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FOREWORD

To improve the accuracy and stability of power battery state of charge
(SOC) estimation, this book proposes a SOC estimation method for power
lithium batteries based on the fusion of deep learning and filtering
algorithms. This book proposes a SOC estimation method for Li-ion
batteries using bi-directional long and short-term memory neural network
(BiLSTM), which avoids the problem that the long and short-term memory
neural network (LSTM) can only learn in one direction, resulting in poor
feature extraction and memory effect in the earlier learning part. For the
hyperparameter tuning and time efficiency problems in the training process
of the BILSTM model, the Bayesian optimization algorithm (BO) is
introduced for hyperparameter optimization. The training time is shortened,
and the optimized model has higher prediction accuracy and stronger
generalization ability. Considering the existence of poor stability of this
network prediction and the influence of noise, the traceless Kalman filter is
used to correct the improved model noise to obtain better tracking accuracy.
The authors hope that through their understanding and experience of
lithium-ion battery SOC prediction, they can provide some technical
references for the design, matching, and application of power lithium-ion
battery management systems and contribute to the development of new

energy technology applications.



PREFACE

At present, there are many methods to estimate the SOC of a power
battery, but there are some limitations. Neural networks overcome the
shortcomings of traditional methods, do not need an accurate battery model,
and have a strong learning ability. And the estimation accuracy has been
improved, which has become a hot research topic in recent years. The
change of power battery SOC often shows a certain long-term memory, that
is to say, the change rule of SOC is regular in time series. Therefore, starting
from the time series of power battery SOC, this book introduces the cyclic
neural network model with good time series processing and further
excavates the inherent laws of power battery SOC through its unique unit
structure. Aiming at the problems of LSTM cyclic neural network in
learning time series, such as poor early feature memory and difficulty in
fully mining the complete characteristics of the battery, a prediction model
of state of charge based on BiLSTM is proposed to improve the accuracy of
lithium battery SOC prediction. On this basis, the Bayesian optimization
algorithm is introduced to optimize the super parameters in the BiLSTM
training process, to improve the estimation accuracy and generalization
ability of the LSTM-based power battery SOC estimation model.

Due to the lack of stability of the network model in SOC estimation in
the charging and discharging process under different temperatures and
working conditions, the unscented Kalman filter algorithm and Bayesian

optimized BiLSTM network are designed to fuse, and the improved strategy
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of the optimized neural network model is explored to form a strong robust
algorithm system for SOC estimation. Based on the "one-step prediction,
one-step correction" approach, the UKF algorithm uses the mean value of
the o-sampled point set of 2n+1 state quantities in the UT transform in the
equivalent circuit model mapping to replace the a priori recursive state of
the EKF, which is conducive to reflecting the probability density
distribution of state quantities after the nonlinear mapping. At the same time,
it avoids the deep learning algorithm to overfit certain outliers and improves

the stability and robustness of lithium-ion battery SOC prediction.



CHAPTER 1

INTRODUCTION

1.1. Research background and significance

With the progress of science and technology, the improvement of
people's living standards, and the strengthening of environmental awareness,
the new energy industry has been developing rapidly. Among them, electric
vehicles, as the key to daily travel and material transportation, have become
the main driving force for the sustainable and rapid development of the new
energy industry. Traditional cars use fossil energy as power, and the huge
demand for fossil energy brought by the surge in car ownership exacerbates
the pressure of fossil energy production and import in China, which also
affects the energy security of China [1, 2]. The process of burning fossil
energy in automobiles produces a large number of emissions that are
extremely unfriendly to the environment, and these emissions are one of the
main causes of haze and PM2.5 [3, 4]. The consumption of fossil energy
and the pressure of environmental protection have forced people to seek
automotive power sources that can replace fossil energy sources. The
development of alternative energy vehicles is a necessary path for the
upgrading of China's automobile industry and a strategic measure for the
construction of ecological civilization in China [5, 6]. The change curve of

China's new energy vehicle production in the past five years is shown in
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Figure 1-1.
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Figure. 1-1 Power lithium-ion batteries shipment trend chart for China

As can be seen from Figure 1-1, under the influence of various factors
such as strong support from national policies, continuous breakthroughs in
power battery technology, and collaborative development of autonomous
driving as well as a more open attitude of consumers, the output of new
energy vehicles in China has shown a trend of the year-on-year increase in
the past five years. Among them, the lithium battery with its high energy
density and long cycle life in the field of new energy vehicles has been
developed rapidly [7-9]. According to the Consumer Electronics Association,
by 2030, the annual demand for lithium batteries is expected to exceed 2,000
GWh, of which about 85% of the demand comes from the field of electric
vehicles, while the remaining part will be used in the fields of aviation power
systems [10-12] and energy storage systems [13-16]. For now, the large-scale
use of lithium-ion batteries can effectively alleviate the energy scarcity and

environmental pollution caused by traditional fossil fuels.
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Due to the influence of external environmental factors, especially
extreme temperatures, the performance of pure electric vehicles at lower
temperatures is much less than that of fuel vehicles [17-20]. The significant
inherent differences between the individual cells within the lithium-ion
battery pack, as well as its highly nonlinear and multi-coupling nature, make
it difficult to improve the accuracy of the intelligent prediction of the state
of the lithium-ion battery system, leading to the deterioration of performance,
rapid aging, and even spontaneous combustion, and other safety issues are
increasingly prominent. To avoid these accidents, the development of a
Battery Management System (BMS) has become extremely important [21-
23], which can effectively prevent the reduction of battery life due to
abnormal conditions such as battery overcharge, over-discharge, and
overtemperature.

The State of Charge (SOC) is one of the most central parameters in the
whole life cycle of a lithium-ion battery, and its accurate estimation and
regulation will affect the output effectiveness and safety of the BMS [24,
25]. Therefore, it is necessary to monitor the changes in this parameter in
real-time and guarantee the operating performance of lithium-ion batteries
based on this parameter. However, due to the complex and variable load and
environmental effects, it is not possible to measure the internal state
parameters of the battery directly, and the SOC needs to be estimated
indirectly by employing external parameters. Therefore, SOC estimation
methods based on external parameters such as voltage, current, and

temperature have become a hot research topic.
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1.2. Status of domestic and international research on SOC

estimation strategies

Battery SOC is a physical quantity that reflects the remaining battery
power, and its accurate estimation can effectively reflect the battery
efficiency while enhancing the overall performance of the BMS.
Conventional SOC is defined as the ratio of the remaining usable battery

power to the rated capacity, as shown in Eq. (1-1).

soc =2 x 1009 (1-1)
Qn

In the above equation, O indicates the remaining available capacity of
the battery and Qu is the rated capacity value of the battery.

Specify the lithium-ion battery charge boundary values of 0 and 1,
which indicate the battery state when fully charged or the charge is empty,

respectively. SOC can also be defined as:

soc = (1 - %) x 100% (1-2)
N

In the above equation, Q, is the capacity of the battery discharging
power, and Qy is the rated capacity value of the battery.

Since the battery SOC is a hidden variable, which leads to the inability
to measure directly by sensors to obtain the real data and can only be
obtained by indirect methods, it is difficult to calculate the real value of SOC
based on the relevant definition of SOC, therefore, the complex and variable
SOC estimation method is the key to accurately calculate SOC [26-29].

To dissect the internal and external characteristics of lithium-ion
batteries more accurately, it is necessary to establish a high-precision battery
system model, design a robust SOC assessment method, and provide a better

power battery management system.
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1.2.1. Analysis of the advantages and disadvantages of

traditional estimation methods

For the exploration of accurate SOC assessment methods for lithium-
ion batteries, a lot of research has been conducted in this field in recent years
and some results have been achieved. The basic SOC estimation methods
include the discharge test method [30-32], the Ampere-hour (Ah) method
[33-36], the Open Circuit Voltage (OCV) method [37-40], and so on.

The discharge test method is a discharge experiment on the battery at
a constant discharge rate and temperature, and the available capacity of the
battery is recorded when the voltage reaches the cut-off condition to achieve
an effective estimation of the SOC value of lithium-ion batteries. The
method is simple in operation and applicable to different types of power
batteries, but the measurement period is long and the SOC value can be
obtained only when the complete discharge to the cut-off voltage must be
satisfied, which is mostly used for pure off-line measurement in the
laboratory. Therefore, it is difficult to estimate the SOC value of the battery
in the actual working condition.

The computational idea of the ampere-hour integration method is to
achieve SOC estimation by accumulating the incoming and outgoing power
when the lithium-ion battery is charged and discharged, which can be
measured online [41]. Ding et al. [42] used the Ah method with the
Unscented Kalman Filter (UKF) algorithm to compensate for the fitting
error generated by the model identification process of battery SOC in the
0.9-1 interval in SOC estimation under complex operating conditions, and
the estimation accuracy is high. However, this method is overly dependent

on the initial value of SOC, ignoring the influence of multiple external
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factors, and there is a serious cumulative error along with the extension of
the operation cycle.

The open-circuit voltage method is to sit the battery for a long enough
time, and after the internal state of the battery is stabilized, the battery SOC
is deduced from the mapping relationship between OCV and SOC. Sun et
al. [43] used the available capacity at different temperatures to construct the
battery OCV-SOC function relationship to achieve an effective estimation
of SOC. Chen et al. used constant current discharge experimental data to
develop a synergistic prediction of OCV and internal resistance of lithium-
ion batteries to achieve accurate SOC estimation. The method is simple and
convenient, and the SOC can be achieved directly from the measured value
OCV. However, the shelving time is long and it is difficult to perform online

measurements during vehicle start-up.
1.2.2. Exploration of Nonlinear Observers Based on Models

The model-based estimation method transmits the experimental battery
voltage, current, and temperature as input signals to the battery model, to
perform accurate online identification of the battery model parameters, and
finally to fuse them with a nonlinear observer to achieve accurate dynamic
estimation of the battery SOC. The most commonly used nonlinear observer
is the Kalman Filter (KF) algorithm [44-49]. The core idea of KF is to use
the battery current moment measurement data to make a one-step prediction
of the previous moment and filter out some noise disturbances through
iterative operations to obtain the optimal estimate of the system state at the
next moment. The structure of the estimation method is shown in Figure 1-

2.
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Figure. 1-2 Structure of the model-based SOC estimation method for lithium-ion

batteries

To accurately simulate the response characteristics under different
operating conditions, the equivalent circuit model [50-55] is chosen as the
mathematical model. Equivalent circuit models are widely used in the
electrical field because of their intuitive mathematical expressions,
powerful dynamic characterization capability, and high accuracy [56-59].
Based on the equivalent model, it is especially important to identify the
model parameters accurately. He et al. [60] explored a variable parameter
equivalent hysteresis model based on the Thevenin model. The model fully
considered the effects of temperature and SOC variations on model
accuracy but ignored the effects of electrochemical reactions within the
Thevenin model. Wang et al. [61] constructed a spliced equivalent circuit
model (S-ECM) and obtained accurate mathematical expressions under
complex operating conditions. However, the model requires the identification
of too many parameters, which increases the computational complexity.
Yang Xiao et al. [62] explored a restricted memory forgetting factor
recursive least squares (LM-RLS) method to identify model parameters

online while using the extended Kalman filter (EKF) algorithm to estimate
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the SOC to achieve high accuracy evaluation of the SOC of Li-ion batteries.
Zheng et al. [63] proposed a bias-compensated recursive least squares
(BCRLS) method to identify model parameters. However, this algorithm
strongly relies on the a priori estimation of the noise covariance.

The KF algorithm belongs to the recursive algorithm, which is usually
used in dynamic systems with unknown initial values to effectively correct
the system state variables, is strongly adaptive for strongly nonlinear
systems, and can evaluate the effect of SOC estimation for operating electric
vehicle lithium-ion batteries in real-time [57, 64-69]. Jiang et al. [70]
proposed a new adaptive square root extended Kalman (ASR-EKF) filter
that can solve the filter divergence problem caused by computer rounding
errors, but ignores the unknown and uncertainty of the system noise. Chen
Zonghai et al. [71] used particle filtering for online estimation of open-
circuit voltage to achieve voltage-based battery state estimation. Du et al.
[72] proposed an adaptive fading traceless Kalman filter (AFUKF) method
to solve the extreme inconsistency problem of retired batteries and improve
the adaptability and robustness of process modeling errors. However, the
method does not address the nonnegativity characteristics of the matrix and
does not adequately consider the estimation performance at different time
scales. Shen et al. [73] developed a square root cube Kalman filter (SRCKF)
method to estimate the battery SOC. The method avoids the filter
divergence problem under strongly nonlinear operating conditions and has
strong robustness and convergence. However, it is difficult to balance the
state estimation error caused by the ratio of a priori estimates and posterior
feedback measurements. Based on the reverse recursion of past data, Ding
Jie proposed a weighted Heo filtering algorithm that can update the

algorithm SOC value online with a stable error within 3% and a
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convergence speed better than that of the sliding mode observer. The strong
correction capability of the filtering algorithm [46, 74-79] makes this type
of estimation method the mainstream direction of SOC estimation [80-84],
but it has a strong dependence on the accuracy of the model and is
computationally complex and redundant, and takes a relatively long time.
In recent years, with the rise of concepts such as artificial intelligence
and big data, more and more machine learning methods have been tried in
the SOC estimation of electric vehicle-powered lithium-ion batteries, and

emerging algorithms based on data mining have made certain achievements.
1.2.3. Research on data-driven self-learning mechanisms

The data-driven approach is a direct estimation of SOC from a large
number of data samples of battery measurement parameters such as current,
voltage, temperature, etc. through a "black box". This black box does not
need to consider the internal characteristics of the battery does not rely on
an accurate model, and has good nonlinear mapping capability [85-87]. The

data-driven estimation method is shown in Figure 1-3.
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Figure. 1-3 A data-driven approach to SOC estimation

Common data-driven SOC estimation methods based on support
vector machines (SVM) [88-91] and extreme learning machines (ELM) [92-
98] and neural networks (NN) [99-104] are available.

The theoretical basis of the SVM method is nonlinear mapping, which
has strong performance advantages for nonlinear systems as well as high-
dimensional spaces. However, the method is difficult to implement for
large-scale training samples and is only applicable to small-sample data
training. Yang [105] proposed the least squares support vector machine (LS-
SVM) for estimating the SOC values of lithium-ion batteries. The method
was tuned for model complexity and generalization to overcome the training
overfitting problem.

The ELM algorithm does not require iteration of the hidden layer for

model training and learning, and it has the advantages of fast convergence



Introduction 11

and high generalizability, but it can only be used to explore lightweight
samples to prevent the overfitting phenomenon, which is less controllable.
Liu et al. [106] proposed a SOC estimation method based on ELM and
maximum correlation entropy square root volume Kalman filter (MCE-
SRCVKF) to reduce the impact of noise on SOC estimation accuracy, which
reduces the impact of measurement noise while simplifying the tuning
process and has strong robustness.

Neural networks are widely used for their good self-learning capability
to effectively deal with strong nonlinearities and can accurately track the
actual SOC values when there is a large amount of sample data without the
need to build a specific model and consider the internal operating
characteristics of the battery [100, 107-109]. Ma [110] performed a
collaborative estimation of SOC and state of energy (SOE) of lithium
batteries based on a long short-term memory (LSTM) neural network in a
complex operating environment. The average absolute errors of SOC and
SOE estimation were only 0.91% and 1.09%, which verified the high
accuracy and strong robustness of the method. Hu [111] constructed an
online SOC estimation model based on a radial basis neural network
(RBFNN) to solve the battery nonlinearity problem. However, it cannot
adapt to complex and variable driving conditions and is prone to large error
deviations of SOC estimation results under complex operating conditions.
Chunsong Lin et al. [22] used a differential evolutionary algorithm to
optimize the neural network to obtain the global optimal solution, and the
estimation accuracy of power battery SOC was improved. The neural
network-based SOC estimation method can improve the SOC estimation
accuracy, but the large sample data required will lead to a long training time

for the model, which leads to the overlearning phenomenon.
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1.2.4. Study of estimation strategies based on hybrid algorithms

For SOC estimation of lithium-ion batteries, there are numerous
methods and their respective superiority, but they also possess certain
limitations. To further improve the accuracy of SOC estimation for lithium-
ion batteries and to compensate for the shortcomings of a single estimation
method itself, researchers have proposed hybrid algorithmic strategies, such
as the interfusion of data-driven models [112-116]. Chen et al. [117]
proposed a SOC estimation method that fuses LSTM neural networks and
adaptive Hoo filters, which reduces the output fluctuations of LSTM
networks and omits the traditional observer's exact modeling task. Proenza-
Perez et al. [118] designed a hybrid algorithm integrating the UKF
algorithm with the BP (backpropagation) neural network for estimating
battery SOC estimation, which corrects the estimation error of UKF and
further improves the estimation accuracy of the BP network. Chen [119]
used the robust recursive least squares (RRLS) method to extract the
equivalent circuit model online parameters and incorporate them into the
HIF algorithm to achieve accurate estimation of SOC, this hybrid method
incorporates parameter estimation error in the discriminative model, which
can effectively reduce the unknown noise interference caused by model
error. Yang et al. [120] used a combination of LSTM and UKF to estimate
the SOC of lithium-ion batteries, which enhanced the stability of the
network model and filtered the noise interference but did not consider the
ambient temperature and the battery aging condition effects.

With the rapid development of intelligent algorithms, data mining
methods combined with model-based filtering algorithms are widely used

and have achieved significant results. For a priori estimation, the model-
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based filtering algorithm plays a decisive role in estimation, while for the
case of an unknown model, the data-driven method can estimate SOC
performance more accurately. In this book, we aim to build a dynamic
model with data-driven and Kalman filtering, optimize and improve the
neural network model, and then introduce the improved Kalman filtering
algorithm to estimate and correct the network model noise, which
effectively solves the problems of low accuracy, poor robustness and slow

convergence of SOC estimation.
1.3. Research content and structure of the project
1.3.1. Research content

As a technical bottleneck for the promotion and development of
electric vehicles, the accurate state prediction of power lithium-ion batteries
is important to strengthen the real-time monitoring function of BMS and
ensure the safe and reliable operation of power lithium-ion batteries. In this
book, we analyze the coupling relationship between the key operating
characteristics and SOC of power lithium-ion battery, obtain the model
input data under complex operating conditions, and establish a dynamic
SOC prediction model based on Bidirectional Long Short-Term Memory
(BiLSTM). To address the problem of the tedious and difficult selection of
model hyperparameters, Bayesian Optimization (BO) is used to optimize
the model hyperparameters and obtain high-accuracy prediction results. The
optimization model improvement strategy is explored, and the UKF
algorithm is used to correct the model noise interference to form a strongly

robust charge state estimation algorithm system, as shown in Figures 1-4.
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Figure. 1-3 Research content
1.3.2. Organization structure

According to the general description of the study, the specific structure
of this book is arranged as follows:

Chapter 1: Introductory section. The development of electric vehicles
and their lithium-ion batteries and their future dynamics are discussed, the
definition of SOC is clarified, the scientific achievements of lithium-ion
batteries at home and abroad at this stage are summarized, and their
advantages and disadvantages are analyzed, and the research direction of
this book is finally clarified.

Chapter 2: Analysis of the working characteristics of power lithium-
ion batteries. The internal structure and electrochemical reactions of
lithium-ion batteries are explored, and the mapping relationship between
battery operating characteristics and key parameters is further investigated.
The internal and external characteristics analysis is carried out with full
consideration of the input and output characteristics under complex

operating conditions, and the influence of different temperatures on the
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internal parameters of the powerful lithium-ion battery is explored to obtain
the evolution law of the key parameters and performance of the lithium-ion
battery.

Chapter 3: Bayesian optimization of the BiLSTM battery SOC
dynamic prediction model. Firstly, the LSTM-based SOC prediction model
is constructed, and the inverse sequence is added to form the BiLSTM
dynamic model considering the problems of difficult training and poor
generalization performance of future timing characteristics. The BiLSTM
model hyperparameters are configured using a Bayesian optimization
algorithm to seek the best hyperparameter combination to improve the
model training capability and optimize the performance characteristics.

Chapter 4: Exploration of noise correction strategy by fusing Kalman
filter. A battery equivalent model is constructed and a rectangular window
recursive least square (RW-RLS) is proposed for online identification of the
relevant parameters of the equivalent model to obtain a high-precision
modeling system. For the interference of system time-varying noise, the
UKF algorithm is chosen to avoid the filtering divergence, while the noise
is corrected based on the Sage-Husa algorithm. The design fusion
optimization strategy achieves strong robustness and adaptive state
estimation.

Chapter 5: Verification of state estimation algorithm under simulated
working conditions environment. The experimental test platform is
constructed and designed to obtain the battery input characteristics under
complex simulated operating conditions. Suitable performance indicators
are selected to analyze and compare the prediction effects of the involved

models for validation.
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Chapter 6: Summary and Outlook. The main work of this book is
summarized, the shortcomings of the proposed method in the research
process are analyzed, and the outlook on the subsequent research directions

is made.



CHAPTER 2

ANALYSIS OF THE OPERATING
CHARACTERISTICS OF POWER
LITHIUM BATTERIES

From the analysis of the research background in Chapter 1, it can be
seen that new energy vehicles are developing rapidly, and lithium-ion
batteries have become the preferred power source for new energy vehicles
due to their performance advantages. Deep exploration of battery
technology is crucial in the field of new energy. This chapter will provide
an in-depth analysis of the working mechanism and characteristics of
lithium batteries, laying the foundation for extracting input characteristics
of SOC estimation models for power lithium-ion batteries and constructing

high-precision equivalent models.

2.1. Research on the Internal Working Mechanism of
Power Lithium Batteries

As a portable energy storage element, the lithium-ion battery has the
advantages of high combustion value, environmental protection, long cycle life,
no memory effect (capacity loss), good safety performance, low self-discharge,
fast charging, wide operating temperature range, etc. Lithium ions generally
include the main structures of the positive electrode plate, negative electrode

plate, electrolyte, and separator. The positive electrode plate provides Li+ for
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the battery, while the negative electrode plate is mainly graphite. The
diaphragm is a special type of microporous film that can prevent the
unrestricted transfer of electrons between the positive and negative electrodes
of the battery, allowing only Li+ to travel back and forth [121-125]. Lithium
ions generate electrical energy by constantly moving back and forth between
the positive and negative electrode plates and can charge and discharge

repeatedly. The internal structure of lithium ions is shown in Figure 2-1.
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Figure 2-1 Schematic diagram of the structure of a lithium-ion battery

From Figure 2-1, it can be observed that during the charging action of
the battery, the positive electrode material undergoes an oxidation reaction,
releasing electrons. The positively charged Lit+ passes through the
electrolyte solution and the separator to reach the carbon layer of the
battery's negative electrode, and the negative electrode obtains Li+. During
the discharge action, Li+ detaches from the negative electrode and

integrates into the positive electrode through the corresponding electrolyte
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and membrane micropores, achieving mutual conversion between electrical
and chemical energy [126-129]. The internal chemical reaction process of

lithium-ion batteries is described in Figure 2-2.
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Figure. 2-2 Internal chemical reaction process of lithium-ion battery

The chemical transformation equations for the positive and negative
reactions of lithium-ion batteries and the total reaction of the battery can be
described as formula (2-1).

P:LiM,0, = Li¢y_yM,0,, + xLi* + xe~
N:nC + xLi* + xe™ = Li,C, 2-1)
T: LiM,0y, + nC = Li¢y_yM,0, + Li,C,

As a high energy density battery with excellent development prospects,
lithium-ion batteries can achieve the extraction of multiple Li+ between
plates. As the internal structure changes, the internal performance of the
battery will also decrease. Therefore, exploring the internal mechanism of
batteries is beneficial for assisting in exploring the working characteristics

and performance evolution of batteries.
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2.2. Analysis of Key Parameter Characteristics of Power
Lithium Battery

2.2.1. Analysis of open-circuit voltage Characteristics

The open circuit voltage of a battery refers to the terminal voltage
between the positive and negative poles when there is no load on the
external circuit of the battery. After the battery has been left standing for a
sufficient time, the internal electrochemical reaction gradually stabilizes,
and the default OCV of the battery is approximately equal to the current
electromotive force. Research has shown that there is a relatively stable
functional relationship between the open circuit voltage OCV and SOC
when charging and discharging the battery in a constant temperature
environment of 25 °C. Based on this relationship, effective characterization of
battery OCV-SOC was obtained using function fitting tools to more intuitively
reflect the static SOC characteristics of the battery [43, 130-134]. The
experimental OCV-SOC relationship of the battery is shown in Figure 2-3.
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Figure. 2-3 Graph of OCV-SOC curve at 25°C



