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PREFACE

This book is dedicated to the study of the thermodynamics of
biochemical processes, with a special emphasis on those in which proteins
play an essential role. Instead of the conventional description, which begins
with classical thermodynamics and ends with the statistical interpretation of
thermodynamic properties, this book uses from the beginning, as far as
possible, the macroscopic view of classical thermodynamics, together with
the statistical point of view, as derived from quantum mechanics. The book
tries to cover a range of issues from the elementary principles of physical
chemistry, such as the essential quantum-mechanical description of the
hydrogen atom or the particle-in-a-box quantum-mechanical model, to the
most current topics of biochemistry, including those that may be the subject
of some controversy, such as the enthalpy—entropy compensation or the
basic models used at present to describe the folding process of proteins. The
book’s most original contribution lies in its interpretation of thermodynamic
properties related to the stability and function of proteins from the
microscopic point of view of statistical thermodynamics in a language that,
without sacrificing conceptual rigor, is affordable and easy to read. It will
be appropriate for students and, of course, teachers of chemistry, physics,
biochemistry and biotechnology.

Chapter 1 is a basic introductory review of the main topics in
general and physical chemistry which may be useful to undergraduate
students of biochemistry or biotechnology. Chapters 2, 3 and 4 provide the
reader with the basic principles of physical chemistry, mainly thermodynamics,
trying to place the emphasis on those aspects more closely related to
biochemical topics. The end of Chapter 3 includes an introduction to the
statistical interpretation of entropy. Chapter 4 includes the influence of pH
in the equilibrium constant of a chemical reaction, describing the
convention used in biochemistry when working with species containing
dissociable protons. Chapter 5 contains statistical thermodynamics, setting
the boundaries between the application of statistical thermodynamics to
ideal systems (as ideal gases) and to the much more complex biological
systems in water solution. The rest of the book is dedicated to the
thermodynamics of protein-ligand interactions (Chapter 6), protein
structure transitions (Chapter 9), allostery (Chapter 8) and, finally, oxidative
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phosphorylation and protein phosphorylation (Chapter 10). The most
relevant techniques for measuring thermodynamic properties, including
isothermal titration calorimetry and surface plasmon resonance have been
included in Chapter 7. Differential scanning calorimetry has been included
in Chapter 9, because of its special relevance in studies concerning the
thermal denaturation of proteins.

I want to express my gratitude and recognition to the groups
supervised by Professors Manuel Cortijo and Pedro L. Mateo at Granada
University, with whom I started my training in thermodynamics. I thank
also friends and professors at our Universidad Autonoma de Madrid: Maria
J. Benitez, Enrique Fatas, Pilar Ocon, Carlos Palacio, Jose M. Lopez
Poyatos, Pilar Herrasti and Jesis Avila (from the Centro de Biologia
Molecular, Severo Ochoa) for their help, friendly discussions on biology
and physics, and for their critical reading of the manuscript. I want to
express my gratitude to the sabbatical year granted by my University, under
whose course I was able to write the bulk of this book. I feel particularly
grateful to those who were once my PhD students Antonio Parody, Carmen
Baron, Alejandro Barrantes and Sergio Camero, and the hundreds of
students who, for so many years, have helped me with their eagerness for
learning and criticism. Finally, I thank my wife, Mar Company, for her
patience and encouragement to write this book.






CHAPTER 1

INTRODUCTION

1.1 The Atomic Theory of John Dalton and the Hypothesis
of Amedeo Avogadro

It could be accepted that modern chemistry was born with the
atomic theory proposed by John Dalton, together with the hypothesis put
forward by Amedeo Avogadro at the beginning of the 19th century, which
both came to be generally accepted by the middle of that century. Initial
atomic theories have been traditionally attributed to the thinking of classical
Greeks, for example that of Democritus, five centuries BC. From a
philosophical point of view, however, those initial theories from classical
Greece have little relation with Dalton’s atomic theory. The latter is a theory
put forward to explain experimental observations. Moreover, the theory has
evolved over the last two hundred years in the light of further experimental
evidence. Greek philosophers, on the other hand, simply put forward
proposals based on logical thinking. Not only did they not perform
experiments, they felt no need to do so.

The set of experimental observations on the basis of which Dalton
built his theory can be summarized as follows (Figure 1.1.1):

a) The Lavoisier observations concerning mass conservation in
chemical transformations: the total mass of reactants and products
remains constant in all chemical transformations. Mass does not
disappear and cannot be created. Lavoisier established mass
conservation as the most solid base of modern chemistry, using the
balance with high precision.

b) The proportions laws of Proust, Richter and Dalton: the relative mass
proportion of each one of the component elements remains constant in
all compounds. Iron, for example, forms two main compounds with
oxygen. In one of them (black) the mass percentage of iron is always
77.7%, independent of the full mass we consider. In the second
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compound (red-brown) the iron mass percentage is always 69.9%.
Chemists of the 19th century went further. In the black compound they
would observe that 3.48 grams of iron always bind 1 gram of oxygen
(77.7/22.3 = 3.48), while in the red-brown, 1 gram of oxygen always
binds 2.32 grams of iron (69.9/30.1 = 2.32). They then made the next
simple calculation: 3.48/2.32 = 3/2. After working with different
examples of this kind, the conclusion was that when an element forms
two different compounds with a second one, the ratio between the
masses that one of them (iron in our example) binds a fixed mass of the
second one (1 gram of oxygen in our example) can always be expressed
as the ratio between two small whole numbers.

MASS CONSERVATION LAW OF DEFINITE PROPORTIONS
Lavoisier Proust
Dalton

\ Richter /

DALTON ATOMIC THEORY AND THE

AMEDEO AVOGADRO HYPOTHESIS.

1

LAW OF COMBINING VOLUMES
Gay-Lussac

Figure 1.1.1.

c) The Law of combining volumes of Gay-Lussac: In gaseous
chemical transformations, the ratio between the volumes of the reactants
and the products, as measured at constant values of pressure and
temperature, can be expressed as the ratio between small whole
numbers.

To summarize, the main points of the Dalton’s atomic theory are
as follows:
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- Chemical elements are made of identical, indivisible particles, or
atoms.

- Chemical compounds (or substances) are also made of identical
atoms, which derive from the combination of atoms from the
component elements.

- The chemical properties and masses of elements and compounds
derive from the properties and masses of the constituent atoms.

DALTON ATOMIC THEORY

N (o) NO
[ o (I L ¥
o %0 . — | ® :: é
. .o o. oo,

1 Vol 1 Vol 1Vol

-Elements and compounds are constituted by atoms, equal to
each other and with the same mass.

-Compounds are constituted by atoms resulting from the
binding of those atoms constituting the component elements.

-Atoms from different elements and compounds have different
masses and properties.

Figure 1.1.2. Dalton concluded that, in equal volumes of two reacting gases, there is
the same number of atoms. However, experiments conducted by Gay-Lussac
showed that one volume of nitrogen reacted with one volume of oxygen to yield two
volumes of NO!

Avogadro’s hypothesis represented an essential contribution to
Dalton’s theory. It solved an apparent contradiction between Dalton’s
theory and some experimental observations of Gay-Lussac. It has been
mentioned above that, according to the latter, the ratio between the volumes
of the reactants and the products of gaseous chemical reactions, can be
expressed as the ratio between small whole numbers. This type of
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observation led Dalton to assume that equal volumes of reactive gases must
contain the same number of atoms. For example, nitric oxide can be formed
from nitrogen and oxygen (Figure 1.1.2): N + O = NO.

Following Dalton’s theory, one volume of nitrogen must react with
a volume of oxygen to produce one volume of nitric oxide. The experiments
of Gay-Lussac, however, showed that, at constant values of pressure and
temperature, one volume of nitrogen reacted with one volume of oxygen to
produce two volumes of nitric oxide! Avogadro solved the apparent
discrepancy by proposing what we know today as the hypothesis that bears
his name:

Elements may be made of molecules which result from the
association of atoms of the same kind.

DALTON ATOMIC THEORY

N 0 NO
@ Qo o © LY
(@) Q (o) (e )¢ o ‘ ~ ’
© @ 0 o 2 o " 4 N s
Q@ 0 (o) ¢ 86
1 Vol 1 Vol 1 Vol
AVOGADRO HYPOTHESIS
N, 0, 2NO
|'c,. N %d%yp
@ + (3| — | seee
‘ ‘ OOQ) ¢ %08
1 Vol 1 Vol 2 Vol

Figure 1.1.3. Gaseous elements are constituted by aggregates of atoms called
MOLECULES. Equal volumes of all gases, at the same p and T, have the same
number of MOLECULES.
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The constituent molecules of compounds derive from the
combination of atoms from the component elements, while molecules of
elements are made up of atoms of the same kind. Therefore, nitrogen and
oxygen would be made of diatomic molecules and the chemical
transformation in nitric oxide would be represented by

N, + O, = 2NO.

According to the last scheme, one volume of nitrogen would react
with one volume of oxygen to yield two volumes of nitric oxide, in
accordance with the experimental observations of Gay-Lussac (Figure
1.1.3).

1.2 The Mole and Avogadro’s Number

In accordance with Dalton’s theory (and obviously the experiments of Gay-
Lussac), equal volumes of two gaseous substances (elements or compounds)
contain the same number of molecules when pressure and temperature are
kept constant. Consequently, the mass ratio between both volumes will be
equal to the mass ratio of the constituent molecules of each one of the
substances. Therefore, we can obtain the dimensionless molecular mass of
every gaseous substance, Mm, with respect to a particular one, selected as
a reference. Since hydrogen was the lightest gas known, this gas was
selected as a reference:

Mm,A:mA/mR [11]

where ma and mg represent the molecular masses of substance A and
reference, respectively.

One mole (or molar mass) of any compound, A, is defined as the
number of grams of that compound, which is numerically equal to its

molecular mass, Mm, .

Avogadro’s number, Ny, is the number of molecules contained in
one mole of any substance, A. Therefore:

the mole of A (g/mol) = Na (molecules/mol) x ma (g/molecule)
and using [1.1]:

the mole of A (g/mol) = Na (molecules/mol) x Mm,a x mg (g/ molecule)
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Solving for Na:
mol of A (g/mol) 1
Na = = (molecules/mol)
Mm, s x mg (g/molecule) mg

Both concepts, the mole and Avogadro’s number derive directly
from John Dalton’s atomic theory and the Amedeo Avogadro hypothesis.
Obviously, Na is a universal constant, the numerical value of which is equal
to the inverse of the mass of the molecules constituting the reference
species. The species selected as a reference is hydrogen (atomic). The mass
of a hydrogen atom (or 1/ 12 that of a carbon atom) is 1.66056 102*g, from
which we can calculate the value of Avogadro’s Number:

N, =1/1.66056 1024=6.022 10* molecules / mol.

1.3 The Ideal Gas Model

The second relevant model in chemistry may be the ideal gas model. It was
developed together with Dalton’s theory during the 19th century. The most
important experiment was probably that which lead in the middle of the 17th
century to the Boyle—Mariotte Law, which was one of the initial quantitative
expressions of physical chemistry. It states that the product of the pressure
of a mass of gas by its volume, at constant temperature, is a constant
number, dependent on the type of gas and its mass:

pV = cte. [1.2]

Since the product pV is constant, at constant temperature, the
expression pV/T is also a constant characteristic of the nature and mass of
the gas:

pV/T = cte. [1.3]

This last equation was confirmed by the experiments of Charles who
showed that a constant pressure results in the volume of a fixed mass of any gas
being directly proportional to the temperature on the Kelvin scale, defined as T =
273,15 + t, where t represents the temperature on the Celsius scale (Figure 1.3.1):
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KELVIN SCALE OF TEMPERATURE

The equation of the stright line

plotted on the experimental data is:

,,,,,,, ~ V=Vo+(Vo/273)t=

—————— - =Vo (1+t/273)=
v e =Vo (T/273)
/"'—."
. el b Defining T = 273 + t
@
el Vo
X/ Temperature ,°C (t)

Figure 1.3.1. The volume is proportional to temperature. The proportionality
constant, Vo, is linearly dependent on the mass of gas.

V = (cte/p) T.

The last expression, in combination with Dalton’s theory leads
equation that defines the ideal gas model (See Figure 1.3.2):

pV =nRT. [1.4]

Equation [1.4] has a universal character. The product pV / T has a
constant value for the same number of molecules of every gaseous species.
This observation, together with the atomic theory, forms the basis of the
kinetic theory of gases, according to which the gas molecules are in
continuous motion, without interactions. They have only translation energy,
and thus determine the temperature and the total energy of the system. From
these assumptions, the ideal gas equation [1.4] can be deduced. This
equation, in turn, allows the calculation of the molecular mass of a gas, after
measuring the volume occupied by a mass of gas at fixed values of pressure
and temperature.

to the
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IDEAL GAS

Boyle—Mariotte Law Laws of Charles and Gay-Lussac

I /

pV/T = constant

The result is that the constant is linearly dependent on the gas mass: pV/T
=bxm.

From Dalton’s theory: m =N x M, and pV/T =b x N x M, where N is the
number of molecules and M stands for the mass of one molecule. Then pV
/TN=bxM.

V is proportional to N. Consequently, at constant value of p and T, b x M
must be a constant, b x M = k.

According to the latter, pV/T =k x N=k XNa X n=nx R, where R stands
for the gas constant and n represents the number of moles.

pV =nRT
Figure 1.3.2.

1.4 The Periodic Table and Initial Atomic Theories

The atomic theory of Dalton, Avogadro’s hypothesis and the ideal gas
equation made up the framework of theories within which relative atomic
masses could be measured (with respect to the mass of the hydrogen atom
or 1/12 the mass of the carbon atom) for every atom of gaseous species.
Two equal volumes of gaseous substances, at the same p and T, contain the
same number of molecules. Consequently:

(Mass of one volume of gas X)/(mass of one volume of a reference
gas, R) = Mx/Mgr

where Mx and Mg stand for the molecular masses of X and R respectively.
The molecular mass of an oxygen molecule relative to one hydrogen
molecule is 16, or 32 with respect to the hydrogen atom. The present
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reference is 1/12 the atomic mass of the isotope 12 of C. With respect to this
reference, the atomic mass of hydrogen would be 1.008. Molecular masses
were already known in 1818 by Berzelius. Nevertheless, they were not
considered seriously until 1860, thanks to the efforts of Cannizzaro. The
atomic masses of non-gaseous elements could then be obtained from the
chemical composition (percentage by weight) of different compounds.
When, in the middle of 19th century, chemical elements were ordered
according to increasing atomic mass, the initial ordering of elements was
obtained, constituting the experimental basis of the successive periodic
tables. When Mendeleyev published his periodic table (1869), 63 chemical
elements were already tabulated (Figure 1.4.1).

MASS CONSERVATION PERIODIC TABLE
Lavoisier /
Molecular masses

A

LAW OF DEFINITE

PROPORTIONS DALTON’S ATOMIC THEORY AND

Proust ) HYPOTHESIS OF AMEDEO AVOGADRO

Dalt

R?ch(igr / Law of Charles-Gay-Lussac
Boyle-Mariotte

LAW OF COMBINING

VOLUMES

Gay-Lussac pV=nRT

Figure 1.4.1.

The periodic variation in the properties displayed by the elements
ordered according to their atomic mass suggested that that variation might
be a consequence of the internal structure of the atoms. In other words, the
periodic character showed by matter could be the direct consequence of
some periodicity in the internal atomic structure.

The initial theories and models of atomic structure emerged from
the experimental evidence which supported the idea that atoms are not
indivisible. The experiments of Volta and Faraday showed that, by the
action of electricity, chemical substances were decomposed into components
having opposite sign charges. Experiments in vacuum tubes carried out in
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England at the end of the 19th century suggested the existence of particles
with a negative charge that had a charge to mass relationship which was
independent of the nature of the gas and the electrodes. These particles were
called electrons. Particles with opposite charge were also found which
showed a charge to mass relationship that was dependent on the gas’s
nature. These particles had a mass almost two thousand times the mass of
electrons and were called protons.

Finally, spectroscopy techniques supplied the rest of the experimental
evidence on which the initial atomic models were sustained. When the light
emitted by a gas sample exposed to a very high voltage (a hydrogen lamp)
is analysed after dispersion by a prism, only radiation of definite values of
frequency is found. There is no continuous emission. It seems that excited
atoms inside the lamp emit radiation of only definite values of wavelength.
By the end of the 19th century, spectroscopists had observed certain
regularities in the radiation wavelengths. In the particular case of hydrogen,
series of spectral lines were found, indicating values of wavelength given
by the expression:

1/7»=R(1/1’1i2* 1/nj2) nj > nj [1.5]

where R was a constant with the dimension of the inverse of the wavelength,
while ni and nj were natural numbers: ni defining the series and nj, the lines
within each series.

In 1904, Joseph John Thomson presented the first hypothesis
concerning the atomic structure. In his model, the atom was like a sphere
with a positive electric charge onto which much smaller particles with
negative charge were glued. The first model resembling our present ideas
on the structure of the atom was that of Rutherford in 1911. It was based on
experiments made by Rutherford himself. Making a-particles go through
thin films of gold, he concluded that most of an atom’s volume was empty.
The main difference with respect to the model of Thomson was that,
according to Rutherford, the electrons were orbiting at long distances
around the nucleus composed of the positively charged protons. Indeed, the
number of electrons surrounding the nucleus must be the same as the
number of protons.

The models of Thomson and Rutherford satisfied the electrochemistry
experiments of Faraday as well as those made on vacuum tubes and lead
them to postulate the existence of electrons and protons. They did not
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explain, however, the experimental results found by spectroscopists
showing the non-continuous emission of light by excited atoms. Finally,
Bohr proposed a model in which the electrons were orbiting the nucleus
describing only some allowed orbits (those for which the angular
momentum was a multiple of a numerical constant), therefore explaining
the apparent quantization of the energy emitted by the excited atoms. The
Bohr model had an extraordinary impact, mainly after explaining
quantitatively the spectroscopic experiments. However, it could not explain
many other observations concerning more complex atoms. Of course, it
cannot explain any experiment concerning molecules and has today fallen
out of use.

1.5 The Hydrogen Atom and the Schrodinger Equation

The atomic model we use today to describe the molecular structure is that
supplied by quantum mechanics. Newton’s laws are the basis of classical
mechanics. Newton’s first law is the inertial law, initially proposed by
Galileo. The third law is the action—reaction law. According to the second
law, the quotient between the force acting on a body and the acceleration it
acquires is a constant, equal to the body’s mass:

m = F/(d® x/d 3). [1.6]
To obtain x as a function of time we must integrate twice:
x = (F/m) t>/ 2 + vot + Xo, [1.7]

Therefore, provided we know the force acting on a body, as well
as its initial position and velocity, we can obtain the position, x, of the
particle as a function of time. Position, velocity and force define the state of
our system, the body. Classical mechanics can then predict its time
evolution.

In quantum mechanics the state of a particle (or body) is a
mathematical function, which is known as the state function of the particle.
It is a function of the coordinates of the particles (3N coordinates for an N
particles system) and also, in general, is a function of time. This function
lacks a physical meaning by itself.

In the particular case in which the potential energy of the system is
independent of time, the state function, @, can be obtained by solving a
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differential equation, the time-independent Schrodinger equation, which
adopts the next form for the case of one particle moving only in one
dimension:

— (h"2/2m) (d? ®/dx%) + V (x)® = E ®. [1.8]

In this equation h’ represents the Planck’s constant divided by 2.
V(x) represents the potential energy of the system. E and m stand for the
total energy and the mass of the system respectively.

The expression H:
H=- (h?/2m) (d¥/dx?) + V(x) [1.9]

is the energy operator or the system’s Hamiltonian. Using the Hamiltonian
symbol, the Schrodinger equation adopts the simple form:

H® =E . [1.10]

The hydrogen atom is a system composed of two particles: nucleus
and electron. The potential energy of the system is given by -e%r, where e
and r represent the electron charge and the distance between electron and
nucleus respectively. As a first approximation, we can suppose that the
system consists of one particle (the electron) orbiting around the nucleus,
which is motionless at the origin of coordinates. The Schrédinger equation
for this system is:

- 02m (@d/dx? + POy + B/ + () D = E O
[1.11]

The stated function, @, is a function of the three spatial
coordinates: x, y and z. Consequently, we find three partial derivatives, with
respect to x, y and z. Equation [1.11] is already impressive enough.
However, it can be made even more so by writing it in spherical coordinates
(we will not do this here). The point is that this differential equation is
solved quite easily when it is written in this type of coordinate system
(Figure 1.5.1). This mathematical ‘advantage’ has governed the form of all
results concerning the atomic model derived from the Schrodinger equation.
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-h’2[2p (d%p / dx? + a2 / dy? + d% /dz?) + (-e*/r) ¢ = E@

x=rsen 0 cos ®

y=rsen 0 sen ®

z=rcos 0

y

Figure 1.5.1. Spherical coordinates and their equivalence with Cartesian coordinates

The mathematical conditions imposed by quantum mechanics on
the state function, to make it acceptable, produce three quantum numbers
(corresponding to the three spatial coordinates): n, 1 and m. These numbers
present conditional values:

n=1,2,3...
1=0,1,2,...n-1

and

m=-1-(1-1)...0...1-1,1.
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Each trio of quantum numbers n, | and m defines a function state
of the system, which is a solution to the differential equation [1.11]. The
energy of the system, however, comes defined only by the quantum number
n. The energy values whose adoption is permitted by the system are those
given by the next equation:

E = (-2 n2 me¥/h?) (1/n?) [1.12]

where m and e stand for the mass and charge of the electron. h is the
Planck’s constant. There is a letter code for specifying the quantum
numbers. Therefore, the possible state function and energy levels allowed
to the hydrogen atom are (Figure 1.5.2):

nlm Function ® Energy

10 0 Is (- 2 ©® me*/ h?)
20 0 2s (- 2 > me*/ h?)/4
21 -1 2px (- 2 ©® me*/ h?)/4
210 2py (- 2 ® me*/ h?)/4
211 2p, (-2 n? me*/ h?)/4

Figure 1.5.2. Quantum numbers
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States
Graph
Function
Energy Levels
n 1l J'
oo IS
2
1

Figure 1.5.3. Some state functions and energy levels allowed to the hydrogen atom

The initial models for the hydrogen atom, such as those of
Rutherford or Bohr, described the electron in orbital motion around the
nucleus. The model offered by quantum mechanics rejects the use of the
classical motion of particles to describe a trajectory. Instead we have the
state function, ®@. This function, however, does not mean anything by itself.
Nevertheless, one of the postulates of quantum mechanics establishes that
if®is a state function, describing the state of the particle, ®?, is a
probability density function:

P=[®?dv. [1.13]
For example, the state defined by the set of quantum numbers 1, 0,

0 is the 1s function. As can be seen in Figure 1.5.2, this function is the
following exponential:
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Is=® = A exp (- r/a) [1.14]

where A is a constant, and a is a constant that has dimensions of r (Iength),
and a numerical value equal to the radius of the first orbit of the Bohr atom.
The probability density function will be @2,

b)

A

[

d)
| i
nh a2

1s /
a)
d=Aae"
Pr
c)
2

Figure 1.5.4. ®? represents a function of probability density. It means that the
probability of finding the electron has spherical symmetry. This is why we represent
1s by a sphere.

Both ® and ®? are only functions of r. This means that the
probability of finding the electron has spherical symmetry with respect to
the nucleus. This probability depends only on the distance, r, between the
electron and the nucleus (see Figure 1.5.4). According to [1.13], the
probability of finding the electron somewhere in the nucleus environment
can be calculated by solving this integral. It can be shown that the
probability of finding the electron somewhere at a distance r from the
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nucleus of the hydrogen has a maximum value for a fixed value of r, as can
be seen in Figure 1.5.4 and Seminar 1.5.1.

Finally, to complete this brief summary about the model of the
hydrogen atom described by quantum mechanics, we must say something
about spin. Electrons are particles with a negative charge. According to
classical mechanics, the orbital angular momentum of this charged particle
around the nucleus generates a magnetic moment similar to that used to
describe the interaction between an electrical circuit and a magnetic field.
In the case of electrons, however, the magnitude and orientation of the
orbital angular momentum (and the corresponding magnetic moment) are
quantized by quantum numbers 1 and m. The different orientations of the
orbital angular momentum are degenerate. They possess the same energy,
which depends only on the quantum number n. In the presence of a magnetic
field, however, the degeneracy disappears (Zeeman effect) and the energy
depends on quantum number m, as well as on n.

Elementary particles possess an additional angular momentum
(and the corresponding magnetic moment), which lacks a classical analogy,
although it appears naturally when relativity theory is taken into
consideration. This is the spin angular momentum. In the particular case of
electrons, it can be represented by a vector with two allowed orientations
corresponding to two quantum numbers of spin, ms, +1/2 and — 1/2. The
existence of this magnetic momentum derives from observations, in the
presence of external magnetic fields, with spectroscopic instruments of very
high resolution, the description of which is above our present ambition.
Both angular momenta interact with each other. Therefore, the energy of the
hydrogen atom depends on n, and, although almost negligibly, also on the
value of 1.

1.6 Atomic Structure

The Schrodinger equation for the helium atom cannot be solved because of
the term of potential energy corresponding to the repulsion between the two
electrons that, together with the positively charged nucleus, form the atom.
Obviously, explicit solutions to the Schrédinger equation corresponding to
the rest of many-electron atoms cannot be found either. Approximate
solutions can be found by means of complex mathematical procedures
which have configured the way we currently work with and the way we talk
about atoms and molecules.
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The approximate solutions (states) to the Schrédinger equation are
sought one by one. Obviously the most relevant function for a chemist is
that corresponding to the ground state. For example, in the case of helium,
the simplest approximate state would be that resulting from ignoring the
repulsion energy between the two electrons of the atom. This approach leads
us to propose, as a first approximate function for the ground state of helium,
the product of two hydrogen-like functions (or orbitals):

@ = (1s) (1s). [1.15]

It can be shown that when [1.15] is the state function of the system,
the corresponding energy must be the sum of two hydrogen atoms, corrected
by the presence of two protons in the nucleus. This approximation
represents an error of about 20% with respect to the true ground state energy
of the helium atom. Nevertheless, quantum mechanics offers many
mathematical tools to improve the approximate function [1.15] and the
corresponding energy. We say that the electronic configuration of helium is
1s?, which means that we are using two hydrogen-like functions to build the
first approximation of the ground state of helium.

The next atom in the periodic table is Lithium. The approximate
state function for the ground state might be formed by the product of three
hydrogen-like functions, similar to the approximate function built for
helium. However, that function would violate the Pauli exclusion principle.
The statement of this principle is very abstract in mathematical terms.
Nevertheless, an important consequence derived from it can be easily
expressed: to construct the approximate state function, no two functions
may have the same values for the four quantum numbers. Since the
coincidence between the number of electrons contained by the atom, and
the number of functions used to build the approximated function, it can also
be said, in line with the Pauli exclusion principle, “no two electrons may
have equal values for the four quantum numbers”. The function 1s* defines
two different sets of quantum numbers (n, I, m and ms) as 1,0, 0, 1/2 and 1,
0, 0, -1/2. The third electron would have to have a set of quantum numbers
equal to one of the previous sets. In order to satisfy the Pauli principle, a
different set of orbital quantum numbers must be assigned to the third
electron. The one supplying the lowest energy is 2, 0, 0 and 1/2 or -1/2 for
the spin quantum number. The approximate function for the ground state of
Lithium is built by multiplying two hydrogen-like functions 1s by one
hydrogen-like function 2s. We then say that the electronic configuration of
Lithium is 1s? 2s.



