago, more recent books by
Paul Gibbon [66], Peter Mulser and Dieter Bauer [131] and recently published
books by Guy Bonnaud [23] and Pierre Michel [122]. This book is complemen-
tary. It provides a theoretical description of plasma processes and laser-plasma
interactions with particular attention to simplified models that have analytical so-
lutions that provide a comprehensive illustration of the key processes that appear
in more complicated combinations in more realistic situations. The theoretical
models are illustrated with the results of numerical simulations and representative
experiments.

An appropriate mathematical description is provided throughout the text.
Readers with a sufficient background at the level of standard university courses
will be capable of reproducing the key results. Formal mathematical descriptions
are supported by qualitative explanations that guide intuition and provide a basic
framework. The theoretical material is completed with practical exercises at the
end of each section.

The international system of units is used throughout the text. Conversion to
the Gaussian system and convenient expressions for the basic plasma parameters
can be found in the plasma formulary [72]. Bold symbols are used to denote vector
and tensor quantities.

I am grateful to my colleagues Guillaume Duchateau and Eugene Gamaly for
reading the text and providing multiple comments and suggestions and Jean-Luc
Feugeas for providing his artistic work for the cover page. I am also thankful to all
my collaborators for sharing their interest in many joint research projects, some
of which are referred to in this work.
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Particle kinetics
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2 CHAPTER 1. PARTICLE KINETICS

1.1 Kinetic description of a plasma
This section provides the background of the plasma kinetic theory by introducing
such fundamental quantity as the particle distribution function and considering the
interaction of charged particles with the electric and magnetic fields. Microscopic
and macroscopic plasma descriptions are introduced here and used throughout
this book.

1.1.1 Distribution function of particles
The complete microscopic description of a gas, an N -particle system confined in a
volume V , is given by the coordinates ri(t) and the momenta pi(t) of all particles
at all time. This detailed information allows one to determine how many particles
are in a given domain of momenta dp and in a given volume of the coordinate
space dr. The microscopic distribution function, fmicro(t, r,p), characterizes the
number of particles at a moment t in a volume of the phase space dr× dp:

dN = fmicro(t, r,p) dr dp. (1.1.1)

In classical physics with point-like particles, the function fmicro is discontinuous.
It is non-zero only in the points in the phase space that coincide precisely with
the positions and the momenta, ri and pi, of particles. The function fmicro can
be written as a product of Dirac delta-functions corresponding to the ensemble of
particles:

fmicro(t, r,p) =

N∑
i=1

δ[r− ri(t)] δ[p− pi(t)], (1.1.2)

where δ(r) ≡ δ(x) δ(y) δ(z) is the Dirac delta-function in three dimensions. This
microscopic distribution function has an exact expression if the positions and
momenta of all particles are known. However, such a definition of the distribution
function for systems containing a large number of particles is formal. It represents
essentially the ensemble of all coordinates and momenta of all particles. Knowing
that there are more than 1025 molecules in one cubic meter of air at the normal
pressure, it is easy to understand that such a microscopic distribution function
cannot be calculated, and it is unpractical because the average distance between
particles is smaller than the available spatial resolution.

Consequently, the objective of the kinetic theory is not to remain at the level of
description of discrete particles but to introduce a continuous distribution function
f(t, r,p) defined everywhere in the phase space. Instead of determining an exact
number of particles, as the microscopic function does, the continuous distribution
function defines the probability to find a certain number of particles in a given
phase volume. Such a continuous distribution function can be obtained by making
an average of the microscopic distribution function over a particular phase volume
Wa = Va × Pa:

f(t, r,p) = ⟨fmicro(t, r,p)⟩Wa , (1.1.3)

where Va is an elementary volume in the coordinate space and Pa is the elementary
volume in the momentum space. This function provides an approximate descrip-
tion of the number of particles in a given phase space volume because it differs
from fmicro. However, this difference δfmicro = fmicro − f is a random quantity
with a zero average. This random deviation is called a fluctuation. The statis-
tical theory aims to minimize the fluctuations to have the most exact possible
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description of the system. But fluctuations cannot be neglected completely: they
describe correlations between the motion of neighboring particles and manifest
themselves in the collisional processes. In the first crude approximation, one may
neglect fluctuations and consider only the average function f . This approximation
corresponds to collisionless plasmas.

The choice of the phase volume Wa of averaging the distribution function in
Eq. (1.1.3) is not arbitrary. It depends on the physical problem that one is dealing
with. The volume Va must be larger than the mean volume attributed to each
particle Va ≫ V/N , where V is the plasma volume. If Va is too small, one may have
a precise spatial resolution. Still, because of a very small number of particles Na in
the volume Va, the average function will be defined with insufficient precision. The
general statistical theory shows that the relative amplitude of fluctuations around

the mean value is on the order of N
−1/2
a . So Na should be sufficiently large.

At the same time, the volume Va must be small compared to the total volume,
V ≫ Va, to describe the system with sufficient precision. Correspondingly, Na

should be much smaller than the total number of particles N . Similar arguments
apply to the choice of the phase volume Pa.

Practically, the phase volume Wa = Va × Pa is defined by the resolution of
measurements in experiments, the number of macro-particles available, and the
computer performance in numerical simulations. For example, the mean distance
between particles in air at normal conditions is about 10 nm. So, choosing the

resolution distance da = V
1/3
a on the order of ten microns would be sufficient.

That cubic volume contains Na ∼ 109 particles. The characteristic momentum of
the air molecules at room temperature is pt ∼ (maT )1/2 ∼ 1.5×10−23 N·s. Here,
ma is the mass of a molecule, and T is the temperature measured in energetic
units (electronvolts); the Boltzmann constant is included in the definition of tem-
perature. Thus, choosing the size of an elementary cubic cell in the phase space
∆p ∼ 0.1 pt would be sufficient. Assuming no particles may have momentum ten
times larger than pt, there would be 106 elementary cells in the phase volume with
Np ∼ 103 particles on average in each cell. Consequently, measuring the mean

values with a precision of N
−1/2
p ∼ 10% will be possible.

The characteristic distance of spatial averaging in plasmas is defined by the
distance of screening of the potential of a charged particle, the Debye length λD.
The phenomenon of electric field screening in plasma is discussed in Sec. 1.2.2. It
is essential to mention that if the number of charged particles in the Debye sphere
is sufficiently large, one can perform an average, and the fluctuations induced
by particle binary collisions are small. So, the plasma evolution is controlled by
self-consistent large-scale electromagnetic fields.

1.1.2 Klimontovich equation

A kinetic equation describes the evolution of the distribution function. It can
be derived from the expression for the microscopic function. According to the
definition (1.1.2), the temporal evolution of fmicro is due to the movements of
particles in the phase space. The temporal derivative of the distribution function
fmicro can be written as:

∂tfmicro = dt

N∑
i=1

δ[r⃗ − r⃗i(t)] δ[p⃗− p⃗i(t)]
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where ∂t = ∂/∂t is the partial temporal derivative, and dt = d/dt is the total
temporal derivative. As the coordinates and the momenta of particles are the
quantities depending on time according to the equation of motion, we can write
the derivative as follows:

∂tfmicro =−
N∑
i=1

dtri ·∇ δ[r− ri(t)] δ[p− pi(t)]

−
N∑
i=1

dtpi · ∂p δ[p− pi(t)] δ[r− ri(t)] (1.1.4)

where ∇ = ∂/∂r is the spatial gradient and ∂p = ∂/∂p is the partial derivative
with respect to the momentum.

Let us consider first the derivative of the particle orbits, dtri. It is, by defini-
tion, equal to the particle velocity, dtri = vi, which is related to the momentum.
In classical mechanics vi = pi/m, and in relativistic mechanics vi = pi/mγ,
where the relativistic factor γ = (1 + p2

i /m
2c2)1/2, m is the particle mass and c

is the light velocity. Similarly, the derivative dtpi is related to the force according
to the Newton’s law,

dtpi = Fi,

where the force Fi applied to the i-th particle; for charged particles it is the
Lorentz force. In the most general case, it depends on time, the position, and
the speed of the particle; F(t, ri,pi). It can be separated into two parts: the
external force, Fext, and a microscopic force, Fimicro produced by other (j ̸= i)
particles, Fext + Fimicro. The first one is produced by the sources out of plasma
(capacitors, coils, laser beams, etc.) and varies slowly in space and time. In
contrast, the second one is a sum of the Lorentz forces produced by all other
particles in plasma. It varies strongly in space and time because of particles’
random motion. This internal, self-consistent Lorentz force is at the origin of the
interaction between the particles and the collective behavior of plasma.

One can remove the subscripts of speed vi and of the force Fi in Eq. (1.1.4)
thanks to the specific property of the Dirac delta-function: ϕ(a) δ(x − a) =
ϕ(x) δ(x − a), where ϕ is an arbitrary function. So, one can take the veloci-
ties and the forces out of the summation and write Eq. (1.1.4) as an equation for
the microscopic distribution function:

∂tfmicro = −v ·∇fmicro − Fmicro · ∂pfmicro . (1.1.5)

This relation is called the Klimontovich kinetic equation. It was proposed for the
first time in the book by Yuri Klimontovich [83] in 1967 and further developed
by many authors. Although this microscopic equation represents an ensemble of
discrete particles, individual particles’ coordinates and momenta are not formally
present. The differential operators are applied to the point in the phase space,
(r,p), but not to the coordinates of the particles. This allows us to develop an
equation for the average distribution function.

1.1.3 Vlasov kinetic equation
To obtain a regular equation for the continuous distribution function, we follow
the prescription given in Eq. (1.1.3). As explained in the previous section, we must
average the Klimontovich equation (1.1.5) over a phase volume Wa. The averaging
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of the derivatives does not pose a problem because these operators are applied to
a point in the phase space but not to the positions of individual particles:

∂tf + v ·∇f + ⟨Fmicro · ∂pfmicro⟩ = 0. (1.1.6)

The last term on the left-hand side needs special consideration. This is a product
of two microscopic quantities. To simplify this term, we need to introduce an
additional hypothesis of weak correlations, that is, to assume that an average
distance between the particles is sufficiently large, so each particle moves freely
as if there are no other particles around. These free trajectories are regular. The
average forces define them, and the perturbations induced by other particles are
sufficiently small and can be considered second-order terms.

Correspondingly, the microscopic quantities, fmicro and Fmicro can be pre-
sented as a sum of average quantities and corresponding fluctuations:

fmicro = f + δfmicro, Fmicro = F+ δFmicro. (1.1.7)

This allows us to represent the last term in Eq. (1.1.6) as a sum of four terms:

Fmicro · ∂pfmicro = F · ∂pf + δFmicro · ∂pf
+ F · ∂pδfmicro + δFmicro · ∂pδfmicro. (1.1.8)

With appropriately chosen averaging volume Wa, the amplitudes of fluctuations of
the microscopic distribution function, δfmicro and the microscopic force, δFmicro,
are small with zero mean value, ⟨δfmicro⟩ = 0 and ⟨δFmicro⟩ = 0. Then, the
second and third terms in the right-hand side of Eq. (1.1.8) are averaged to zero,
and the fourth term is of second order. So, only the first term must be considered
in the first approximation.

Moreover, we have to account for the fact that there are several particle species
in plasma, at least two: electrons and ions. So, we define the distribution functions
for each species α. Then, in the first order, a kinetic equation for the average
distribution function takes the following standard form:

∂tfα + v · ∇fα + Fα · ∂pfα = 0. (1.1.9)

The terms on the left-hand side describe the evolution of the average distribution
function due to spatial gradients (second term) and a self-consistent force (third
term). In plasma, this is the Lorentz force that accounts for the action of electric
and magnetic fields on a particle with a charge qα:

Fα = qα(E+ v ×B). (1.1.10)

This kinetic equation with the self-consistent force, that is, the force produced
by all plasma particles, is called Vlasov equation. It was empirically introduced
by the Russian scientist Anatoly Vlasov in 1938 to give a theoretical explication
of plasma oscillations [177]. It is widely used in all kinetic models for particles
interacting through long-range electromagnetic and/or gravitational forces.

The Vlasov equation describes the evolution of the distribution function on
a large scale, larger than the Debye length, and it can be applied to low-density
plasmas. By contrast, it does not account for the fluctuations induced by corre-
lated particle motion. In the simplest form, these correlations can be considered
as binary collisions. The collisional effects become important when the particles
approach closely to each other. Interaction at short distances, smaller than the
Debye length, is due to binary collisions. Therefore, the Vlasov equation can be
used under the conditions where plasma can be considered collisionless, that is, on
the time scales smaller than the average collisional time and on the spatial scales
smaller than the particle mean free path.
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1.1.4 Collision integral
Let us consider now the contribution of the fluctuation terms δfmicro and δFmicro

in the kinetic equation (1.1.6). It originates from the fourth term on the right-hand
side of Eq. (1.1.8):

∂tfα + v ·∇fα + Fα · ∂pfα =

−
〈
δFmicroα · ∂p

∑
β

δfmicro β

〉
≡

∑
β

Cαβ . (1.1.11)

Compared to the Vlasov equation, the right-hand side is nonzero, called the colli-
sion integral. To find its explicit form, we need to solve equations for the fluctu-
ations of electromagnetic fields and the distribution function. The explicit form
of the collision integral is discussed in Sec. 1.3.1. Here, we present some general
comments.

First, the hypothesis of weak fluctuations allows us to account only for binary
collisions between the particles of species α and β in an additive way. That
means that collision integral Eq. (1.1.11) is a sum of binary collision terms, while
triple collisions are excluded since they contribute to higher-order terms. Thus,
weak correlations correspond to small perturbations of the particle orbits. In each
collision, the particle does not change much in its direction of propagation and
its momentum. So, the right-hand side of Eq. (1.1.11) describes the pitch angle
particle scattering.

A general kinetic equation that takes into account the scattering of particles
at small angles was developed by Adriaan Fokker and Max Planck in 1917. It is
demonstrated in Sec. 1.3.2 that Eq. (1.1.11) is a particular case of the Fokker-
Planck equation.

It is important to notice that the collision integral is local. There are no
operators containing a spatial or a temporal derivative. So, the plasma is supposed
to be homogeneous and stationary at the correlation scales. The Debye length
defines the spatial scale, λDα. The temporal scale depends on the characteristic
(thermal) speed of particles, vTα = (Tα/mα)1/2. The ratio λDα/vTα = 1/ωpα is
the inverse of plasma frequency.

The collision integral in the form (1.1.11) satisfies the conservation laws. It
preserves the number of particles of each species, the total momentum of motion
of the system, and its total energy. The mathematical demonstration of these
properties is presented in Sec. 1.4.1, but it is easy to understand them qualitatively.
The collisional term in Eq. (1.1.11) takes into account the binary collisions. These
are elastic collisions – in every collision, the number of particles, the momentum,
and the energy are preserved. So, it is unsurprising that the collision integral has
the same properties as its microscopic origin.

1.1.5 Maxwell’s equations for macroscopic fields
Kinetic equations (1.1.9) and (1.1.11) must be completed with equations defining
the average Lorentz force, that is, with equations for the mean fields, E = ⟨Emicro⟩
and B = ⟨Bmicro⟩. The microscopic fields verify Maxwell’s equations at the
microscopic scale:

∇×Emicro = −∂tBmicro, ϵ0∇ ·Emicro = ρmicro + ρext,

µ−1
0 ∇×Bmicro = jmicro + jext + ϵ0∂tEmicro, ∇ ·Bmicro = 0.
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Here, ϵ0 and µ0 are the dielectric permittivity and magnetic permeability of vac-
uum, respectively. These electric and magnetic fields are generated by the plasma
particles or by external sources, ρext and jext. The microscopic density

ρmicro(t, r) =
∑
α

qα

N∑
i=1

δ[r− riα(t)]

is a sum of all charges multiplied by the corresponding Dirac delta function defining
the particle position. In the same way, the density of the microscopic current is a
sum of all currents produced by particles:

jmicro(t, r) =
∑
α

qα

N∑
i=1

viα(t) δ[r− riα(t)].

One can present these microscopic sources by using the microscopic distribution
function, adding contributions of all species, and taking an integral over the mo-
mentum:

ρmicro(t, r) =
∑
α

qα

∫
fmicroα(t, r,p) dp, (1.1.12)

jmicro(t, r) =
∑
α

qα

∫
v fmicroα(t, r,p) dp. (1.1.13)

This form of presentation of the internal sources allows for the direct average of
microscopic Maxwell’s equations. As Maxwell’s equations are linear, their macro-
scopic form is the same as their microscopic counterpart:

∇×E = −∂tB, ϵ0∇ ·E = ρint + ρext, (1.1.14)

µ−1
0 ∇×B = jint + jext + ϵ0∂tE, ∇ ·B = 0. (1.1.15)

The internal sources, ρint and j int, are defined as an average of microscopic
sources (1.1.12) and (1.1.13):

ρint(t, r) =
∑
α

qα

∫
fα(t, r,p) dp, (1.1.16)

jint(t, r) =
∑
α

qα

∫
v fα(t,v,p) dp. (1.1.17)

Since electromagnetic fields operate on a long-range, every particle moves in a
collective field created by many neighboring particles. This means that plasma
exhibits a collective behavior, which is different from a neutral gas, where the
effective radius of particle interaction is much smaller than the average distance
between two particles. Microscopic electromagnetic fields related to the fluctua-
tions of the distribution function are discussed in Sec. 2.1.11.

1.1.6 Plasma macroscopic characteristics
Every microscopic physical quantity can find a correspondent average counterpart.
For example, we already demonstrated a relation between the microscopic charge
density (1.1.12) and the mean charge density (1.1.16). The density of particles of
species α is defined as:

nα(t, r) =

∫
fα(t, r,p) dp. (1.1.18)
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Similarly a mean plasma velocity uα and a mean energy Eα are defined as:

uα(t, r) =
1

nα(t, r)

∫
vα fα(t, r,p) dp, (1.1.19)

Eα(t, r) =
1

nα(t, r)

∫
εαfα(t, r,p) dp, (1.1.20)

where vα and εα(p) are the speed and the energy of the particle. In the classical
mechanics vα = p/mα and εα = p 2/2mα. The definitions (1.1.19) and (1.1.20)
also apply to the relativistic or quantum plasmas, where the relation of the speed,
vα(p) and the energy of the particle, εα(p), with the momentum p are more
complicated. For example, in a relativistic plasma, where p ≳ mαc, the speed,
vα = p/γαmα, and the kinetic energy of particle, εα = (γα − 1)mαc2, depend of
the relativistic factor γα(p) = (1 + p 2/m2

αc
2)1/2.

The tensor of momentum flux and the vector of energy flux :

Pα ij(t, r) =

∫
pivj fα(t, r,p) dp, (1.1.21)

Qα(t, r) =

∫
εα(p)v fα(t, r,p) dp, (1.1.22)

describe the transport processes in plasma – transfer of the momentum and energy
in a plasma.

It is often convenient to separate the mean motion of particles of the species
α with a mean speed uα and a chaotic (thermal) motion with a relative velocity
w = v−uα. Then the distribution function in the local reference frame, Fα(k) =
fα(p − mαuα), where k = mα(v − uα) is the particle momentum in the proper
reference frame such that ∫

kFα(k) dk = 0.

That propriety allows us to divide the energy (1.1.20) and the fluxes (1.1.21) and
(1.1.22) of all particles into the mean and the chaotic parts. For the average
particle energy, according to Eq. (1.1.20), we have:

Eα =
1

2mαnα

∫
(k+mαuα)

2Fα(k) dk.

This integral can be presented as

Eα =
1

2
mαu

2
α +Wα, (1.1.23)

where the internal energy Wα is a measure of thermal motion. It is defined by
the following equation:

Wα =
1

2mαnα

∫
k2Fα(k) dk. (1.1.24)

In the same way, the momentum flux can be presented in the form Pα ij =
mαnαuα iuα j + pα ij , where the second term corresponds to the plasma pressure
1

pα ij = m−1
α

∫
kikjFα(k) dk. (1.1.25)

1Note the difference between the particle momentum p and the pressure pα.
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The energy flux is divided into three terms:

Qα i =
1

2
mαnαu

2
αuα i + nαWαuα i + pα ijuα j + qα i. (1.1.26)

They describe the convective energy transport, 1
2
mαnαu2

αuα i, transport of the
enthalpy, nαWαuα i + pα ijuα j , and the diffusive heat flux:

qα =
1

2m2
α

∫
k2kFα(k) dk. (1.1.27)

In a plasma in thermal equilibrium, the local distribution function is a Maxwellian
function depending on the momentum:

Fα(k) =
nα

(2πmαTα)3/2
exp

(
−

k2

2mαTα

)
. (1.1.28)

This is an isotropic distribution function, the kinetic pressure is a scalar, pα ij =
pαδij , and there are the following relations between the thermal particle energy,

temperature, and pressure: εα = 3
2
Tα and pα = nαTα. It is also convenient to

define the thermal speed of particles as vTα = (Tα/mα)1/2. (The temperature is
measured in units of energy throughout the book.)

1.1.7 Numerical solution of kinetic equations
Kinetic equations (1.1.9) or (1.1.11) coupled to Maxwell’s equations (1.1.14) and
(1.1.15) provide the most detailed description of the plasma properties. Some
particular solutions of these equations for idealized conditions are described in the
following sections of this book. However, analytical solutions are only available
for some practical situations, and numerical methods are widely used. The large
number of dimensions in the phase space – three components of momentum and
three coordinates – makes numerical solutions very challenging even with the best
available high-performance computers. Often, problems are resolved in the phase
space with a reduced number of dimensions: one or two in the coordinate space
and one, two, or three in the momentum space.

Two numerical methods are used for solving the kinetic equation. One consists
of discretizing the phase space and interpolating the convective and force terms of
Eq. (1.1.9) on the grid using the finite differences. Collision integrals are calculated
by developing the distribution over the spherical harmonics in the phase space
using the method of the potentials of Rosenbluth [149]. Examples of such Vlasov-
Fokker-Planck (VFP) codes developed for high-energy-density physics applications
are described in Refs. [175, 176, 166]. The VFP codes are very accurate and can
resolve detailed features of the distribution function in the phase space but are
relatively slow and time-consuming. They are characterized by low numerical
noise and used for studies such kinetic processes as particle trapping in the wave
potential or resonance wave-particle interaction. However, they are less suitable
for investigation of processes on a large scale.

Another numerical method, Particle-in-Cell (PIC), is based on the proba-
bilistic approach. The distribution function in the phase space is sampled with
finite-size particles (macro-particles) that are moving in the coordinate space ac-
cording to the Lorentz force (1.1.10), which is interpolated from the grid on the
particle position at each time step. In return, the charge density and the current
are interpolated to the grid from the particle positions and are used as sources
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for solving Maxwell’s equations. Since the phase space is sampled only at the
particles’ positions, this method is much faster and more robust than the VFP
method. It is widely used in numerical simulations of laser-plasma interactions.
The two open-access PIC codes are EPOCH [6] and SMILEI [44]. Unfortunately,
since each macro-particle represents a large number of real particles, PIC codes
suffer from high numerical noise and numerical heating, which require special care
while describing physical results.

In what follows, we show examples of processes calculated with VFP and PIC
codes.

1.1.8 Exercises

1. Using the Vlasov equation (1.1.9), find a relation between the charge
density and the density of current in the plasma. Take a divergence
of the Ampere equation (1.1.15) and show that it is equivalent to the
Poisson equation without external sources.

2. Analog of the Maxwellian distribution function for the relativistic
particles is the Maxwell-Jüttner distribution function

fMJ(p) = CMJ exp(−αγ),

where γ = (1 + p2/m2c2)1/2 is the particle relativistic factor and
α = mc2/T . Find a relation of the constant CMJ to the particle
density n and temperature T . Find relations between the average
energy Eα, pressure p and temperature.
Response:
CMJ = nα/4πm3c3K2(α), where K2 is the Bessel function, p = nT
and Eα = [3− α+ αK1(α)/K2(α)]T .
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1.2 Collisionless plasmas

In this section, we consider equilibrium solutions of the Vlasov kinetic equa-
tion first in a homogeneous plasma and then in plasmas with more com-
plicated geometries where the self-consistent electric and magnetic fields
modify the particle trajectories. The particular problems presented blow
aim on the demonstration of the basic properties of collisionless plasmas
such as screening of electric field, trapping particles in the electrostatic
potential and formation of collisionless solitons and shocks.

1.2.1 Equilibrium of a homogeneous plasma

At equilibrium, the distribution function of particles is independent of time.
It can be found as a time-independent solution of a system of the Vlasov
equation (1.1.9) and Maxwell’s equations. Let us consider first the case of a
homogeneous plasma, ∇fα = 0. The term E · ∂pfα in the Vlasov equation
equals to zero if the electric field is zero, E = 0. The term with the magnetic
field, (v × B) · ∂pfα, equals to zero in two cases: (i) the magnetic field is
zero, B = 0, or (ii) the particle distribution function is isotropic, fα(p). (In
the latter case, the derivative ∂pfα is parallel to the particle velocity, and
the scalar product with the Lorentz force is zero.)

Maxwell’s equations for zero electric and constant magnetic fields are
satisfied if the sources are zero, ρ = 0 et j = 0. These conditions lead to
three important consequences:

• The plasma is electrically neutral: for two species of opposite charges
– the ions of a positive charge qi = Ze and the electrons of a negative
charge qe = −e, the neutrality condition reads Zni = ne.

• The electric current in plasma is zero:

j =
∑
α

qαnαuα = qini(ui − ue) = 0.

That condition means that both species have the same mean veloc-
ities, ui = ue = u. Therefore, in the reference frame moving with
this velocity, the distribution functions of both species are isotropic,
fα(p) = fα(p).

• The distribution function has only one maximum and is decreasing
as a function of momentum, ∂pfα < 0. This third condition is not
evident. It comes from the condition of stability of the distribution
function with respect to small amplitude perturbations. That issue
is discussed in Sec. 2.1.8.

Within these limitations, the particle distribution function in a collision-
less plasma is arbitrary and depends essentially on the way the plasma is
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created. Account for binary collisions strongly reduces the choice of equi-
librium distribution functions. As discussed in Sec. 1.3, after a few collision
times, the distribution function of all particles relaxes to a Maxwellian dis-
tribution function (1.1.28).

1.2.2 Plasma in a capacitor

Let us consider a plasma in a capacitor that is characterized by the width
L and potential Φ0. We want to find the particle density and the poten-
tial distribution inside the capacitor, assuming that the temperature T is
uniform. The plasma, x ∈ (−L/2, L/2), is made of protons (qi = e) and
electrons (qe = −e), and the distribution function of ions and electrons is a
Maxwellian function in the point x = −L/2 where the potential is zero.

The electric field in the capacitor: E = −dxΦ depends on the spa-
tial distribution of electrical potential Φ(x). The distribution function of
particles follows from the Vlasov equation (1.1.9), which, in our case of a
stationary plasma and electric field directed along the x axis, reads:

vx ∂xf − q dxΦ ∂pxf = 0. (1.2.1)

Here, we omitted particle species’ index α as it applies to electrons and ions.
This equation involves only the x-component of the particle momentum.
The distribution function on two other components, py and pz, is defined
by the initial condition: a Maxwellian function.

The solution of this differential equation, depending on two variables,
x and px, can be constructed using the method of characteristics. The
total differential of f is: df = dpx ∂pxf + dx ∂xf . To satisfy Eq. (1.2.1),
one should find a line in the phase space (x, px), where df is zero. Equa-
tion (1.2.1) takes the form of a full differential if the following relation is
satisfied:

dx

vx
= − dpx

q dxΦ
.

Writing this equation as vx dpx + q dΦ = 0, one can see that it is a full
differential dW = 0 of the total energy of the particle,

W = p2x/2m+ qΦ(x).

This relation describes the conservation of the mechanical energy of a par-
ticle in a stationary potential Φ. As a consequence, the general solution to
the Vlasov equation reads:

f(x, px) = F [W (x, px)], (1.2.2)

where F is an arbitrary function. According to the boundary condition at
zero potential, Φ(−L/2) = 0, the distribution function F is a Maxwellian
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function (1.1.28). Then, the solution to Eq. (1.2.1) verifying the boundary
condition is:

F (W, py, pz) =
n0

(2πmT )3/2
exp

(
−W
T

−
p2y + p2z
2mT

)
.

The density of particles can be calculated according to the definition (1.1.18):

n(x) = n0 exp

(
−qΦ(x)

T

)
(1.2.3)

where n0 is the density at x = −L/2, where the potential is zero.

The constant n0 is defined using the condition of conservation of the to-
tal number of particles in the capacitor N0. Without an external potential,
the densities of unperturbed ions and the electrons are equal, ni0 = ne0 =
n0, and the total number par unity of the surface is N0 = n0L. Knowing

potential, we obtain n0 by using the condition N0 =
∫ L/2

−L/2
dxn(x). To

simplify calculations, we consider the case eΦ ≪ T , where the plasma is
sufficiently hot, and we can develop exponential function in the Boltzmann
law (1.2.3) into Taylor series, eΦ ≈ 1+Φ. This allows us to write the density
of particles in the potential Φ as:

n(x) = n0

[
1− q

T
(Φ(x)− Φ̄)

]
(1.2.4)

where Φ̄ = (1/L)
∫ L/2

−L/2
dxΦ(x) is the mean potential.

Knowing the density distribution, we can now solve the Poisson equation
(1.1.14) and find the distribution of potential Φ and field E. Introducing
the dimensionless potential φ = e (Φ − Φ̄)/T and the Debye length λD =
(ϵ0T/e

2n0)
1/2, we can write the Poisson equation (1.1.14) as:

d2xφ = 2λ−2
D φ . (1.2.5)

This equation must be solved with the condition that the potential differ-
ence at the capacitor plates is Φ0: φ(L/2)−φ(−L/2) = eΦ0/T . Moreover,
because of the symmetry of the problem, the function φ(x) is an odd func-

tion, φ(−x) = −φ(x), and therefore,
∫ L/2

−L/2
dxφ(x) = 0. The first integral

of the Poisson equation (1.2.5) can be calculated by multiplying this equa-
tion by φ′ and integrating over x:

(φ′)2 = 2λ−2
D (φ2 + φ2

0)

where φ0 is a constant of integration that is determined later. The solution
of this equation is:

φ(x) = φ0 sinh(x
√
2/λD).
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The constant of integration is set to zero because φ(x) is an odd function.
Another constant φ0 is defined by the condition φ(±L/2) = ±eΦ0/2T .
This gives the following expression for the potential φ:

φ(x) =
eΦ0

2T

sinh(x
√
2/λD)

sinh(L/
√
2λD)

.

The mean potential Φ̄ is deduced from the boundary condition, which reads
Φ(−L/2) = 0. The expression for the potential inside the capacitor reads:

Φ(x) =
Φ0

2
+

Φ0

2

sinh(x
√
2/λD)

sinh(L/
√
2λD)

.

This electrostatic potential distribution is shown in Fig. 1.1(a). It increases
monotonously from the left plate of the capacitor to the right plate.

Figure 1.1: (a) Distribution of the potential in a capacitor in the presence
(red solid line) and in the absence of plasma (blue dotted line). The plasma
is in the interval x ∈ (−L/2, L/2). (b) Distribution of the electric field
inside a capacitor in the presence (red solid line) and in the absence of
plasma (blue dotted line).

By taking the derivative of Φ, we obtain an expression for the electric
field:

E(x) = − Φ0√
2λD

cosh(x
√
2/λD)

sinh(L/
√
2λD)

.

It is shown in Fig. 1.1(b). There are two characteristic limits in this formula.
We can develop the hyperbolic function in a Taylor series in a low-density
plasma where the Debye length is larger than the capacitor width, λD ≫ L.
Then, the electric field E ≈ −Φ0/L is constant, same as in the case without
plasma (dotted line in Fig. 1.1(b)). However, if λD ≪ L, the electric field
is localized near the plates of the capacitor at a distance of a few Debye
lengths:

E(x) ≈ − Φ0√
2λD

exp

(
−L− 2|x|√

2λD

)
.
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In this case, the plasma polarization has a strong effect. The electric field
is enhanced near the plates and is suppressed inside; see Fig. 1.1(b). The
plasma produces screening of the electric field in a capacitor. Utilizing
(1.2.4), we can find the density of electrons and ions and demonstrate that
the plasma acts as a dielectric. The plasma has a positive charge near the
left plate of the capacitor and a negative one near the right plate. However,
inside the capacitor, the plasma is quasi-neutral at a distance of a few Debye
lengths.

Knowing how much time the plasma needs to reach this stationary state
is interesting. In the stationary state, the term with the time derivative
in the Vlasov equation (1.1.9) is small compared to the other two terms:
∂tfα ≪ qαE ∂pfα. Estimating the partial derivative ∂pfα as fα/mαvTα,
we can evaluate the characteristic relaxation time to the stationary state
as ∆tα ≈ mαvTα/|qαE|. This time differs for electrons and ions because
of the large mass ratio: mi/me ≫ 1 (1836 for the hydrogen plasma). The
lighter electrons reach the equilibrium in a time (mi/me)

1/2 ∼ 40 shorter
than the ions. Therefore, the stationary state is established in two steps:
first, the electrons are set to equilibrium, then ions approach it later.

1.2.3 Particles in an external electric potential

Charged particles in a non-monotonous external electric potential exhibit
a complex motion, and their distribution functions may deviate from a
Maxwellian function. In particular, in some cases, the particles can be
trapped in a potential well. We consider here a simple representative case:
the distribution function of particles of a charge q and mass m in an exter-
nal potential Φ(x). We assume that the particles move just in one direction
along the x-axis under the action of the electric field Ex = −∂xΦ. The
distribution function, f(px, x), is a solution to the stationary Vlasov equa-
tion (1.2.1). The general solution to this equation is given in the previous
section 1.2.2 as Eq. (1.2.2). Assuming that for |x| → ∞, the potential is
zero and the distribution function is a Maxwellian function (1.1.28), the
solution to Eq. (1.2.2) is:

f(x, px) =
n0

(2πmT )1/2
e−W/TH(W )

=
n0

(2πmT )1/2
exp

(
− p2x
2mT

− qΦ(x)

T

)
, (1.2.6)

where H(W ) is the Heaviside function. This expression represents the
Maxwell-Boltzmann distribution function of charged particles in an elec-
trostatic potential.

Knowing the distribution function f , we can calculate the density and
pressure of particles at position x following the definitions (1.1.18) and
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Figure 1.2: Energy W , left column, (a) and (c) and the phase space
px(x) of particles, right column, (b) and (d) in an electrostatic potential
qΦ = ± cosh−2 x: (a) and (b) a potential bump: all the particles can go to
infinity – the distribution function is defined uniquely. 1 – total energy of
a free particle, 2 – particles with energy less than qΦmax are reflected; (c)
and (d) a potential well: particles with a negative energy are trapped (3).
Their distribution function depends on the temporal evolution, and their
trajectories are closed. Dashed lines show the separatrix ps(x). Arrows
show the direction of particle motion.

(1.1.21):

n(x) = n0e
−qΦ(x)/T , Pxx = n0T e−qΦ(x)/T (1.2.7)

where n0 is the density of particles at infinity where the potential is zero.
Formula (1.2.7) represents the Boltzmann distribution. For a positive po-
tential, qΦ > 0, the density and pressure of particles decrease where the
potential increases. This is due to a partial reflection of particles from the
potential bump (see Fig. 1.2(a)).

The case of a potential well or a negative potential has to be considered
separately. As shown in Fig. 1.2(b), particles with negative energies are
trapped and oscillate in the well. The distribution function of these particles
is not defined uniquely. It depends on how the potential has been created.
If, for example, we first created a potential in an empty space and after
that launched particles from infinity, then there will be no particles with a
negative energy, that is, f = 0 for W < 0, and no particles are trapped.
However, some particles can be trapped if we proceed another way and
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create a potential in an already existing plasma.

We consider this latter case supposing that the potential is created
slowly, and thus, the particles follow an adiabatic evolution in time. When
the potential evolves, the energy of particles is not conserved. However,
according to classical mechanics, another quantity is conserved: that is the
adiabatic invariant – the integral of the particle momentum between the
stopping points:

I = 2

∫ x2

x1

px(x, t) dx ≡ 2

∫ x2

x1

√
2m [W − qΦ(x, t)] dx (1.2.8)

where qΦ < 0, the particle energy is negative, W < 0 and W > qΦmin, the
integral is taken between the turning points x1,2(t) where qΦ(x1,2) =W .

The distribution function of trapped particles must depend on I but
not explicitly on the coordinate x. Moreover, F (W ) must be a continuous
function of W , particularly for the energy W = 0, that separates the free
and trapped particles. As W changes in time, the only possibility to satisfy
this condition of continuity is to make F (W < 0) constant: ftr = F (W <
0) = F (0) = n0(2πmT )−1/2. This choice corresponds to the maximum
number of trapped particles. By contrast, the distribution function of free
particles, ffree, with W > 0, is a Maxwellian function. These two parts of
the total distribution are connected at the separatrix ps(x), which is defined
as W (ps) = 0 or p2s/2m+ qΦ(x) = 0:

f(x, px) =
n0

(2πmT )1/2
×

{
1 |px| < ps

exp
(
− p2x

2mT
− qΦ(x)

T

)
|px| < ps.

(1.2.9)

The difference in the behavior of free and trapped particles can be bet-
ter understood while looking at the orbits of particles in the phase space,
(x, px), presented in Fig. 1.2, panels (c) and (d). In the case of a positive
potential, the orbits of all the particles are connected to infinity. The distri-
bution function is completely defined for these asymptotic values because
they are conserved along the trajectory. In the case of a negative potential,
the separatrix, ps(x), divides the phase space into free particles (|px| > ps)
and trapped particles (|px| < ps). The period of oscillations of the trapped
particles depends on their energy. Because of that, particles mix up with
time, and the distribution function becomes constant, equal to its value
along the separatrix, independently of the initial condition.

Using expression (1.2.9), we can calculate the density and pressure of
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particles:

n(x) =
2√
π
n0

√
−qΦ
T

+ n0 erfc

(√
−qΦ
T

)
e−qΦ/T , (1.2.10)

Pxx(x) =
2√
π
n0T

√
−qΦ
T

+
4

3
√
π
n0T

(
−qΦ
T

)3/2

+ n0 erfc

(√
−qΦ
T

)
e−qΦ/T , (1.2.11)

where erfc(ξ) = 1 − erf(ξ) is the complementary error function. The error

function is defined as erf(ξ) = (2/
√
π)
∫ ξ

0
e−t2dt. We can evaluate expres-

sions (1.2.10) and (1.2.11) in two limits:

• For a weak potential, |qΦ| ≪ T , developing these expressions in
Taylor series, we obtain:

n ≈ n0

[
1− qΦ

T
− 4

3
√
π

(
−qΦ
T

)3/2
]
, (1.2.12)

Pxx ≈ n0T

[
1− qΦ

T
+

1

2

(
qΦ

T

)2
]
. (1.2.13)

The difference from the Boltzmann distribution is in the last term in
the expression for the density. The contribution of trapped particles
is small.

• For a strong potential, |qΦ| ≫ T , the contribution of free particles is
negligible, and we find:

n ≈ 2√
π
n0

√
−qΦ
T

, Pxx ≈ 4

3
√
π
n0T

(
−qΦ
T

)3/2

. (1.2.14)

In difference from the Boltzmann distribution, the density increases
as a square root of the potential and the pressure as the potential in
a power 3/2.

1.2.4 Solitons and collisionless shocks

Knowing the particle distribution in a prescribed potential, we can take one
step forward and find self-consistent potential distributions in a collisionless
plasma. Here, we consider two such structures: solitons and shocks. Soliton
corresponds to a localized structure with a zero potential at infinity, which
moves with a constant velocity u0. Collisionless shock is a structure moving
with a constant speed and where the potential increases from zero upstream
of the shock to some higher value Φ0 downstream.
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Electrostatic soliton

Let us consider a soliton with an amplitude Φmax > 0 propagating in a
plasma from the right to the left with a velocity u0. The plasma electrons
are characterized by a charge qe = −e, density Zn0, and temperature Te

far from the soliton. The ions with a charge qi = Ze are considered as a
cold fluid. Then, in the reference frame associated with the soliton, the ions
move from the left to the right with a velocity u0. Their velocity at the
position x is defined by conservation of the total energyW = miu

2
i /2+ZeΦ

in the potential Φ:

ui(x) =
√
u2
0 − 2ZeΦ(x)/mi. (1.2.15)

The ion density is related to the ion velocity by the condition of continuity
ni(x) = n0u0/ui(x). Electrons coming from the infinity are not trapped in
a positive potential; see Fig. 1.2(c). However, electrons with negative total
energies W = mev

2
e/2− eΦ larger than −eΦmax can be trapped. Assuming

that the potential well is filled with trapped particles, we use expression
(1.2.10) for the electron density distribution. (We suppose that electron
temperature is sufficiently high, so the electron thermal velocity is much
larger than the ion flow velocity, vTe ≫ u0, and the latter can be neglected
in the electron distribution function.) Then, the equation for the electric
potential follows from the Poisson equation:

d2xΦ = − e

ϵ0
(Zni − ne)

=
Zen0

ϵ0

[
2

√
eΦ

πTe
+ eeΦ/Teerfc

(√
eΦ

Te

)
− u0√

u2
0 − 2ZeΦ/mi

]
.

The coordinate x is not entered explicitly in this differential equation. It can
be, therefore, integrated similarly as we integrated Eq. (1.2.5). Introducing
a dimensionless electric potential φ = eΦ/Te, dimensionless coordinate ξ =
x/λDe, where λDe = (ϵ0Te/Ze

2n0)
1/2 is the electron Debye length, and the

Mach number Ms = u0/cs, where cs = (ZTe/mi)
1/2 is the ion acoustic

velocity, this equation reads:

φ′′ = 2

√
φ

π
+ erfc(

√
φ) eφ − Ms√

M2
s − 2φ

= −∂φU. (1.2.16)

The right-hand side of this equation represents a difference of electron and
ion dimensionless densities. It can be considered as a derivative of the
effective potential U(φ).

By multiplying this equation by φ′ and integrating it assuming that
φ(−∞) = 0 we have:

1

2
(φ′)2 + U = E . (1.2.17)
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Here, the effective energy E is a constant, the effective potential U(φ) is
defined as follows

U =M2
s −Ms

√
M2

s − 2φ+ 1− 2

√
φ

π
− 4

3
√
π
φ3/2

− eφerfc(
√
φ), (1.2.18)

with a constant of integration U(0) set to zero. The first two terms in U
represent the ion contribution, and the four others describe the contribution
of electrons. The second term represents a ratio of the ion ram pressure,
nimiu

2
i , to the ion thermal pressure n0Te, and the last three terms represent

the electron thermal pressure:

pe = 2

√
φ

π
+

4

3
√
π
φ3/2 + eφerfc(

√
φ). (1.2.19)

Consequently, effective potential U represents the plasma pressure acting
on the soliton.

Equation (1.2.17) describes the energy conservation in a mechanical
system of a particle of a unit mass moving with a velocity φ′ in a potential
U shown in Fig. 1.3(a). Mach number is the only free parameter in the
problem. Since U(0) = 0, solutions of this equation exist only for U ≤ 0.
Solutions connecting to φ = 0 at ξ → ±∞ correspond to the horizontal line
U = 0. The point where the effective potential crosses abscissa defines the
soliton amplitude: U(φmax) = 0. For a given Ms, only one such solution
exists in a limited range of the Mach numbers, 1 < Ms < Mmax = 3.08.
For Ms ≤ 1, the potential is positive, and there are no real solutions for
Ms > Mmax. The maximum value of the Mach number is defined by the
condition M2

max = 2φmax(Mmax). As shown in Fig. 1.3(b), the soliton
amplitude φmax(Ms) increases from zero for Ms = 1 the value of 4.75 at
Mmax = 3.08.

The solution shown in Fig. 1.3(a) with a red dashed line, U = const < 0,
corresponds to a periodic nonlinear wave of a final amplitude. The poten-
tial oscillates between the minimum and maximum value defined by the
points where the dashed line crosses the potential curve. In particular, the
minimum potential curve (shown with a red dot in the figure) corresponds
to a solution with a constant density ne = ni and a potential φ1(Ms).

The spatial shape of the soliton and the periodic waves can be obtained
from Eq. (1.2.17) by plotting the inverse function x(φ). The soliton solu-
tion is shown in Fig. 1.4 for three values of Ms = 1.5, 2.5 and 3.0. The
potential (panel a) has a bell-like structure with amplitude of the order of
electron temperature and width of the order of the Debye length. As the
Mach number increases, the amplitude increases and the width decreases.
Solitons do not carry a net charge: as shown in Fig. 1.3(b), the positive
charge is concentrated near the tip of the soliton, surrounded by a negative


