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CHAPTER 1 

INTRODUCTION 
 
 
 

1.1. Preface 

Most users of differential equations in the mathematical and engineering 
sciences face the difficulty of being nonlinear. There has not been a 
particularly effective way to solve different kinds of nonlinear differential 
equations in diverse fields of study up until now. 

It is important to note that although academics have recently developed a 
few semi-analytical techniques for solving a small number of groups of 
nonlinear differential equations, none can be applied to various nonlinear 
equations. To understand better, it is necessary to mention that some 
techniques now used for solving nonlinear equations include the homotopy 
analysis method (HAM)1, homotopy perturbation method (HPM)2, VIM3, 
DTM4, ADM5, etc. However, each technique works well for a subset of 
nonlinear differential equations. 

Additionally, the use of every approach has occasionally resulted in 
calculations that contain serious errors. As a result, only some of the 
nonlinear issues can be solved using the abovementioned methods, which 
do not apply to all nonlinear situations. To further elaborate, the second 
drawback of these procedures is the drawn-out and challenging process. 

In this book, a practical method is presented for all the various types of 
nonlinear differential equations and various sets of nonlinear equations, 
allowing for straightforward analytical solutions to all the differential 
equations and the final solution of each differential equation as an algebraic 
function. By selecting an answer function for a differential equation with 

 
1 Homotopy Analysis Method 
2 Homotopy Perturbation Method 
3 Vibrational Iteration Method 
4 Differential Transformation Method 
5 Adomian Decomposition Method 
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constant coefficients, which may be obtained by applying initial or 
boundary conditions in a certain way, AGM seeks to solve all nonlinear 
differential equations algebraically. 

Also, semi-analytical methods can be divided into two groups based on how 
they solve problems; for the sake of simplicity, we will refer to them as the 
Iterate-Base Method and the Trial Function-Base Method. The number of 
iterations is a crucial aspect that influences the solving procedures in iterate-
based methods like (HPM), VIM, ADM, and others. Although we can use 
trial functions in this procedure that are based on our independent functions, 
to solve each step, we must first solve the stages that came before it. The 
reasons above make it clear that we will encounter issues that impede our 
problem-solving processes when iteration results in higher phases 
inaccessible to the relevant software. 

Additionally, these approaches typically require more time to find solutions. 

The primary element that affects the solving procedures in trial function-
based methods like Collocation Method (CM)6, least square method 
(LSM)7, AGM, and others are trial function. This approach assumes a 
practical trial function with various constant coefficients based on the 
problem's boundary and initial conditions. 

After that, we must solve the constant coefficients because of each 
approach's fundamental premise. Most of the time, a collection of 
polynomials can be solved to obtain the constant coefficients readily. 
Although the number of terms in our trial function in these approaches 
might be referred to as the number of needed iterations, it is essential to note 
that used constants will be obtained concurrently in solution procedures. 
Therefore, these techniques do not have iteration issues. 

AGM has high efficiency and accuracy for solving nonlinear problems with 
high nonlinearity, according to recent achievements from this approach and 
the Trial Function-Base properties of this method. It is important to note 
that the following can be used as a summary of this method's superiority 
versus other approaches: In the process of solving differential equations, 
boundary conditions are required in the order of the differential equations; 
however, if the number of boundary conditions is less than the order of the 
differential equation, this method may result in the creation of additional 

 
6 Colocation Method 
7 Least Square Method 
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new boundary conditions for the internal differential equation and its 
derivatives. 

1.2. The basic concept of AGM 

Every engineering science branch uses linear or nonlinear differential 
equations as its governing equations to solve physics-based problems. It is 
necessary to apply sufficient boundary or beginning conditions to the 
physics of these problems and the mathematical formulation they have been 
given to solve the difficulties under consideration. We can understand the 
significance of these boundaries and initial conditions in determining the 
accuracy and efficiency of analytical methods achieving acceptable 
solutions due to the physics of problems since procedures of applying 
analytical methods for obtaining the solution of linear and nonlinear 
differential equations are not an exception from mentioned fact. The entire 
process has been defined in plain terms to make it easier to understand the 
supplied method in this book. 

The general approach to a differential equation depends on the boundary 
conditions and is as follows: 

( ): ( , , ,..., ) 0;     u ( )m
kp f u u u u u x′ ′′ = =  (1.1) 

The nonlinear differential equation of p, which is a function of u, the 
parameter u, which is a function of x, and their derivatives are assumed as 
follows: 

Boundary conditions: 

0 1 1

( 1)
0 1 1

( 1)

( ) , ( ) ,..., ( )         at       x 0

( ) , ( ) ,..., ( )         at       x 0
m

m
m

m
L L L

u x u u x u u x u

u x u u x u u x u
−

−
−

−

′ = = = =
 ′= = = =  

(1.2) 

The sequence of letters in the nth order with constant coefficients that we 
assume as the solution of the first differential equation is taken into 
consideration to solve the first differential equation concerning the 
boundary conditions in x = L in Eq. (1.2) as follows: 

1 2
0 1 2

0
( ) ...

n
i n

i n
i

u x a x a a x a x a x
=

= = + + + +∑
 

(1.3) 
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The additional series statements in Eq. (1.3) lead to a more accurate solution 
for Eq (1.1). There are (n + 1) unknown coefficients that require (n + 1) 
equations to be stated to achieve the solution of the differential equation 
(1.1) about the series from degree (n). A group of (n+1) equations is solved 
using the boundary conditions of equation (1.2). 

1.2.1. Applying the boundary conditions 

(a) The boundary conditions are used in the following way to solve 
differential equation (1.3): 

When x = 0: 

0 0

1 1

2 2

(0)
(0)
(0)

                

u a u
u a u
u a u

= = 
 ′ = = 
 ′′ = = 
      

(1.4) 

And when x= L: 

0

1

1

2
0 1 2

2 1
1 2 3

2 2
2 3 4

( ) ...

( ) 2 3 ...

( ) 2 6 12 ... ( 1)

                                                                      
m

n
n L

n
n L

n
n L

u L a a L a L a L u

u L a a L a L na L u

u L a a L a L n n a L u
−

−

−

= + + + + =

′ = + + + + =

′′ = + + + + − =

       

(1.5) 

(b) The boundary conditions are applied to the differential Eq. (1.1) in the 
following manner after substituting Eq. (1.5) into Eq. (1.1): 

( )
0

( )
1

: ( (0), (0), (0),..., (0))

: ( ( ), ( ), ( ),..., ( ))
                                       

m

m

p f u u u u

p f u L u L u L u L

′ ′′

′ ′′

      

(1.6) 

To create a system of equations with (n+1) equations and (n+1); unknowns, 
based on the selection of n; (n m) phrases from Eq. (1.3), we must deal 
with several extra unknowns that are the identical coefficients of Eq (1.3). 
We must first apply the boundary conditions to the differential equations 
indicated above to solve this issue before deriving m times from Eq. (1.1) 
by the new unknowns. 



Introduction 
 

5 

( 1)

( ) ( 2)

: ( , , ,..., )
: ( , , ..., )

                                           

m
k

IV m
k

p f u u u u
p f u u u u

+

+

′ ′ ′′ ′′′

′′ ′′ ′′′

     

(1.7) 

(c) The boundary conditions in Eq. (1.7) are applied to the derivatives of the 
differential equation Pk as follows: 

( 1)

( 1)

( (0), (0), (0),..., (0))
:

( ( ), ( ), ( ),..., ( ))

m

k m

f u u u u
p

f u L u L u L u L

+

+

′ ′′ ′′′  ′  
′ ′′ ′′′    

(1.8) 

( 2)

( 2)

( (0), (0),..., (0))
:

( ( ), ( ),..., ( ))

m

k m

f u u u
p

f u L u L u L

+

+

′′ ′′′  ′′  
′′ ′′′    

(1.9) 

It is possible to construct (n+ 1) equations from Eq. (1.4) to Eq. (1.9) to 
determine the (n +1) unknown coefficients of Eq. (1.3), such as a0, a1, a2,..., 
and an. Finding the coefficients of Eq. (1.1) will lead to solving the nonlinear 
differential equation (1.3). 

 



CHAPTER 2 

THE APPLICATION OF AGM  
IN SOLID MECHANICS 

 
 
 
2.1. Swinging Oscillation of a Solid Circular Sector Object 

In this problem, a new and innovative semi-analytical method called AGM 
has been applied to solve nonlinear equations of the semicircular oscillator. 

Consider a homogeneous solid circular sector object with angle α and radius 
R, as shown in Fig. 2.1.1, that rolls in an oscillatory motion back and forth 
on a flat, stationary support with no sliding effect. When α becomes radian, 
no oscillatory swinging motion will occur. It may be easily verified that the 
governing equation of the oscillation is as follows:    

2

2

3  4sin( )( cos( ))
2 3

2 sin( ) 2sin( )R( sin( )) ( )sin( )=0
3 3

R R

R g

α θ θ
α

α αθ θ θ
α α

− +

+





 

(0)=A , (0) 0θ θ =
 

(2.1.1) 
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Fig. 2.1.1. Geometric parameters of the homogeneous solid circular 
sector body 

By substitution of the relatively accurate approximations 
3

sin( )
3!
θθ θ≈ −

 and 

2

 cos( ) 1
2!
θθ ≈ −

 Into Eq. (2.1.1), the governing 
equation would be in the following order: 
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2
2

3 3
2

3  4sin( ) (1 )(

 

)
2!2 3

2 sin( ) 2sin( )(R( ) ( )( )=0
3!3 3 3!

R

R g

θα θ
α

θα α θθ θ θ
α α

−− +

− + −





 

(0)=A , (0) 0θ θ =
 

(2.1.2) 

 

  

 

Fig. 2.1.2. (a, b, c) A comparison between the solutions obtained by 
AGM and the numerical method for R = 15, α = 2π/3. 
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According to the basic idea of the proposed method, first, we rewrite Eq. 
(2.1.1) in the following order: 

2
2

3 3
2

3  4sin( )G(t): (1 )( )
2!2 3

2 sin( ) 2sin( )(R( ) ( )( )=0
3!3 3 3!

R

R g

θα θ
α
θα α θθ θ θ

α α

−− +

− + −





 

(2.1.3) 

For solving the nonlinear differential equation by AGM, it is necessary to 
consider a function as the solution to the presented problem as follows: 

0 0 1 1( ) (  cos( t+ )+b  cos(2 ))att e b tθ ω φ ω φ−= +  (2.1.4) 

The term (
ate −

) in Eq. (2.1.4) indicates a damping component in the 
oscillating system. Since no damping components exist in the mentioned 
example, the term (a) in Eq. (2.1.4) will automatically be zero after applying 
the initial conditions in AGM. Moreover, the constant coefficient (b), the 
initial vibrational phase (φ), and the angular frequency (ω) can be computed 
by applying the initial conditions. According to the above theory, the 
solution to the problem is assumed as follows: 

0 0 1 1( )  cos( t+ )+b  cos(2 )t b tθ ω φ ω φ= +  (2.1.5) 

Regarding the proposed physical model, there are no boundary conditions, 
so the constant coefficients of Eq. (2.1.5) are acquired only concerning the 
given initial conditions presented in Eq. (2.1.3). Notably, initial or boundary 
conditions are applied in two manners in the following form: 
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Fig. 2.1.3. (a, b, c) A comparison between the solutions obtained by 
AGM and the numerical method for R = 15, α = π/2. 
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1) The initial conditions are applied to Eq. (2.1.5) in the form of 

( )ICθ θ=  (2.1.6) 

the initial condition (IC) is the abbreviation of the initial conditions. As a 
result, applying the initial conditions to Eq. (2.1.5) is performed as follows: 

0 0 1 1(0) cos( ) cos( )A a a Aθ ϕ ϕ= → + =  (2.1.7) 

0 0 1 1(0) 0 sin( ) 2 sin( ) 0a aθ ω ϕ ω ϕ= → − − =
 (2.1.8) 

2) The initial conditions are applied to the main differential equation, which 
in the problem is Eq. (2.1.3), and on its derivatives in the following general 
forms: 

( ( )) ( ( )) 0,  ( ( )) 0,...G t G IC G ICθ θ θ′→ = =  (2.1.9) 

Therefore, after substituting Eq. (2.1.5), which has been considered as the 
solution to the main differential equation, into Eq. (2.1.3), the initial 
conditions are applied to the equation obtained and its derivative based on 
Eq. (2.1.9) as follows:  

2
2

2 2
1

3 4 sin( ) cos( )( (0)) : ( )( )
2 3

sin( )sin( )( )2
3
2 sin( )sin( ) 0
3

RG R

R

g

α ψθ
α

α ψ
α

α ψ
α

− Γ

Γ
+

+ =



 

(2.1.10) 
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1 2

2
3

2 3
1

2
1 2

1

sin( )sin( )( )( )4 ( (0))
3

3 4 sin( ) cos( )( )( )
2 3

sin( ) cos( )( )2
3

sin( )sin( )( )( )4
3

sin( ) cos( )( )2 0
3

RG

RR

R

R

g

α ψθ
α

α ψ
α

α ψ
α

α ψ
α

α ψ
α

Γ Γ′ =

+ − Γ

Γ
+

Γ Γ
+

Γ
+ =



 

(2.1.11) 

2
1 2

2
2

1 3

2
4

2 4
1

2 2
1 2

2 2
2

2

sin( ) cos( )( ) ( )4( (0)) :
3

sin( )sin( )( )4
3

sin( )sin( )( )( )8
3
3 4 sin( ) cos( )( )( )
2 3

sin( )sin( )( )2
3

sin( ) cos( )( ) ( )10
3

sin( )sin( )( )4
3

sin( )sin(4
3

RG

R

R

RR

R

R

R

R

α ψθ
α

α ψ
α

α ψ
α

α ψ
α

α ψ
α

α ψ
α

α ψ
α

α ψ

Γ Γ′

Γ
+

Γ Γ
+

+ − Γ

Γ
−

Γ Γ
+

Γ
+

+



1 3

2
1

2

)( )( )

sin( )sin( )( )2
3

sin( ) cos( )( )2
3

g

g

α
α ψ

α
α ψ

α

Γ Γ

Γ
−

Γ
+

 

(2.1.12) 
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To simplify, we use the following statements: 

0 0 1 1

1 0 0 1 1
2 2

2 0 0 1 1
3 3

3 0 0 1 1
4 4

4 0 0 1 1

cos( ) cos( ),
sin( ) 2 sin( ),

cos( ) 4 cos( ),
sin( ) 8 sin( ),
cos( ) 16 cos( ).

b b
b b
b b

b b
b b

ψ φ φ
ω φ ω φ

ω φ ω φ

ω φ ω φ

ω φ ω φ

= +
Γ = − −

Γ = − −

Γ = +

Γ = +  

(2.1.13) 

Solving a set of five algebraic equations with five unknowns from Eqs. 
(2.1.7) and (2.1.8) and Eqs. (2.1.10)-(2.1.12), with the assumption of

8
A π
=

215, , 9.81,
3

R gπα= = =
 the constant coefficients 

0 1 0 1, , ,b b φ φ  and ω  Eq. (2.1.5), can easily be yielded as follows: 

0 1

0 1

0.3972120591,  b =0.004512977299,
9.424777961, 9.424777961,
0.09096384741

b
φ φ
ω

= −
= − = −
= −  

(2.1.14) 

After substituting the obtained values from Eq. (2.1.14) and into Eq. (2.1.5), 
the solution to the problem with the assumed physical constants will be 
obtained as follows: 

( )

0.3972120591 
0.09096384741 9.424777961

0.004512977299
0.1819276948 9.424777961

)
( )cos t

cos

t

t

θ( − ×=

×+
+

+  

(2.1.15) 
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Fig. 2.1.4. (a, b, c) A comparison between the solutions obtained by 
AGM and the numerical method for R = 15, α = π/3. 
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Fig. 2.1.5. (a, b, c) A comparison between the solutions obtained by 

AGM and the numerical method for R = 10, α = 2π/3. 
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In this problem, AGM has been utilized to solve the nonlinear differential 
equation of the swinging oscillation of a solid circular sector, and the results 
have been compared with the numerical solution. Although the processes of 
obtaining an analytical solution were accomplished in the previous section 
to make comprehensive comparisons and illustrate the accuracy and 
efficiency of the proposed method, we have investigated the effects of 
semicircular radius (R) and semicircular angle (α). Therefore, we have 
assumed the following appropriate amounts for our purposes: 

21) 15 , ,
3 2 3
22) 10 , ,
3 2 3

23) 5 , ,
3 2 3

R

R

R

π π πα α α

π π πα α α

π π πα α α

= → = = =

= → = = =

= → = = =
 

Figs. 2.1.2–2.1.4 demonstrate that the oscillation frequency will increase 
considerably by reducing the semicircular angle (α) with a constant 
semicircular radius (R). Notably, the frequency of the oscillation 
determined with AGM is generally higher than that determined with the 
numerical solution. Because the oscillation frequency is negatively 
correlated with the oscillation frequency, the oscillation period will 
increase. Apart from the mentioned results, these figures depict that the 
oscillation trends are somehow harmonic and stable. This is mainly because 
the vibration amplitude does not change at all. The same results are achieved 
in Figs. 2.1.5–2.1.10. A comparison of Fig. 2.1.2, Fig. 2.1.5, and Fig. 2.1.8 
illustrates that the oscillation frequency will increase by reducing the 
semicircular radius (R). In addition, the velocities reach their peaks when 
the semicircular radius (R) or the semicircular angle (α) decreases (Tables 
2.1.1–2.1.3). 
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Fig. 2.1.6. (a, b, c) A comparison between the solutions obtained by 

AGM and the numerical method for R = 10, α = π/2. 
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Table 2.1.1. The results obtained by the Numerical Solution and 
AGM for R = 15 and α=2π/3 

 

Table 2.1.2. The results obtained by the numerical solution and 
AGM for R=15, α=π/2 

 

In this problem, AGM has been used to solve a nonlinear equation of 
circular sector oscillation systems. The plots and tables represent that AGM 
has acceptable accuracy compared with the numerical method. We can 
claim that AGM is a strong analytical method for solving linear and 
nonlinear equations, especially vibrational problems. 
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Fig. 2.1.7. (a, b, c) A comparison between the solutions obtained by 

AGM and the numerical method for R = 10, α = π/3. 
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 Fig. 2.1.8. (a, b, c) A comparison between the solutions obtained by 

AGM and the numerical method for R = 5, α = 2π/3. 
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Fig. 2.1.9. (a, b, c) A comparison between the solutions obtained by 

AGM and the numerical method for R = 5, α = π/2. 
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Fig. 2.1.10. (a, b, c) A comparison between the solutions obtained by 

AGM and the numerical method for R = 5, α = π/3. 
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Table 2.1.3. The results obtained by the numerical solution and 
AGM for R=15, α=π/3  

 

In AGM, it is very convenient and easy to find the solution to the differential 
equation and the angular frequency (ω) simultaneously by merely selecting 
a function as the solution to the differential equation regarding the kind of 
operating system. In addition to the explanations above, after applying 
initial conditions to the considered answer, we exit from the field of 
differential equations into a set of algebraic equations. By solving a set of 
algebraic equations, a simple method, constant response coefficients are 
considered, and the angular frequency can be easily obtained. 

2.2. Vibration in Arched Beam 

Analysing and modelling the vibrational behaviour of arched bridges during 
an earthquake to decrease the damage to the structure is a very hard task. 
This has been performed analytically for the first time in the present study. 

In general, vibrational equations and their initial conditions are defined for 
different systems as follows: 

0 0(u, u, u, sin( )) 0f F tω =   
(2.2.1) 

Parameter (ω0) is the angular frequency of the harmonic force exerted on 
the system, and (F0) is its maximum amplitude. The initial conditions are as 
follows: 


