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PREFACE 
 
 
 
This book is dedicated to the study of the thermodynamics of 

biochemical processes, with a special emphasis on those in which proteins 
play an essential role. Instead of the conventional description, which begins 
with classical thermodynamics and ends with the statistical interpretation of 
thermodynamic properties, this book uses from the beginning, as far as 
possible, the macroscopic view of classical thermodynamics, together with 
the statistical point of view, as derived from quantum mechanics. The book 
tries to cover a range of issues from the elementary principles of physical 
chemistry, such as the essential quantum-mechanical description of the 
hydrogen atom or the particle-in-a-box quantum-mechanical model, to the 
most current topics of biochemistry, including those that may be the subject 
of some controversy, such as the enthalpy–entropy compensation or the 
basic models used at present to describe the folding process of proteins. The 
book’s most original contribution lies in its interpretation of thermodynamic 
properties related to the stability and function of proteins from the 
microscopic point of view of statistical thermodynamics in a language that, 
without sacrificing conceptual rigor, is affordable and easy to read. It will 
be appropriate for students and, of course, teachers of chemistry, physics, 
biochemistry and biotechnology. 

 
 Chapter 1 is a basic introductory review of the main topics in 

general and physical chemistry which may be useful to undergraduate 
students of biochemistry or biotechnology. Chapters 2, 3 and 4 provide the 
reader with the basic principles of physical chemistry, mainly thermodynamics, 
trying to place the emphasis on those aspects more closely related to 
biochemical topics. The end of Chapter 3 includes an introduction to the 
statistical interpretation of entropy. Chapter 4 includes the influence of pH 
in the equilibrium constant of a chemical reaction, describing the 
convention used in biochemistry when working with species containing 
dissociable protons. Chapter 5 contains statistical thermodynamics, setting 
the boundaries between the application of statistical thermodynamics to 
ideal systems (as ideal gases) and to the much more complex biological 
systems in water solution. The rest of the book is dedicated to the 
thermodynamics of protein-ligand interactions (Chapter 6), protein 
structure transitions (Chapter 9), allostery (Chapter 8) and, finally, oxidative 
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phosphorylation and protein phosphorylation (Chapter 10). The most 
relevant techniques for measuring thermodynamic properties, including 
isothermal titration calorimetry and surface plasmon resonance have been 
included in Chapter 7. Differential scanning calorimetry has been included 
in Chapter 9, because of its special relevance in studies concerning the 
thermal denaturation of proteins.  

 
I want to express my gratitude and recognition to the groups 

supervised by Professors Manuel Cortijo and Pedro L. Mateo at Granada 
University, with whom I started my training in thermodynamics. I thank 
also friends and professors at our Universidad Autónoma de Madrid: María 
J. Benítez, Enrique Fatás, Pilar Ocón, Carlos Palacio, Jose M. López 
Poyatos, Pilar Herrasti and Jesús Ávila (from the Centro de Biología 
Molecular, Severo Ochoa) for their help, friendly discussions on biology 
and physics, and for their critical reading of the manuscript. I want to 
express my gratitude to the sabbatical year granted by my University, under 
whose course I was able to write the bulk of this book. I feel particularly 
grateful to those who were once my PhD students Antonio Parody, Carmen 
Barón, Alejandro Barrantes and Sergio Camero, and the hundreds of 
students who, for so many years, have helped me with their eagerness for 
learning and criticism. Finally, I thank my wife, Mar Company, for her 
patience and encouragement to write this book. 



 



CHAPTER 1 

INTRODUCTION 
 
 
 
1.1 The Atomic Theory of John Dalton and the Hypothesis 

of Amedeo Avogadro 

It could be accepted that modern chemistry was born with the 
atomic theory proposed by John Dalton, together with the hypothesis put 
forward by Amedeo Avogadro at the beginning of the 19th century, which 
both came to be generally accepted by the middle of that century. Initial 
atomic theories have been traditionally attributed to the thinking of classical 
Greeks, for example that of Democritus, five centuries BC. From a 
philosophical point of view, however, those initial theories from classical 
Greece have little relation with Dalton’s atomic theory. The latter is a theory 
put forward to explain experimental observations. Moreover, the theory has 
evolved over the last two hundred years in the light of further experimental 
evidence. Greek philosophers, on the other hand, simply put forward 
proposals based on logical thinking. Not only did they not perform 
experiments, they felt no need to do so.  

The set of experimental observations on the basis of which Dalton 
built his theory can be summarized as follows (Figure 1.1.1): 

 
a) The Lavoisier observations concerning mass conservation in 
chemical transformations: the total mass of reactants and products 
remains constant in all chemical transformations. Mass does not 
disappear and cannot be created. Lavoisier established mass 
conservation as the most solid base of modern chemistry, using the 
balance with high precision. 

b) The proportions laws of Proust, Richter and Dalton: the relative mass 
proportion of each one of the component elements remains constant in 
all compounds. Iron, for example, forms two main compounds with 
oxygen. In one of them (black) the mass percentage of iron is always 
77.7%, independent of the full mass we consider. In the second 
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compound (red-brown) the iron mass percentage is always 69.9%. 
Chemists of the 19th century went further. In the black compound they 
would observe that 3.48 grams of iron always bind 1 gram of oxygen 
(77.7/22.3 = 3.48), while in the red-brown, 1 gram of oxygen always 
binds 2.32 grams of iron (69.9/30.1 = 2.32). They then made the next 
simple calculation: 3.48/2.32 = 3/2. After working with different 
examples of this kind, the conclusion was that when an element forms 
two different compounds with a second one, the ratio between the 
masses that one of them (iron in our example) binds a fixed mass of the 
second one (1 gram of oxygen in our example) can always be expressed 
as the ratio between two small whole numbers. 

 

c) The Law of combining volumes of Gay-Lussac: In gaseous 
chemical transformations, the ratio between the volumes of the reactants 
and the products, as measured at constant values of pressure and 
temperature, can be expressed as the ratio between small whole 
numbers.   

To summarize, the main points of the Dalton’s atomic theory are 
as follows: 

DALTON ATOMIC THEORY AND THE  

AMEDEO AVOGADRO HYPOTHESIS. 

MASS CONSERVATION 
Lavoisier 

LAW OF DEFINITE PROPORTIONS 
Proust 
Dalton 
Richter 
 

LAW OF COMBINING VOLUMES 
Gay-Lussac 

Figure 1.1.1. 
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- Chemical elements are made of identical, indivisible particles, or 
atoms. 

- Chemical compounds (or substances) are also made of identical 
atoms, which derive from the combination of atoms from the 
component elements.  

- The chemical properties and masses of elements and compounds 
derive from the properties and masses of the constituent atoms. 

 
Figure 1.1.2. Dalton concluded that, in equal volumes of two reacting gases, there is 
the same number of atoms. However, experiments conducted by Gay-Lussac 
showed that one volume of nitrogen reacted with one volume of oxygen to yield two 
volumes of NO! 
 

Avogadro’s hypothesis represented an essential contribution to 
Dalton’s theory. It solved an apparent contradiction between Dalton’s 
theory and some experimental observations of Gay-Lussac. It has been 
mentioned above that, according to the latter, the ratio between the volumes 
of the reactants and the products of gaseous chemical reactions, can be 
expressed as the ratio between small whole numbers. This type of 

N O

+

NO

1 Vol 1 Vol1 Vol

DALTON ATOMIC THEORY

-Elements and compounds are constituted by atoms, equal to
each other and with the same mass.

-Compounds are constituted by atoms resulting from the
binding of those atoms constituting the component elements.

-Atoms from different elements and compounds have different
masses and properties.
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observation led Dalton to assume that equal volumes of reactive gases must 
contain the same number of atoms. For example, nitric oxide can be formed 
from nitrogen and oxygen (Figure 1.1.2): N  +  O  =  NO. 

 
Following Dalton’s theory, one volume of nitrogen must react with 

a volume of oxygen to produce one volume of nitric oxide. The experiments 
of Gay-Lussac, however, showed that, at constant values of pressure and 
temperature, one volume of nitrogen reacted with one volume of oxygen to 
produce two volumes of nitric oxide! Avogadro solved the apparent 
discrepancy by proposing what we know today as the hypothesis that bears 
his name: 

 
 Elements may be made of molecules which result from the 

association of atoms of the same kind.  

 
Figure 1.1.3. Gaseous elements are constituted by aggregates of atoms called 
MOLECULES.  Equal volumes of all gases, at the same p and T, have the same 
number of MOLECULES. 

AVOGADRO HYPOTHESIS

DALTON ATOMIC THEORY
N O NO

1 Vol 1 Vol 1 Vol

N2 O2 2NO

1 Vol 1 Vol 2 Vol
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The constituent molecules of compounds derive from the 
combination of atoms from the component elements, while molecules of 
elements are made up of atoms of the same kind. Therefore, nitrogen and 
oxygen would be made of diatomic molecules and the chemical 
transformation in nitric oxide would be represented by 

 
N2  +  O2  =  2NO. 

 
According to the last scheme, one volume of nitrogen would react 

with one volume of oxygen to yield two volumes of nitric oxide, in 
accordance with the experimental observations of Gay-Lussac (Figure 
1.1.3). 

1.2 The Mole and Avogadro’s Number 

In accordance with Dalton’s theory (and obviously the experiments of Gay-
Lussac), equal volumes of two gaseous substances (elements or compounds) 
contain the same number of molecules when pressure and temperature are 
kept constant. Consequently, the mass ratio between both volumes will be 
equal to the mass ratio of the constituent molecules of each one of the 
substances. Therefore, we can obtain the dimensionless molecular mass of 
every gaseous substance, Mm, with respect to a particular one, selected as 
a reference. Since hydrogen was the lightest gas known, this gas was 
selected as a reference: 

 
Mm,A = mA /mR                                                           [1.1]        

                                                                                    
where mA and mR represent the molecular masses of substance A and 
reference, respectively. 
 

One mole (or molar mass) of any compound, A, is defined as the 
number of grams of that compound, which is numerically equal to its 
molecular mass, Mm,A.  

 
Avogadro’s number, NA, is the number of molecules contained in 

one mole of any substance, A. Therefore: 
 

the mole of A (g/mol) = NA (molecules/mol) x mA (g/molecule)  
and using [1.1]: 
 
the mole of A (g/mol) = NA (molecules/mol) x Mm,A x mR (g/ molecule) 
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Solving for NA: 
 

   mol of A (g/mol)                      1 
NA = ------------------------------------- = -------   (molecules/mol) 

Mm,A x mR (g/molecule)          mR   
 
Both concepts, the mole and Avogadro’s number derive directly 

from John Dalton’s atomic theory and the Amedeo Avogadro hypothesis. 
Obviously, NA is a universal constant, the numerical value of which is equal 
to the inverse of the mass of the molecules constituting the reference 
species. The species selected as a reference is hydrogen (atomic). The mass 
of a hydrogen atom (or 1 / 12 that of a carbon atom) is 1.66056 10-24 g, from 
which we can calculate the value of Avogadro’s Number: 

 
NA = 1/1.66056 10-24 

= 6.022 1023 molecules / mol.                      

1.3 The Ideal Gas Model 

The second relevant model in chemistry may be the ideal gas model. It was 
developed together with Dalton’s theory during the 19th century. The most 
important experiment was probably that which lead in the middle of the 17th 
century to the Boyle–Mariotte Law, which was one of the initial quantitative 
expressions of physical chemistry. It states that the product of the pressure 
of a mass of gas by its volume, at constant temperature, is a constant 
number, dependent on the type of gas and its mass: 

 
pV = cte.                                              [1.2] 

 
Since the product pV is constant, at constant temperature, the 

expression pV/T is also a constant characteristic of the nature and mass of 
the gas: 

 
pV/T = cte.                                        [1.3] 

 
This last equation was confirmed by the experiments of Charles who 

showed that a constant pressure results in the volume of a fixed mass of any gas 
being directly proportional to the temperature on the Kelvin scale, defined as T = 
273,15 + t, where t represents the temperature on the Celsius scale (Figure 1.3.1): 



Introduction 
 

7

 
 
Figure 1.3.1. The volume is proportional to temperature. The proportionality 
constant, Vo, is linearly dependent on the mass of gas. 
 

V = (cte/p) T.           
             

The last expression, in combination with Dalton’s theory leads to the 
equation that defines the ideal gas model (See Figure 1.3.2): 

 
pV = n RT.                                         [1.4] 

 
Equation [1.4] has a universal character. The product pV / T has a 

constant value for the same number of molecules of every gaseous species. 
This observation, together with the atomic theory, forms the basis of the 
kinetic theory of gases, according to which the gas molecules are in 
continuous motion, without interactions. They have only translation energy, 
and thus determine the temperature and the total energy of the system. From 
these assumptions, the ideal gas equation [1.4] can be deduced. This 
equation, in turn, allows the calculation of the molecular mass of a gas, after 
measuring the volume occupied by a mass of gas at fixed values of pressure 
and temperature. 
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Figure 1.3.2. 

1.4 The Periodic Table and Initial Atomic Theories 

The atomic theory of Dalton, Avogadro’s hypothesis and the ideal gas 
equation made up the framework of theories within which relative atomic 
masses could be measured (with respect to the mass of the hydrogen atom 
or 1/12 the mass of the carbon atom) for every atom of gaseous species. 
Two equal volumes of gaseous substances, at the same p and T, contain the 
same number of molecules. Consequently: 

 
(Mass of one volume of gas X)/(mass of one volume of a reference 

gas, R) = MX/MR 
 

where MX and MR stand for the molecular masses of X and R respectively. 
The molecular mass of an oxygen molecule relative to one hydrogen 
molecule is 16, or 32 with respect to the hydrogen atom. The present 

 
The result is that the constant is linearly dependent on the gas mass: pV/T 
= b x m. 
 
From Dalton’s theory: m = N × M, and pV/T = b × N × M, where N is the 
number of molecules and M stands for the mass of one molecule. Then pV 
/TN = b × M. 
 
V is proportional to N. Consequently, at constant value of p and T, b x M 
must be a constant, b × M = k. 
 
According to the latter, pV/T = k x N = k ×NA × n = n x R, where R stands 
for the gas constant and n represents the number of moles. 
 
                                               pV = nRT 
 
 

IDEAL GAS 

Boyle–Mariotte Law                           Laws of Charles and Gay-Lussac 

pV/T = constant 
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reference is 1/12 the atomic mass of the isotope 12 of C. With respect to this 
reference, the atomic mass of hydrogen would be 1.008. Molecular masses 
were already known in 1818 by Berzelius. Nevertheless, they were not 
considered seriously until 1860, thanks to the efforts of Cannizzaro. The 
atomic masses of non-gaseous elements could then be obtained from the 
chemical composition (percentage by weight) of different compounds. 
When, in the middle of 19th century, chemical elements were ordered 
according to increasing atomic mass, the initial ordering of elements was 
obtained, constituting the experimental basis of the successive periodic 
tables. When Mendeleyev published his periodic table (1869), 63 chemical 
elements were already tabulated (Figure 1.4.1). 

 

 
 

Figure 1.4.1. 
 
The periodic variation in the properties displayed by the elements 

ordered according to their atomic mass suggested that that variation might 
be a consequence of the internal structure of the atoms. In other words, the 
periodic character showed by matter could be the direct consequence of 
some periodicity in the internal atomic structure. 

 
The initial theories and models of atomic structure emerged from 

the experimental evidence which supported the idea that atoms are not 
indivisible. The experiments of Volta and Faraday showed that, by the 
action of electricity, chemical substances were decomposed into components 
having opposite sign charges. Experiments in vacuum tubes carried out in 
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England at the end of the 19th century suggested the existence of particles 
with a negative charge that had a charge to mass relationship which was 
independent of the nature of the gas and the electrodes. These particles were 
called electrons. Particles with opposite charge were also found which 
showed a charge to mass relationship that was dependent on the gas’s 
nature. These particles had a mass almost two thousand times the mass of 
electrons and were called protons.  

 
Finally, spectroscopy techniques supplied the rest of the experimental 

evidence on which the initial atomic models were sustained. When the light 
emitted by a gas sample exposed to a very high voltage (a hydrogen lamp) 
is analysed after dispersion by a prism, only radiation of definite values of 
frequency is found. There is no continuous emission. It seems that excited 
atoms inside the lamp emit radiation of only definite values of wavelength. 
By the end of the 19th century, spectroscopists had observed certain 
regularities in the radiation wavelengths. In the particular case of hydrogen, 
series of spectral lines were found, indicating values of wavelength given 
by the expression: 

 
1/= R (1/ni

2 – 1/nj
2)             nj  > ni                    [1.5] 

 
where R was a constant with the dimension of the inverse of the wavelength, 
while ni and nj were natural numbers: ni defining the series and nj, the lines 
within each series. 
 

In 1904, Joseph John Thomson presented the first hypothesis 
concerning the atomic structure. In his model, the atom was like a sphere 
with a positive electric charge onto which much smaller particles with 
negative charge were glued. The first model resembling our present ideas 
on the structure of the atom was that of Rutherford in 1911. It was based on 
experiments made by Rutherford himself. Making a-particles go through 
thin films of gold, he concluded that most of an atom’s volume was empty. 
The main difference with respect to the model of Thomson was that, 
according to Rutherford, the electrons were orbiting at long distances 
around the nucleus composed of the positively charged protons. Indeed, the 
number of electrons surrounding the nucleus must be the same as the 
number of protons. 

 
The models of Thomson and Rutherford satisfied the electrochemistry 

experiments of Faraday as well as those made on vacuum tubes and lead 
them to postulate the existence of electrons and protons. They did not 
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explain, however, the experimental results found by spectroscopists 
showing the non-continuous emission of light by excited atoms. Finally, 
Bohr proposed a model in which the electrons were orbiting the nucleus 
describing only some allowed orbits (those for which the angular 
momentum was a multiple of a numerical constant), therefore explaining 
the apparent quantization of the energy emitted by the excited atoms. The 
Bohr model had an extraordinary impact, mainly after explaining 
quantitatively the spectroscopic experiments. However, it could not explain 
many other observations concerning more complex atoms. Of course, it 
cannot explain any experiment concerning molecules and has today fallen 
out of use. 

1.5 The Hydrogen Atom and the Schrödinger Equation 

The atomic model we use today to describe the molecular structure is that 
supplied by quantum mechanics. Newton’s laws are the basis of classical 
mechanics. Newton’s first law is the inertial law, initially proposed by 
Galileo. The third law is the action–reaction law. According to the second 
law, the quotient between the force acting on a body and the acceleration it 
acquires is a constant, equal to the body’s mass: 

 
m = F/(d2 x/d t2).                                          [1.6]           

                                          
To obtain x as a function of time we must integrate twice: 
 

x = (F/m) t2 / 2 + v0t + x0.                                                    [1.7] 
 

Therefore, provided we know the force acting on a body, as well 
as its initial position and velocity, we can obtain the position, x, of the 
particle as a function of time. Position, velocity and force define the state of 
our system, the body. Classical mechanics can then predict its time 
evolution. 

 
In quantum mechanics the state of a particle (or body) is a 

mathematical function, which is known as the state function of the particle. 
It is a function of the coordinates of the particles (3N coordinates for an N 
particles system) and also, in general, is a function of time. This function 
lacks a physical meaning by itself. 

 
In the particular case in which the potential energy of the system is 

independent of time, the state function, , can be obtained by solving a 
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differential equation, the time-independent Schrödinger equation, which 
adopts the next form for the case of one particle moving only in one 
dimension: 

 
̶  (h’2/2m) (d2 /dx2) + V (x)= E                   [1.8] 

 
In this equation h’ represents the Planck’s constant divided by 2. 

V(x) represents the potential energy of the system. E and m stand for the 
total energy and the mass of the system respectively. 

 
The expression H: 
 

H ≡ - (h’2/2m) (d2/dx2) + V(x)                            [1.9] 
 
is the energy operator or the system’s Hamiltonian. Using the Hamiltonian 
symbol, the Schrödinger equation adopts the simple form: 
 

H =E


The hydrogen atom is a system composed of two particles: nucleus 
and electron. The potential energy of the system is given by -e2/r, where e 
and r represent the electron charge and the distance between electron and 
nucleus respectively. As a first approximation, we can suppose that the 
system consists of one particle (the electron) orbiting around the nucleus, 
which is motionless at the origin of coordinates. The Schrödinger equation 
for this system is: 

 
̶ h’2/2m (d2/dx2 + d2/dy2 + d2/dz2) + (-e2/r)  = E                         
[1.11] 
 

The stated function, , is a function of the three spatial 
coordinates: x, y and z. Consequently, we find three partial derivatives, with 
respect to x, y and z. Equation [1.11] is already impressive enough. 
However, it can be made even more so by writing it in spherical coordinates 
(we will not do this here). The point is that this differential equation is 
solved quite easily when it is written in this type of coordinate system 
(Figure 1.5.1). This mathematical ‘advantage’ has governed the form of all 
results concerning the atomic model derived from the Schrödinger equation.  
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Figure 1.5.1. Spherical coordinates and their equivalence with Cartesian coordinates 

 
The mathematical conditions imposed by quantum mechanics on 

the state function, to make it acceptable, produce three quantum numbers 
(corresponding to the three spatial coordinates): n, l and m. These numbers 
present conditional values: 

 
                              n = 1, 2, 3… 
 
                        l = 0, 1, 2, … n-1 
 
and 
 
                m = - l, - (l - 1) … 0 … l - 1, l. 
 

  

-h’2/2 (d2 / dx2 + d2 / dy2 + d2 /dz2) + (-e2/r)  = E

r

+



x

y

z

-e

x = r sen  cos 

y = r sen  sen 

z = r cos 


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Each trio of quantum numbers n, l and m defines a function state 
of the system, which is a solution to the differential equation [1.11]. The 
energy of the system, however, comes defined only by the quantum number 
n. The energy values whose adoption is permitted by the system are those 
given by the next equation: 

 
E = (- 2 2 me4/h2) (1/n2)                              [1.12] 

 
where m and e stand for the mass and charge of the electron. h is the 
Planck’s constant. There is a letter code for specifying the quantum 
numbers. Therefore, the possible state function and energy levels allowed 
to the hydrogen atom are (Figure 1.5.2): 
 

 
Figure 1.5.2. Quantum numbers 

 
 
 
 
 
 

n   l   m              Function Energy 

1  0    0                   1s                 (- 2 2 me4 / h2)     

2  0    0                   2s                 (- 2 2 me4 / h2)/4  

2  1   -1                   2px                      (- 2 2 me4 / h2 )/4   

2  1  0                    2py                   (- 2 2 me4 / h2)/4  

2  1  1                    2pz                   (- 2 2 me4 / h2 )/4  

… 
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Figure 1.5.3. Some state functions and energy levels allowed to the hydrogen atom 
 

The initial models for the hydrogen atom, such as those of 
Rutherford or Bohr, described the electron in orbital motion around the 
nucleus. The model offered by quantum mechanics rejects the use of the 
classical motion of particles to describe a trajectory. Instead we have the 
state function, . This function, however, does not mean anything by itself. 
Nevertheless, one of the postulates of quantum mechanics establishes that 
ifis a state function, describing the state of the particle, 2, is a 
probability density function: 

 
P = ∫ 2 dV.                                        [1.13] 

 
For example, the state defined by the set of quantum numbers 1, 0, 

0 is the 1s function. As can be seen in Figure 1.5.2, this function is the 
following exponential: 
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1s ≡  = A exp (- r/a)                                [1.14] 
 

where A is a constant, and a is a constant that has dimensions of r (length), 
and a numerical value equal to the radius of the first orbit of the Bohr atom. 
The probability density function will be . 

 

 
Figure 1.5.4. 2 represents a function of probability density. It means that the 
probability of finding the electron has spherical symmetry. This is why we represent 
1s by a sphere. 

Both and 2 are only functions of r. This means that the 
probability of finding the electron has spherical symmetry with respect to 
the nucleus. This probability depends only on the distance, r, between the 
electron and the nucleus (see Figure 1.5.4). According to [1.13], the 
probability of finding the electron somewhere in the nucleus environment 
can be calculated by solving this integral. It can be shown that the 
probability of finding the electron somewhere at a distance r from the 
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1 2
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nucleus of the hydrogen has a maximum value for a fixed value of r, as can 
be seen in Figure 1.5.4 and Seminar 1.5.1. 
 

Finally, to complete this brief summary about the model of the 
hydrogen atom described by quantum mechanics, we must say something 
about spin. Electrons are particles with a negative charge. According to 
classical mechanics, the orbital angular momentum of this charged particle 
around the nucleus generates a magnetic moment similar to that used to 
describe the interaction between an electrical circuit and a magnetic field. 
In the case of electrons, however, the magnitude and orientation of the 
orbital angular momentum (and the corresponding magnetic moment) are 
quantized by quantum numbers l and m. The different orientations of the 
orbital angular momentum are degenerate. They possess the same energy, 
which depends only on the quantum number n. In the presence of a magnetic 
field, however, the degeneracy disappears (Zeeman effect) and the energy 
depends on quantum number m, as well as on n.   

 
Elementary particles possess an additional angular momentum 

(and the corresponding magnetic moment), which lacks a classical analogy, 
although it appears naturally when relativity theory is taken into 
consideration. This is the spin angular momentum. In the particular case of 
electrons, it can be represented by a vector with two allowed orientations 
corresponding to two quantum numbers of spin, ms, +1/2 and – 1/2. The 
existence of this magnetic momentum derives from observations, in the 
presence of external magnetic fields, with spectroscopic instruments of very 
high resolution, the description of which is above our present ambition. 
Both angular momenta interact with each other. Therefore, the energy of the 
hydrogen atom depends on n, and, although almost negligibly, also on the 
value of l. 

1.6 Atomic Structure 

The Schrödinger equation for the helium atom cannot be solved because of 
the term of potential energy corresponding to the repulsion between the two 
electrons that, together with the positively charged nucleus, form the atom. 
Obviously, explicit solutions to the Schrödinger equation corresponding to 
the rest of many-electron atoms cannot be found either. Approximate 
solutions can be found by means of complex mathematical procedures 
which have configured the way we currently work with and the way we talk 
about atoms and molecules. 
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The approximate solutions (states) to the Schrödinger equation are 
sought one by one. Obviously the most relevant function for a chemist is 
that corresponding to the ground state. For example, in the case of helium, 
the simplest approximate state would be that resulting from ignoring the 
repulsion energy between the two electrons of the atom. This approach leads 
us to propose, as a first approximate function for the ground state of helium, 
the product of two hydrogen-like functions (or orbitals): 

 
1s) (1s).                                    [1.15] 

 
It can be shown that when [1.15] is the state function of the system, 

the corresponding energy must be the sum of two hydrogen atoms, corrected 
by the presence of two protons in the nucleus. This approximation 
represents an error of about 20% with respect to the true ground state energy 
of the helium atom. Nevertheless, quantum mechanics offers many 
mathematical tools to improve the approximate function [1.15] and the 
corresponding energy. We say that the electronic configuration of helium is 
1s2, which means that we are using two hydrogen-like functions to build the 
first approximation of the ground state of helium. 

 
The next atom in the periodic table is Lithium. The approximate 

state function for the ground state might be formed by the product of three 
hydrogen-like functions, similar to the approximate function built for 
helium. However, that function would violate the Pauli exclusion principle. 
The statement of this principle is very abstract in mathematical terms. 
Nevertheless, an important consequence derived from it can be easily 
expressed: to construct the approximate state function, no two functions 
may have the same values for the four quantum numbers. Since the 
coincidence between the number of electrons contained by the atom, and 
the number of functions used to build the approximated function, it can also 
be said, in line with the Pauli exclusion principle, “no two electrons may 
have equal values for the four quantum numbers”. The function 1s3 defines 
two different sets of quantum numbers (n, l, m and ms) as 1, 0, 0, 1/2 and 1, 
0, 0, -1/2. The third electron would have to have a set of quantum numbers 
equal to one of the previous sets. In order to satisfy the Pauli principle, a 
different set of orbital quantum numbers must be assigned to the third 
electron. The one supplying the lowest energy is 2, 0, 0 and 1/2 or -1/2 for 
the spin quantum number. The approximate function for the ground state of 
Lithium is built by multiplying two hydrogen-like functions 1s by one 
hydrogen-like function 2s. We then say that the electronic configuration of 
Lithium is 1s2 2s. 


