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FOREWORD 

 

 

To improve the accuracy and stability of power battery state of charge 

(SOC) estimation, this book proposes a SOC estimation method for power 

lithium batteries based on the fusion of deep learning and filtering 

algorithms. This book proposes a SOC estimation method for Li-ion 

batteries using bi-directional long and short-term memory neural network 

(BiLSTM), which avoids the problem that the long and short-term memory 

neural network (LSTM) can only learn in one direction, resulting in poor 

feature extraction and memory effect in the earlier learning part. For the 

hyperparameter tuning and time efficiency problems in the training process 

of the BiLSTM model, the Bayesian optimization algorithm (BO) is 

introduced for hyperparameter optimization. The training time is shortened, 

and the optimized model has higher prediction accuracy and stronger 

generalization ability. Considering the existence of poor stability of this 

network prediction and the influence of noise, the traceless Kalman filter is 

used to correct the improved model noise to obtain better tracking accuracy. 

The authors hope that through their understanding and experience of 

lithium-ion battery SOC prediction, they can provide some technical 

references for the design, matching, and application of power lithium-ion 

battery management systems and contribute to the development of new 

energy technology applications. 



 

PREFACE 

 

 

At present, there are many methods to estimate the SOC of a power 

battery, but there are some limitations. Neural networks overcome the 

shortcomings of traditional methods, do not need an accurate battery model, 

and have a strong learning ability. And the estimation accuracy has been 

improved, which has become a hot research topic in recent years. The 

change of power battery SOC often shows a certain long-term memory, that 

is to say, the change rule of SOC is regular in time series. Therefore, starting 

from the time series of power battery SOC, this book introduces the cyclic 

neural network model with good time series processing and further 

excavates the inherent laws of power battery SOC through its unique unit 

structure. Aiming at the problems of LSTM cyclic neural network in 

learning time series, such as poor early feature memory and difficulty in 

fully mining the complete characteristics of the battery, a prediction model 

of state of charge based on BiLSTM is proposed to improve the accuracy of 

lithium battery SOC prediction. On this basis, the Bayesian optimization 

algorithm is introduced to optimize the super parameters in the BiLSTM 

training process, to improve the estimation accuracy and generalization 

ability of the LSTM-based power battery SOC estimation model. 

Due to the lack of stability of the network model in SOC estimation in 

the charging and discharging process under different temperatures and 

working conditions, the unscented Kalman filter algorithm and Bayesian 

optimized BiLSTM network are designed to fuse, and the improved strategy 
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of the optimized neural network model is explored to form a strong robust 

algorithm system for SOC estimation. Based on the "one-step prediction, 

one-step correction" approach, the UKF algorithm uses the mean value of 

the σ-sampled point set of 2n+1 state quantities in the UT transform in the 

equivalent circuit model mapping to replace the a priori recursive state of 

the EKF, which is conducive to reflecting the probability density 

distribution of state quantities after the nonlinear mapping. At the same time, 

it avoids the deep learning algorithm to overfit certain outliers and improves 

the stability and robustness of lithium-ion battery SOC prediction. 

 



 

CHAPTER 1 

INTRODUCTION 

 

 

1.1. Research background and significance 

With the progress of science and technology, the improvement of 

people's living standards, and the strengthening of environmental awareness, 

the new energy industry has been developing rapidly. Among them, electric 

vehicles, as the key to daily travel and material transportation, have become 

the main driving force for the sustainable and rapid development of the new 

energy industry. Traditional cars use fossil energy as power, and the huge 

demand for fossil energy brought by the surge in car ownership exacerbates 

the pressure of fossil energy production and import in China, which also 

affects the energy security of China [1, 2]. The process of burning fossil 

energy in automobiles produces a large number of emissions that are 

extremely unfriendly to the environment, and these emissions are one of the 

main causes of haze and PM2.5 [3, 4]. The consumption of fossil energy 

and the pressure of environmental protection have forced people to seek 

automotive power sources that can replace fossil energy sources. The 

development of alternative energy vehicles is a necessary path for the 

upgrading of China's automobile industry and a strategic measure for the 

construction of ecological civilization in China [5, 6]. The change curve of 

China's new energy vehicle production in the past five years is shown in 
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Figure 1-1. 
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Figure. 1-1 Power lithium-ion batteries shipment trend chart for China 

As can be seen from Figure 1-1, under the influence of various factors 

such as strong support from national policies, continuous breakthroughs in 

power battery technology, and collaborative development of autonomous 

driving as well as a more open attitude of consumers, the output of new 

energy vehicles in China has shown a trend of the year-on-year increase in 

the past five years. Among them, the lithium battery with its high energy 

density and long cycle life in the field of new energy vehicles has been 

developed rapidly [7-9]. According to the Consumer Electronics Association, 

by 2030, the annual demand for lithium batteries is expected to exceed 2,000 

GWh, of which about 85% of the demand comes from the field of electric 

vehicles, while the remaining part will be used in the fields of aviation power 

systems [10-12] and energy storage systems [13-16]. For now, the large-scale 

use of lithium-ion batteries can effectively alleviate the energy scarcity and 

environmental pollution caused by traditional fossil fuels. 
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Due to the influence of external environmental factors, especially 

extreme temperatures, the performance of pure electric vehicles at lower 

temperatures is much less than that of fuel vehicles [17-20]. The significant 

inherent differences between the individual cells within the lithium-ion 

battery pack, as well as its highly nonlinear and multi-coupling nature, make 

it difficult to improve the accuracy of the intelligent prediction of the state 

of the lithium-ion battery system, leading to the deterioration of performance, 

rapid aging, and even spontaneous combustion, and other safety issues are 

increasingly prominent. To avoid these accidents, the development of a 

Battery Management System (BMS) has become extremely important [21-

23], which can effectively prevent the reduction of battery life due to 

abnormal conditions such as battery overcharge, over-discharge, and 

overtemperature. 

The State of Charge (SOC) is one of the most central parameters in the 

whole life cycle of a lithium-ion battery, and its accurate estimation and 

regulation will affect the output effectiveness and safety of the BMS [24, 

25]. Therefore, it is necessary to monitor the changes in this parameter in 

real-time and guarantee the operating performance of lithium-ion batteries 

based on this parameter. However, due to the complex and variable load and 

environmental effects, it is not possible to measure the internal state 

parameters of the battery directly, and the SOC needs to be estimated 

indirectly by employing external parameters. Therefore, SOC estimation 

methods based on external parameters such as voltage, current, and 

temperature have become a hot research topic. 
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1.2. Status of domestic and international research on SOC 
estimation strategies 

Battery SOC is a physical quantity that reflects the remaining battery 

power, and its accurate estimation can effectively reflect the battery 

efficiency while enhancing the overall performance of the BMS. 

Conventional SOC is defined as the ratio of the remaining usable battery 

power to the rated capacity, as shown in Eq. (1-1). 

 𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑄𝑄𝑘𝑘
𝑄𝑄𝑁𝑁

× 100% (1-1) 

In the above equation, Qk indicates the remaining available capacity of 

the battery and QN is the rated capacity value of the battery. 

Specify the lithium-ion battery charge boundary values of 0 and 1, 

which indicate the battery state when fully charged or the charge is empty, 

respectively. SOC can also be defined as: 

 𝑆𝑆𝑆𝑆𝑆𝑆 = �1 −
𝑄𝑄𝑢𝑢
𝑄𝑄𝑁𝑁
� × 100% (1-2) 

In the above equation, Qu is the capacity of the battery discharging 

power, and QN is the rated capacity value of the battery. 

Since the battery SOC is a hidden variable, which leads to the inability 

to measure directly by sensors to obtain the real data and can only be 

obtained by indirect methods, it is difficult to calculate the real value of SOC 

based on the relevant definition of SOC, therefore, the complex and variable 

SOC estimation method is the key to accurately calculate SOC [26-29]. 

To dissect the internal and external characteristics of lithium-ion 

batteries more accurately, it is necessary to establish a high-precision battery 

system model, design a robust SOC assessment method, and provide a better 

power battery management system. 
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1.2.1. Analysis of the advantages and disadvantages of 
traditional estimation methods 

For the exploration of accurate SOC assessment methods for lithium-

ion batteries, a lot of research has been conducted in this field in recent years 

and some results have been achieved. The basic SOC estimation methods 

include the discharge test method [30-32], the Ampere-hour (Ah) method 

[33-36], the Open Circuit Voltage (OCV) method [37-40], and so on. 

The discharge test method is a discharge experiment on the battery at 

a constant discharge rate and temperature, and the available capacity of the 

battery is recorded when the voltage reaches the cut-off condition to achieve 

an effective estimation of the SOC value of lithium-ion batteries. The 

method is simple in operation and applicable to different types of power 

batteries, but the measurement period is long and the SOC value can be 

obtained only when the complete discharge to the cut-off voltage must be 

satisfied, which is mostly used for pure off-line measurement in the 

laboratory. Therefore, it is difficult to estimate the SOC value of the battery 

in the actual working condition. 

The computational idea of the ampere-hour integration method is to 

achieve SOC estimation by accumulating the incoming and outgoing power 

when the lithium-ion battery is charged and discharged, which can be 

measured online [41]. Ding et al. [42] used the Ah method with the 

Unscented Kalman Filter (UKF) algorithm to compensate for the fitting 

error generated by the model identification process of battery SOC in the 

0.9-1 interval in SOC estimation under complex operating conditions, and 

the estimation accuracy is high. However, this method is overly dependent 

on the initial value of SOC, ignoring the influence of multiple external 
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factors, and there is a serious cumulative error along with the extension of 

the operation cycle. 

The open-circuit voltage method is to sit the battery for a long enough 

time, and after the internal state of the battery is stabilized, the battery SOC 

is deduced from the mapping relationship between OCV and SOC. Sun et 

al. [43] used the available capacity at different temperatures to construct the 

battery OCV-SOC function relationship to achieve an effective estimation 

of SOC. Chen et al. used constant current discharge experimental data to 

develop a synergistic prediction of OCV and internal resistance of lithium-

ion batteries to achieve accurate SOC estimation. The method is simple and 

convenient, and the SOC can be achieved directly from the measured value 

OCV. However, the shelving time is long and it is difficult to perform online 

measurements during vehicle start-up. 

1.2.2. Exploration of Nonlinear Observers Based on Models 

The model-based estimation method transmits the experimental battery 

voltage, current, and temperature as input signals to the battery model, to 

perform accurate online identification of the battery model parameters, and 

finally to fuse them with a nonlinear observer to achieve accurate dynamic 

estimation of the battery SOC. The most commonly used nonlinear observer 

is the Kalman Filter (KF) algorithm [44-49]. The core idea of KF is to use 

the battery current moment measurement data to make a one-step prediction 

of the previous moment and filter out some noise disturbances through 

iterative operations to obtain the optimal estimate of the system state at the 

next moment. The structure of the estimation method is shown in Figure 1-

2. 
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Figure. 1-2 Structure of the model-based SOC estimation method for lithium-ion 

batteries 

To accurately simulate the response characteristics under different 

operating conditions, the equivalent circuit model [50-55] is chosen as the 

mathematical model. Equivalent circuit models are widely used in the 

electrical field because of their intuitive mathematical expressions, 

powerful dynamic characterization capability, and high accuracy [56-59]. 

Based on the equivalent model, it is especially important to identify the 

model parameters accurately. He et al. [60] explored a variable parameter 

equivalent hysteresis model based on the Thevenin model. The model fully 

considered the effects of temperature and SOC variations on model 

accuracy but ignored the effects of electrochemical reactions within the 

Thevenin model. Wang et al. [61] constructed a spliced equivalent circuit 

model (S-ECM) and obtained accurate mathematical expressions under 

complex operating conditions. However, the model requires the identification 

of too many parameters, which increases the computational complexity. 

Yang Xiao et al. [62] explored a restricted memory forgetting factor 

recursive least squares (LM-RLS) method to identify model parameters 

online while using the extended Kalman filter (EKF) algorithm to estimate 
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the SOC to achieve high accuracy evaluation of the SOC of Li-ion batteries. 

Zheng et al. [63] proposed a bias-compensated recursive least squares 

(BCRLS) method to identify model parameters. However, this algorithm 

strongly relies on the a priori estimation of the noise covariance. 

The KF algorithm belongs to the recursive algorithm, which is usually 

used in dynamic systems with unknown initial values to effectively correct 

the system state variables, is strongly adaptive for strongly nonlinear 

systems, and can evaluate the effect of SOC estimation for operating electric 

vehicle lithium-ion batteries in real-time [57, 64-69]. Jiang et al. [70] 

proposed a new adaptive square root extended Kalman (ASR-EKF) filter 

that can solve the filter divergence problem caused by computer rounding 

errors, but ignores the unknown and uncertainty of the system noise. Chen 

Zonghai et al. [71] used particle filtering for online estimation of open-

circuit voltage to achieve voltage-based battery state estimation. Du et al. 

[72] proposed an adaptive fading traceless Kalman filter (AFUKF) method 

to solve the extreme inconsistency problem of retired batteries and improve 

the adaptability and robustness of process modeling errors. However, the 

method does not address the nonnegativity characteristics of the matrix and 

does not adequately consider the estimation performance at different time 

scales. Shen et al. [73] developed a square root cube Kalman filter (SRCKF) 

method to estimate the battery SOC. The method avoids the filter 

divergence problem under strongly nonlinear operating conditions and has 

strong robustness and convergence. However, it is difficult to balance the 

state estimation error caused by the ratio of a priori estimates and posterior 

feedback measurements. Based on the reverse recursion of past data, Ding 

Jie proposed a weighted H ∞  filtering algorithm that can update the 

algorithm SOC value online with a stable error within 3% and a 
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convergence speed better than that of the sliding mode observer. The strong 

correction capability of the filtering algorithm [46, 74-79] makes this type 

of estimation method the mainstream direction of SOC estimation [80-84], 

but it has a strong dependence on the accuracy of the model and is 

computationally complex and redundant, and takes a relatively long time. 

In recent years, with the rise of concepts such as artificial intelligence 

and big data, more and more machine learning methods have been tried in 

the SOC estimation of electric vehicle-powered lithium-ion batteries, and 

emerging algorithms based on data mining have made certain achievements. 

1.2.3. Research on data-driven self-learning mechanisms 

The data-driven approach is a direct estimation of SOC from a large 

number of data samples of battery measurement parameters such as current, 

voltage, temperature, etc. through a "black box". This black box does not 

need to consider the internal characteristics of the battery does not rely on 

an accurate model, and has good nonlinear mapping capability [85-87]. The 

data-driven estimation method is shown in Figure 1-3. 
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Figure. 1-3 A data-driven approach to SOC estimation 

Common data-driven SOC estimation methods based on support 

vector machines (SVM) [88-91] and extreme learning machines (ELM) [92-

98] and neural networks (NN) [99-104] are available. 

The theoretical basis of the SVM method is nonlinear mapping, which 

has strong performance advantages for nonlinear systems as well as high-

dimensional spaces. However, the method is difficult to implement for 

large-scale training samples and is only applicable to small-sample data 

training. Yang [105] proposed the least squares support vector machine (LS-

SVM) for estimating the SOC values of lithium-ion batteries. The method 

was tuned for model complexity and generalization to overcome the training 

overfitting problem. 

The ELM algorithm does not require iteration of the hidden layer for 

model training and learning, and it has the advantages of fast convergence 
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and high generalizability, but it can only be used to explore lightweight 

samples to prevent the overfitting phenomenon, which is less controllable. 

Liu et al. [106] proposed a SOC estimation method based on ELM and 

maximum correlation entropy square root volume Kalman filter (MCE-

SRCVKF) to reduce the impact of noise on SOC estimation accuracy, which 

reduces the impact of measurement noise while simplifying the tuning 

process and has strong robustness. 

Neural networks are widely used for their good self-learning capability 

to effectively deal with strong nonlinearities and can accurately track the 

actual SOC values when there is a large amount of sample data without the 

need to build a specific model and consider the internal operating 

characteristics of the battery [100, 107-109]. Ma [110] performed a 

collaborative estimation of SOC and state of energy (SOE) of lithium 

batteries based on a long short-term memory (LSTM) neural network in a 

complex operating environment. The average absolute errors of SOC and 

SOE estimation were only 0.91% and 1.09%, which verified the high 

accuracy and strong robustness of the method. Hu [111] constructed an 

online SOC estimation model based on a radial basis neural network 

(RBFNN) to solve the battery nonlinearity problem. However, it cannot 

adapt to complex and variable driving conditions and is prone to large error 

deviations of SOC estimation results under complex operating conditions. 

Chunsong Lin et al. [22] used a differential evolutionary algorithm to 

optimize the neural network to obtain the global optimal solution, and the 

estimation accuracy of power battery SOC was improved. The neural 

network-based SOC estimation method can improve the SOC estimation 

accuracy, but the large sample data required will lead to a long training time 

for the model, which leads to the overlearning phenomenon. 
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1.2.4. Study of estimation strategies based on hybrid algorithms 

For SOC estimation of lithium-ion batteries, there are numerous 

methods and their respective superiority, but they also possess certain 

limitations. To further improve the accuracy of SOC estimation for lithium-

ion batteries and to compensate for the shortcomings of a single estimation 

method itself, researchers have proposed hybrid algorithmic strategies, such 

as the interfusion of data-driven models [112-116]. Chen et al. [117] 

proposed a SOC estimation method that fuses LSTM neural networks and 

adaptive H∞ filters, which reduces the output fluctuations of LSTM 

networks and omits the traditional observer's exact modeling task. Proenza-

Perez et al. [118] designed a hybrid algorithm integrating the UKF 

algorithm with the BP (backpropagation) neural network for estimating 

battery SOC estimation, which corrects the estimation error of UKF and 

further improves the estimation accuracy of the BP network. Chen [119] 

used the robust recursive least squares (RRLS) method to extract the 

equivalent circuit model online parameters and incorporate them into the 

HIF algorithm to achieve accurate estimation of SOC, this hybrid method 

incorporates parameter estimation error in the discriminative model, which 

can effectively reduce the unknown noise interference caused by model 

error. Yang et al. [120] used a combination of LSTM and UKF to estimate 

the SOC of lithium-ion batteries, which enhanced the stability of the 

network model and filtered the noise interference but did not consider the 

ambient temperature and the battery aging condition effects. 

With the rapid development of intelligent algorithms, data mining 

methods combined with model-based filtering algorithms are widely used 

and have achieved significant results. For a priori estimation, the model-
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based filtering algorithm plays a decisive role in estimation, while for the 

case of an unknown model, the data-driven method can estimate SOC 

performance more accurately. In this book, we aim to build a dynamic 

model with data-driven and Kalman filtering, optimize and improve the 

neural network model, and then introduce the improved Kalman filtering 

algorithm to estimate and correct the network model noise, which 

effectively solves the problems of low accuracy, poor robustness and slow 

convergence of SOC estimation. 

1.3. Research content and structure of the project 

1.3.1. Research content 

As a technical bottleneck for the promotion and development of 

electric vehicles, the accurate state prediction of power lithium-ion batteries 

is important to strengthen the real-time monitoring function of BMS and 

ensure the safe and reliable operation of power lithium-ion batteries. In this 

book, we analyze the coupling relationship between the key operating 

characteristics and SOC of power lithium-ion battery, obtain the model 

input data under complex operating conditions, and establish a dynamic 

SOC prediction model based on Bidirectional Long Short-Term Memory 

(BiLSTM). To address the problem of the tedious and difficult selection of 

model hyperparameters, Bayesian Optimization (BO) is used to optimize 

the model hyperparameters and obtain high-accuracy prediction results. The 

optimization model improvement strategy is explored, and the UKF 

algorithm is used to correct the model noise interference to form a strongly 

robust charge state estimation algorithm system, as shown in Figures 1-4. 
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Figure. 1-3 Research content 

1.3.2. Organization structure 

According to the general description of the study, the specific structure 

of this book is arranged as follows: 

Chapter 1: Introductory section. The development of electric vehicles 

and their lithium-ion batteries and their future dynamics are discussed, the 

definition of SOC is clarified, the scientific achievements of lithium-ion 

batteries at home and abroad at this stage are summarized, and their 

advantages and disadvantages are analyzed, and the research direction of 

this book is finally clarified. 

Chapter 2: Analysis of the working characteristics of power lithium-

ion batteries. The internal structure and electrochemical reactions of 

lithium-ion batteries are explored, and the mapping relationship between 

battery operating characteristics and key parameters is further investigated. 

The internal and external characteristics analysis is carried out with full 

consideration of the input and output characteristics under complex 

operating conditions, and the influence of different temperatures on the 
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internal parameters of the powerful lithium-ion battery is explored to obtain 

the evolution law of the key parameters and performance of the lithium-ion 

battery. 

Chapter 3: Bayesian optimization of the BiLSTM battery SOC 

dynamic prediction model. Firstly, the LSTM-based SOC prediction model 

is constructed, and the inverse sequence is added to form the BiLSTM 

dynamic model considering the problems of difficult training and poor 

generalization performance of future timing characteristics. The BiLSTM 

model hyperparameters are configured using a Bayesian optimization 

algorithm to seek the best hyperparameter combination to improve the 

model training capability and optimize the performance characteristics. 

Chapter 4: Exploration of noise correction strategy by fusing Kalman 

filter. A battery equivalent model is constructed and a rectangular window 

recursive least square (RW-RLS) is proposed for online identification of the 

relevant parameters of the equivalent model to obtain a high-precision 

modeling system. For the interference of system time-varying noise, the 

UKF algorithm is chosen to avoid the filtering divergence, while the noise 

is corrected based on the Sage-Husa algorithm. The design fusion 

optimization strategy achieves strong robustness and adaptive state 

estimation. 

Chapter 5: Verification of state estimation algorithm under simulated 

working conditions environment. The experimental test platform is 

constructed and designed to obtain the battery input characteristics under 

complex simulated operating conditions. Suitable performance indicators 

are selected to analyze and compare the prediction effects of the involved 

models for validation. 
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Chapter 6: Summary and Outlook. The main work of this book is 

summarized, the shortcomings of the proposed method in the research 

process are analyzed, and the outlook on the subsequent research directions 

is made. 

 



 

CHAPTER 2 

ANALYSIS OF THE OPERATING 
CHARACTERISTICS OF POWER  

LITHIUM BATTERIES 
 

 

From the analysis of the research background in Chapter 1, it can be 

seen that new energy vehicles are developing rapidly, and lithium-ion 

batteries have become the preferred power source for new energy vehicles 

due to their performance advantages. Deep exploration of battery 

technology is crucial in the field of new energy. This chapter will provide 

an in-depth analysis of the working mechanism and characteristics of 

lithium batteries, laying the foundation for extracting input characteristics 

of SOC estimation models for power lithium-ion batteries and constructing 

high-precision equivalent models. 

2.1. Research on the Internal Working Mechanism of 
Power Lithium Batteries  

As a portable energy storage element, the lithium-ion battery has the 

advantages of high combustion value, environmental protection, long cycle life, 

no memory effect (capacity loss), good safety performance, low self-discharge, 

fast charging, wide operating temperature range, etc. Lithium ions generally 

include the main structures of the positive electrode plate, negative electrode 

plate, electrolyte, and separator. The positive electrode plate provides Li+ for 
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the battery, while the negative electrode plate is mainly graphite. The 

diaphragm is a special type of microporous film that can prevent the 

unrestricted transfer of electrons between the positive and negative electrodes 

of the battery, allowing only Li+ to travel back and forth [121-125]. Lithium 

ions generate electrical energy by constantly moving back and forth between 

the positive and negative electrode plates and can charge and discharge 

repeatedly. The internal structure of lithium ions is shown in Figure 2-1. 
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Figure 2-1 Schematic diagram of the structure of a lithium-ion battery 

From Figure 2-1, it can be observed that during the charging action of 

the battery, the positive electrode material undergoes an oxidation reaction, 

releasing electrons. The positively charged Li+ passes through the 

electrolyte solution and the separator to reach the carbon layer of the 

battery's negative electrode, and the negative electrode obtains Li+. During 

the discharge action, Li+ detaches from the negative electrode and 

integrates into the positive electrode through the corresponding electrolyte 
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and membrane micropores, achieving mutual conversion between electrical 

and chemical energy [126-129]. The internal chemical reaction process of 

lithium-ion batteries is described in Figure 2-2. 
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Figure. 2-2 Internal chemical reaction process of lithium-ion battery 

The chemical transformation equations for the positive and negative 

reactions of lithium-ion batteries and the total reaction of the battery can be 

described as formula (2-1).  

 �
𝑃𝑃: 𝐿𝐿𝐿𝐿𝑀𝑀𝑥𝑥𝑂𝑂𝑦𝑦 = 𝐿𝐿𝑖𝑖(1−𝑥𝑥)𝑀𝑀𝑥𝑥𝑂𝑂𝑦𝑦 + 𝑥𝑥𝑥𝑥𝑖𝑖+ + 𝑥𝑥𝑒𝑒−

𝑁𝑁:𝑛𝑛𝑛𝑛 + 𝑥𝑥𝑥𝑥𝑖𝑖+ + 𝑥𝑥𝑒𝑒− = 𝐿𝐿𝑖𝑖𝑥𝑥𝐶𝐶𝑛𝑛
𝑇𝑇: 𝐿𝐿𝐿𝐿𝑀𝑀𝑥𝑥𝑂𝑂𝑦𝑦 + 𝑛𝑛𝑛𝑛 = 𝐿𝐿𝑖𝑖(1−𝑥𝑥)𝑀𝑀𝑥𝑥𝑂𝑂𝑦𝑦 + 𝐿𝐿𝑖𝑖𝑥𝑥𝐶𝐶𝑛𝑛

 (2-1) 

As a high energy density battery with excellent development prospects, 

lithium-ion batteries can achieve the extraction of multiple Li+ between 

plates. As the internal structure changes, the internal performance of the 

battery will also decrease. Therefore, exploring the internal mechanism of 

batteries is beneficial for assisting in exploring the working characteristics 

and performance evolution of batteries. 
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2.2. Analysis of Key Parameter Characteristics of Power 
Lithium Battery 

2.2.1. Analysis of open-circuit voltage Characteristics 

The open circuit voltage of a battery refers to the terminal voltage 

between the positive and negative poles when there is no load on the 

external circuit of the battery. After the battery has been left standing for a 

sufficient time, the internal electrochemical reaction gradually stabilizes, 

and the default OCV of the battery is approximately equal to the current 

electromotive force. Research has shown that there is a relatively stable 

functional relationship between the open circuit voltage OCV and SOC 

when charging and discharging the battery in a constant temperature 

environment of 25 ℃. Based on this relationship, effective characterization of 

battery OCV-SOC was obtained using function fitting tools to more intuitively 

reflect the static SOC characteristics of the battery [43, 130-134]. The 

experimental OCV-SOC relationship of the battery is shown in Figure 2-3. 

 

Figure. 2-3 Graph of OCV-SOC curve at 25°C 
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