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Foreword

Statistical mechanics is the name used for the discipline devoted to
studying systems composed of a large number of particles in order
to calculate their macroscopic properties including energy, pressure,
entropy... It deals as such with both equilibrium systems whose parti-
cles are either independent or strongly interacting and non-equilibrium
systems. In most cases, two different approaches are used to develop
a theory of the equilibrium properties of liquids based on the prin-
ciples of statistical mechanics: (i) the systematic cluster expansion
formalism applied to fluids at a density as high as one-third of normal
liquid densities, and (ii) the integro-differential equations formalism
determining the relationship between the distribution functions and
the effective pair interactions. The discussion of the non-equilibrium
phenomena have also made significant headway with the sophisticated
calculations of the Chapman-Enskog solution for the Boltzmann equa-
tion and, more recently, with the linear response theory that provides
the transport coefficients in terms of correlations among fluctuations.

Statistical mechanics is a relatively new science that developed
in the mid nineteenth century with the scientific works of Clausius,
Maxwell and Boltzmann. Clausius laid the foundation of the theory
of gases in 1857. Two years later, Maxwell established the law of
velocity distribution of molecules in gases. In 1872, Boltzmann went
through a harsh period against the supporters of the theory of energy
and changed the law of the Maxwell velocity distribution by taking
the external fields into account.

The basic grounding in statistical mechanics was actually provided
by Gibbs [1] in a book entitled The principles of statistical mechanics
which almost went unnoticed when it was published in 1902. In this
work, Gibbs justified for any system containing interacting particles

ix



x FOREWORD

the results obtained by Maxwell and Boltzmann by following a dif-
ferent path than what the predecessors had used and offering more
rigorous mathematical and logical consistency based on the concept
of ensemble. Gibbs’ distribution is based exclusively on assuming the
canonical ensemble to derive the laws of distribution, and makes no use
of empirical results about the nature of the intermolecular forces. Any
new statistical theory is inspired in some way by Gibbs distribution,
and it is not an overstatement to say that it holds the same position
as Newton’s equation in classical mechanics or Maxwell’s equations in
electromagnetism.

In 1907, a milestone was passed when Einstein combined the ideas
of statistical mechanics and quantum mechanics to explain the specific
heat of solids at low temperature. Shortly later, von Neumann estab-
lished rigorously the link between statistical mechanics and quantum
mechanics. Nevertheless, when realizing that the Maxwell-Boltzmann
distribution is a limiting case of the Bose-Einstein and Fermi-Dirac
distributions, the scope of statistical mechanics has been widely ex-
tended. It would be difficult to compile a full list of fields where statis-
tical mechanics identified applications. Statistical mechanics is used
in a wide range of fields including radiation (Planck, Bose, Einstein...),
Brownian motion (Brown, Einstein, Smoluchowski...), electronic the-
ory of metals (Drude, Sommerfeld, Lorentz...), magnetism (Langevin,
Brillouin, Weiss...), specific heat (Einstein, Debye...), semiconduc-
tors (Bardeen, Schockley...), superconductivity (Cooper, Schrieffer,
Josephson...), superfluidity (Landau...), astrophysics (Fowler, Chan-
drasekhar...), phase transitions (Domb, Fisher, Wilson...), polymers
(Kuhn, Flory...), dense fluids (Kirkwood, Yvon, Green...), etc.

The purpose of this book is primarily to examine and study the
structural and thermodynamic properties of dense fluids and their
transport properties. It is important to note that the statistical me-
chanics of dense fluids is divided into two parts. The first one investi-
gates the equilibrium systems and makes it possible to calculate their
thermodynamic properties and static structure. The second one fo-
cuses on the out-of-equilibrium systems and open the way to studying
individual and collective motions of particles together with determin-
ing their transport properties. Regarding the equilibrium systems,
there are two distinct ways to calculate the thermodynamic proper-
ties. The first one - based on knowledge on the partition function - is
elegant but it applies to diluted fluids and is the only path to investi-
gate the thermodynamic properties. The second way rest on the use
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of spatial correlation functions. In addition to the fact that they give
access to the thermodynamic properties of dense fluids, they are likely
to extract the static structure provided that the interactions between
particles are reduced to a sum of pair potentials. Over and beyond
that fact, they fall under a more general theory involving the spatial
and temporal correlation functions that make it possible to calculate
the atomic transport properties such as the coe�cients of di↵usion,
viscosity or thermal conductivity.

The aim of this publication is mainly to try and pinpoint what
there is behind the seemingly anarchistic proliferation of phenomena
observable in liquid state together with the sequence of causes and
e↵ects and, where appropriate, identify the general principles and un-
derlying rules governing them. To facilitate the understanding of the
microscopic theory of liquids, the tests made often refer to specific
cases calling for only easy reasoning and concepts whose aim is not
to display the mathematical rigour of the theory, but rather to the
implementation of the models under consideration. Nevertheless, nu-
merous details of the calculations are produced to exempt the reader
from repeating the demonstrations.

And last but not least, let me express my thanks and gratitude
to my colleagues and graduate students for numerous discussions and
helpful comments. When writing this book, the purpose was to pro-
vide a pre-measured dosage of statistical mechanics to make the read-
ing easier and appetizing and raise interest among students for the liq-
uid theory. Many thanks also go to Jean-Pierre Hansen, Ian McLaugh-
lin and Andrei Postnikov, who displayed much patience and solid ex-
pertise when reading over the manuscript and suggesting numerous
improvements.





1 The basics of classical statistical
mechanics

Unlike classical mechanics and quantum mechanics, adapted to sys-
tems with a few degrees of freedom, the statistical mechanics makes
it possible for us to study systems containing many particles such as
gases, dense fluids and solids. In classical mechanics, the past and
future history of systems is fully determined when external forces and
initial conditions are known. In contrast to this in statistical mechan-
ics, we should be content with admitting that the initial conditions
are always subject to uncertainties due to the large amount of data.
Therefore, it is impossible to find a rigorous solution to the equations
of motion so that the methods of mathematical statistics become in-
dispensable. In other words, the differences between statistical me-
chanics and classical mechanics lie in having no knowledge of initial
conditions.

The statistical analysis is not restricted to systems containing a
large number of particles. It can be also used in classical mechanics
with numerical simulation methods. For instance, the Monte Carlo
method, when tracking the motion of a small number of particles,
merges the advantages of classical mechanics and statistical mechan-
ics.

Whereas the molecular behaviour of matter is described by mi-
croscopic laws involving coordinates and momenta, the macroscopic
laws of thermodynamics use an appropriate set of physical properties
such as volume, pressure, temperature, density... One of the ma-
jor objectives of statistical mechanics aims specifically at making the
link between the laws of mechanics and the laws of thermodynamics.
Gibbs was first to develop the general treatment to express the rel-
evant thermodynamic properties of any chemical system in terms of
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2 CHAPTER 1. BASICS OF STATISTICAL MECHANICS

the microscopic properties of molecules. Formalism is based on the
concept of ensemble and the probability density. Given that the treat-
ment can lead to severe discrepancies when compared with results of
experiments (particularly for specific heats), it has been necessary to
introduce the ideas of quantum mechanics to remove the shortcom-
ings.

The purpose of this chapter is to offer a brief reminder of classi-
cal mechanics and quantum mechanics that play a central role in the
development of the statistical mechanics. Then, we present the con-
cept of ensembles and of probability density conveniently introduced
by Gibbs through the phase space considerations. Finally, we state
the first postulate of statistical mechanics showing correspondence be-
tween the time average and the ensemble average in ergodic systems.
Nothing is more solid and effective than a theorem whose validity has
been carefully tested.

1.1 Classical mechanics and phase space

Newtonian formalism

The classical mechanics is based on Newton’s equation :

Fi = m
d2ri
dt2

, (1.1)

in which Fi is the force acting on the ith particle of a system that
contains N particles, m the mass of the particle and ri its radius
vector. This equation can describe the motion of the particle and be
reduced to three second-order differential equations whose solutions
xi(t), yi(t) and zi(t) are determined when the force Fi and the initial
conditions are known.

For example, to study the motion of the linear harmonic oscillator
, the differential equation is:

m
d2X

dt2
= −kX, (1.2)

where X(= x − x0) represents the elongation proportional to the
force F (= −kX). The solution of this differential equation is X =

X0 cos(ωt+ ϕ), where the angular frequency ω =
(
k
m

)1/2
depends on
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the characteristics of the system, while X0 and ϕ are two constants
of integration determined from the initial conditions. In practice, this
corresponds to the oscillatory motion of a frictionless mass m attached
to a spring of stiffness k.

In order to compare meaningfully the different formalisms of clas-
sical mechanics, we consider the motion of a particle of mass m in a
central field. The potential energy is U(r) = k

r and the force deriv-
ing from it is F = −gradU = −k r

r3 , so that Newton’s equation that
governs the motion of the particle is:

m
d2r

dt2
= −k r

r3
. (1.3)

If the trajectory is located in the plane (xy), the projections of this
vectorial equation are:

m
d2x

dt2
= −k x

(x2 + y2)3/2
, (1.4)

m
d2y

dt2
= −k y

(x2 + y2)3/2
. (1.5)

The nature of the problem and the form of the equations require
the use of polar coordinates (r, θ) to solve the system of differential
equations. After making the change of variables x = r cos θ and y =
r sin θ, the system of differential equations written above becomes:[

m(r̈ − rθ̇2) +
k

r2

]
cos θ −m(rθ̈ + 2ṙθ̇) sin θ = 0, (1.6)[

m(r̈ − rθ̇2) +
k

r2

]
sin θ +m(rθ̈ + 2ṙθ̇) cos θ = 0. (1.7)

To simplify these equations, we perform their sum after multiplying
the first equation by cos θ and the second one by sin θ, and then carry
out their difference after the first equation has been multiplied by
sin θ and the second one by cos θ. This produces the following two
equations:

m(r̈ − rθ̇2) +
k

r2
= 0, (1.8)

m(rθ̈ + 2ṙθ̇) = 0. (1.9)
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The second equation is an exact differential equation that can be
integrated immediately into the form:

mr2θ̇ = l. (1.10)

It is obvious that the quantity mr2
.

θ = l corresponds to the angular
momentum of the particle that is a constant of motion. In eliminating
θ̇ between equations (1.8) and (1.10), we obtain the radial equation:

mr̈ = − k

r2
+

l2

mr3
. (1.11)

It should be noted that the solution r(t) to this differential equation
can be expressed - at least at a matter of principle - in terms of the
constants k and l. By comparing equations (1.11) and (1.3), we can

also notice the presence of the additional term l2

mr3 in equation (1.11)
that can be interpreted as a fictitious force (centrifugal force), which
does not result from an external force, but rather arises from the mode
of representation adopted. The centrifugal force and Coriolis force
appearing in the coordinate systems in rotation are two examples of
fictitious forces.

Lagrangian formalism

The motion of a particle – or more generally of a material system – can
also be studied with the Lagrange formalism. This approach is used
when the variables are angles or complicated functions of conventional
coordinates rather than Cartesian coordinates of individual particles.
In this formalism, a system of N particles interacting with each other
is defined by its 3N generalized coordinates qi, where i = 1, 2, ..., 3N .
However, before describing the motion of particles, it is appropriate
to calculate the following function known as the Lagrangian of the
system:

L(q1, q2, ..., q3N ; q̇1, q̇2, ..., q̇3N ; t) = T − U, (1.12)

depending on generalized coordinates qi, generalized velocities q̇i and,
possibly, on the time t. At the right side of equation (1.12), T is the
kinetic energy and U the potential energy of the system. The kinetic
energy T is a quadratic function of generalized velocities:

T =
1

2

N∑
k=1

mkq̇
2
k, (1.13)
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and the potential energy U depends only on generalized coordinates
when the system is conservative. Knowing the kinetic and potential
energies of the system, the equations of motion can be derived using
the Lagrange equations that arise in the following form:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 where i = 1, 2, ..., 3N. (1.14)

By way of illustration, the equations of motion can be derived within
the Lagrangian formalism of the two systems previously treated with
the Newtonian formalism . In this case it is unnecessary to calculate
the applied forces. For the linear harmonic oscillator , we use the
generalized coordinate q1 = X . The kinetic energy is T = 1

2mẊ
2

and the potential energy is U = −
∫

(−kX)dX = 1
2kX

2, so that the
Lagrangian is :

L(X,
.

X) =
1

2
mẊ2 − 1

2
kX2. (1.15)

As far as the equation of motion is concerned, the Lagrange equation
(Eq. 1.14) is written:

d

dt
(mẊ) + kX = 0, (1.16)

which coincides with equation (1.2).

Now we consider the particle of mass m in a central field. Its po-
tential energy is U = k

r and its kinetic energy T = 1
2mv

2 is expressed
in terms of generalized coordinates q1 = r and q2 = θ. As the square
of the velocity - in polar coordinates - has the following expression
v2 = ṙ2 + r2θ̇2, the corresponding Lagrangian reads :

L(r, θ, ṙ, θ̇) =
1

2
m(ṙ2 + r2θ̇2) +

k

r
. (1.17)

In terms of the coordinates r and θ, the use of the Lagrange equations
leads directly to :

d

dt
(mṙ)−mrθ̇2 +

k

r2
= 0, (1.18)

d

dt

(
mr2θ̇

)
= 0. (1.19)

These equations coincide with equations (1.10) and (1.11). Contrary
to the Newtonian formalism , the knowledge of actual and fictitious
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forces is not required. In particular, the centrifugal force mrθ̇2 = l2

mr3

results understandably from the Lagrangian and this is considered as
an advantage over the Newtonian formalism in which the presence of
fictitious forces makes things more complex when deriving the equa-
tions of motion.

Another advantage of the Lagrangian formalism is offering an iden-
tification of quantities called first integrals and retained during the
motion. A first integral of the motion is particularly important when
the Lagrangian does not depend explicitly on time. Let us show it by
calculating the total derivative of L with respect to time:

dL

dt
=
∑
i

∂L

∂qi

∂qi
∂t

+
∑
i

∂L

∂q̇i

∂q̇i
∂t

+
∂L

∂t
. (1.20)

According to the Lagrange equation, d
dt

(
∂L
∂q̇i

)
= ∂L

∂qi
, and the relation

∂qi
∂t = q̇i, equation (1.20) is rewritten:

dL

dt
=

∑
i

[
q̇i
d

dt

(
∂L

∂q̇i

)
+
∂L

∂q̇i

∂q̇i
∂t

]
+
∂L

∂t
,

=
∑
i

d

dt

(
q̇i
∂L

∂q̇i

)
+
∂L

∂t
, (1.21)

hence
∂L

∂t
= − d

dt

(∑
i

q̇i
∂L

∂q̇i
− L

)
. (1.22)

However, if the Lagrangian does not depend explicitly on time (∂L∂t =
0), the above equation reduces to:∑

i

q̇i
∂L

∂q̇i
− L = H = const. (1.23)

The quantity H, being retained when L does not depend explicitly
on time, is a very important first integral of analytical mechanics.
Similarly and for instance, if the Lagrangian L is independent of a
generalized coordinate qj , the variation of L with respect to q̇j is a
constant, i.e. ∂L

∂q̇j
= const. Following Lagrange’s equation (Eq. 1.14),

∂L
∂qj

= 0 is indeed equivalent to d
dt

(
∂L
∂q̇j

)
= 0 or ∂L

∂q̇j
= const. Ac-

cordingly, each generalized coordinate qi is associated to its conjugate
momentum ∂L

∂q̇i
= pi whose leads to the Hamiltonian formalism.
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Hamiltonian formalism

In the Lagrangian formalism, the independent variables are the gener-
alized coordinates qi defining the system state at any moment. They
are functions of time that are themselves solutions of a system of 3N
second order differential equations. By contrast, the independent vari-
ables in the Hamiltonian formalism are the generalized coordinates qi
and the conjugate momenta pi = ∂L

∂q̇i
. Replacing ∂L

∂q̇i
by the conjugate

momenta pi into equation (1.23) does not bring any obvious advan-
tage, except to define a new function H, called the Hamiltonian of
the system:

H(qi, pi, t) =
∑
i

q̇ipi − L, (1.24)

which has the same unit as L, i.e. energy.

The interest in the Hamiltonian is to be a first integral when the
Lagrangian does not depend explicitly on time (Eq. 1.23) and to
represent, in most cases, the total energy E of the system. For a
conservative system, the potential energy U(= T − L) is indeed a
function of the generalized coordinates qi which allows us to write the
conjugate momenta as:

pi =
∂L

∂q̇i
=
∂(T − U)

∂q̇i
=
∂T

∂q̇i
. (1.25)

Moreover, considering that the kinetic energy T is a quadratic function
of the generalized velocities (Eq. 1.13), we can write:∑

i

q̇i
∂T

∂q̇i
= 2T, (1.26)

by virtue of Euler’s theorem. Remember that Euler’s theorem stipu-
lates that if a function f(λx1, λx2...λxi) is a homogeneous polynomial
of degree m in xi, namely:

f(λx1, λx2, ...λxi, ...) = λmf(x1, x2, ..., xi, ...), (1.27)

f is related to its partial derivatives by the equation:∑
i

xi
∂f

∂xi
= mf. (1.28)
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To demonstrate this, it is just necessary to differentiate equation
(1.27) with respect to λ and to write down λ = 1, as follows:

∂f

∂λx1

∂λx1

∂λ
+

∂f

∂λx2

∂λx2

∂λ
+ . . . +

∂f

∂λxi

∂λxi
∂λ

+ ...

= mλm−1f(x1, x2, ..., xi, ...),

x1
∂f

∂x1
+ x2

∂f

∂x2
+ . . . +xi

∂f

∂xi
+ ...

= mf(x1, x2, ..., xi, ...). (1.29)

Given that the kinetic energy T is a homogeneous polynomial of
degree two of

.
qi, this yields equation (1.26). Therefore, by combining

equations (1.24), (1.25) and (1.26), the Hamiltonian of a conservative
system reduces to the total energy E:

H =
∑
i

q̇i
∂T

∂
.
qi
− L,

= 2T − L = T + U = E. (1.30)

To establish the equations of motion in the Hamiltonian formalism,
we must calculate the total differential of the Hamiltonian H(qi, pi, t):

dH =
∑
i

∂H

∂qi
dqi +

∑
i

∂H

∂pi
dpi +

∂H

∂t
dt. (1.31)

As the element dH is also given by the differential of equation (1.24),
it can be written again under the following form with the help of
equation (1.20):

dH =
∑
i

dq̇ipi+
∑
i

q̇idpi−

[∑
i

∂L

∂qi
dqi+

∑
i

∂L

∂q̇i
dq̇i+

∂L

∂t
dt

]
. (1.32)

By using the Lagrange equations (Eq. 1.14), namely ∂L
∂qi

= d
dt

(
∂L
∂q̇i

)
,

and the conjugate momenta (pi = ∂L
∂q̇i

), the term in square brackets
in the above equation transforms into[∑

i

d

dt

(
∂L

∂q̇i

)
dqi+

∑
i

∂L

∂q̇i
dq̇i+

∂L

∂t
dt

]
=
∑
i

ṗidqi+
∑
i

pidq̇i+
∂L

∂t
dt,

(1.33)
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and equation (1.32) simplifies to:

dH =
∑
i

dq̇ipi +
∑
i

q̇idpi −

[∑
i

ṗidqi +
∑
i

pi dq̇i +
∂L

∂t
dt

]
,

=
∑
i

q̇idpi −
∑
i

ṗidqi −
∂L

∂t
dt. (1.34)

Identifying the terms of equations (1.31) and (1.34) yields the
Hamilton equations:

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

, (1.35)

∂L

∂t
= −∂H

∂t
.

The last of these equations shows that if the Lagrangian does not
depend explicitly on the time, the Hamiltonian does not depend on it
either. As for the two first equations, they constitute the equations
of motion in the Hamiltonian formalism. They form a system of 6N
first order differential equations that require knowledge of 6N initial
conditions (3N for p and 3N for q). They replace the 3N second order
differential equations in the Lagrangian formalism, which also require
6N initial conditions. The Hamilton equations do not represent an
improvement relative to the Lagrange equations; their only advantage
is to provide an appropriate basis for the development of quantum
mechanics and statistical mechanics. In the Hamiltonian formalism, a
6N dimensional space, called the phase space Γ, is introduced, where
a point defined by 3N variables qi and 3N variables pi describes a
trajectory that allows us to follow the evolution of the system over
time.

To illustrate the method, consider again the linear harmonic oscil-
lator with the Lagrangian (Eq. 1.15) written as :

L(q, q̇) =
1

2
mq̇2 − 1

2
kq2 . (1.36)
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The conjugate momentum is p = ∂L
∂q̇ = mq̇ so that the Hamiltonian

H = pq̇ − L reduces to :

H = mq̇2 −
(1

2
mq̇2 − 1

2
kq2
)
,

=
1

2

p2

m
+

1

2
kq2 , (1.37)

and the equations of motion become:

q̇ =
∂H

∂p
=

p

m
, (1.38)

ṗ = −∂H
∂q

= −kq . (1.39)

After having substituted ṗ (= mq̈) in the second equation, we can
proceed to the integration of the second order differential equation
and draw successively q and p as:

q = q0 cos(ωt+ ϕ) , (1.40)

p = mq̇ = −mωq0 sin(ωt+ ϕ) , (1.41)

where ω2 = k
m . Since the system is conservative, we can also calculate

the total energy by equation (1.37):

E = H =
1

2

p2

m
+

1

2
mω2q2

=
1

2m

[
−mωq0 sin(ωt+ ϕ)

]2
+

1

2
mω2

[
q0 cos(ωt+ ϕ)

]2
=

1

2
mω2q2

0 . (1.42)

It should be noted that the evolution of the system can be represented
in the phase space in two dimensions by plotting p versus q. Assuming
that the phase ϕ is zero at the initial moment, the expressions of q
and p (Eqs. 1.40 and 1.41) reduce in terms of E (Eq. 1.42) as:

q =
1

ω

√
2E

m
cosωt , (1.43)

p = −
√

2mE sinωt . (1.44)

It is easy to verify that the trajectory in the phase space describes an
ellipse moving clockwise.
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1.2 Quantum mechanics

Introduction

Classical mechanics is used to determine the motion of a classical par-
ticle – or a set of particles – by solving the equations of motion, when
the initial positions and initial velocities are known. However, dur-
ing the 1920s it became apparent that it was impossible to determine
precisely and simultaneously the position and velocity of quantum
particles: this is known as the Heisenberg uncertainty principle. For
these particles, the description of classical mechanics does not ap-
ply. In particular, the representative point of the dynamic state in
the phase space, at a given moment, cannot be pinpointed. Other
considerations apply that are the aim of quantum mechanics.

The fundamental concept of quantum mechanics resides in the
wave function ψ(q, t), which is defined in terms of generalized coor-
dinates q = (q1, q2, ..., q3N ) and time t. Strangely, the wave function
is a feature that does not refer to the movement of particles but to
the probability of finding particles in a given region of space. Thus
the elementary probability that the system is, at a given moment, in
the region of space limited to dq, bounded by q1 and q1 + dq1, q2 and
q2 + dq2, .... q3N and q3N + dq3N is:

ψ∗(q, t)ψ(q, t)dq, (1.45)

where ψ∗(q, t) is the complex conjugate of ψ(q, t).

The first postulate of quantum mechanics states that the square
modulus of the wave function |ψ(q, t)|2 = ψ∗(q, t)ψ(q, t) represents
a probability density function. According to mathematical statistics,
this means that the wave function satisfies the normalization condi-
tion: ∫

ψ∗(q, t)ψ(q, t)dq = 1. (1.46)

This relationship reflects the fact that the particle is found with cer-
tainty in the area considered, since the probability is equal to unity.
The wave function is not an observable quantity and never enters the
final result. It must be regarded only as a mathematical tool used
in the calculation of dynamic quantities such as position, momentum,
energy...
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The second postulate of quantum mechanics stipulates that any
dynamic quantity L is associated with a linear operator L̂. When the
dynamic quantity L is involved, the corresponding operator L̂ has to
be applied to the wave function ψ(q, t). However, if one is interested
only in stationary states of the system (time-independent states), the
only observable results of the physical property are the eigenvalues λ
of L̂ that satisfy the equation:

L̂ψ(q) = λψ(q) (1.47)

For example, the operator x̂ associated with the position variable
x is the function x itself. The action of this operator on the wave
function ψ(x) is the multiplication of this function by x:

x̂ψ(x) = xψ(x). (1.48)

As regards the operator p̂x associated with the momentum variable
px = mvx, it is defined by p̂x = ~

i
∂
∂x , where ~(= 1, 054.10−34 J·s) is

Planck’s constant divided by 2π and i the imaginary number such as
i2 = −1. In a one-dimensional problem, the action of the momentum
operator on the wave function ψ(x) reduces to the integration of the
differential equation:

p̂xψ(x) =
~
i

dψ(x)

dx
= pxψ(x), (1.49)

where the solution is ψ(x) = A exp(ipx~ x), with A the integration
constant and ψ(x) the wave function associated with the eigenvalue
px.

When the energy E of the system must be calculated, it is required
to apply the associated operator Ĥ to the wave function ψ(q), i.e.:

Ĥψ(q) = Eψ(q). (1.50)

This relation corresponds to the Schrödinger equation, independent of
time, in which the Hamiltonian operator Ĥ of a particle is expressed
as:

Ĥ = − ~2

2m
∇2 + U(x, y, z), (1.51)

where m is the mass of the particle and ∇2( = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) the
Lapacian. The first term at the right hand side of the above equation
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represents the kinetic energy operator and the second term the po-
tential energy. Therefore, the knowledge of the Hamiltonian operator
and boundary conditions of the system allows the determination of E
and ψ.

Quantum particle in a rectangular box

By way of illustration and to clarify the concept of energy quantiza-
tion, let us consider the problem of a quantum particle of mass µ in
a rectangular box with sides a, b, c. If the particle is not subject to
any external force, the potential energy is zero and the Schrödinger
equation (Eq. 1.50) reduces to:

− ~2

2µ
∇2ψ = Eψ. (1.52)

Let us seek a solution for this partial differential equation in the form
of a product with three functions, each of them depending on a single
variable, namely:

ψ(x, y, z) = ψ1(x)ψ2(y)ψ3(z). (1.53)

By substituting the expression of the wave function in equation (1.52),
we obtain:

− ~2

2µ

[
ψ2(y)ψ3(z)

∂2ψ1(x)

∂x2
+ ψ1(x)ψ3(z)

∂2ψ2(y)

∂y2

+ ψ1(x)ψ2(y)
∂2ψ3(z)

∂z2

]
= Eψ1(x)ψ2(y)ψ3(z),

or

− ~2

2µ

[
1

ψ1(x)

∂2ψ1(x)

∂x2
+

1

ψ2(y)

∂2ψ2(y)

∂y2
+

1

ψ3(z)

∂2ψ3(z)

∂z2

]
= E .

(1.54)
As the sum of the three terms in square brackets is constant, we can
write down E = E1 + E2 + E3 and change the Schrödinger equation
into three independent equations:

∂2ψ1(x)

∂x2
= −2µE1

~2
ψ1(x) , (1.55)

∂2ψ2(y)

∂y2
= −2µE2

~2
ψ2(y) , (1.56)

∂2ψ3(z)

∂z2
= −2µE3

~2
ψ3(z) . (1.57)
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Solving these equations of the form Ẍ = −k2X is immediate. The
solutions are:

ψ1(x) = A sin k1x+A′ cos k1x , (1.58)

ψ2(y) = B sin k2y +B′ cos k2y , (1.59)

ψ3(z) = C sin k3z + C ′ cos k3z , (1.60)

where k1 =
√

2µE1

~2 , k2 =
√

2µE2

~2 and k3 =
√

2µE3

~2 . Now, to com-

pletely determine the solution of the problem, let us consider the
boundary conditions imposed by the box walls which are:

ψ(0, y, z) = ψ(a, y, z) = 0, (1.61)

ψ(x, 0, z) = ψ(x, b, z) = 0, (1.62)

ψ(x, y, 0) = ψ(x, y, c) = 0. (1.63)

The first of these boundary conditions requires that

ψ(0, y, z) = ψ1(0)ψ2(y)ψ3(z) = 0 (1.64)

in the x-direction, i.e. A′ = 0 for all y and z. Likewise there is
B′ = C ′ = 0 in the directions y and z, Moreover, at x = a, the
boundary condition reads:

ψ(a, y, z) = ψ1(a)ψ2(y)ψ3(z) = 0,

= (A sin k1a)(B sin k2y)(C sin k3z) = 0 , (1.65)

that is to say k1 = lπ
a irrespective of y and z. When repeating the

calculation procedure in the directions y and z, we find the expressions
of the parameters k1, k2 and k3:

k1 =

√
2µE1

~2
=
lπ

a
, (1.66)

k2 =

√
2µE2

~2
=
mπ

b
, (1.67)

k3 =

√
2µE3

~2
=
nπ

c
, (1.68)

where l, m and n are positive integers. Then, these values of k1, k2

and k3 make it possible to calculate the energy E = E1 + E2 + E3:

E =
~2

2µ
(k2

1 + k2
2 + k2

3) =
~2π2

2µ

( l2
a2

+
m2

b2
+
n2

c2

)
, (1.69)
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as well as the wave function (Eq. 1.53):

ψ(x, y, z) = ABC
(

sin
lπ

a
x
)(

sin
mπ

b
y
)(

sin
nπ

c
z
)
. (1.70)

From then on all we have to do is determining the constant (ABC)
by using the normalization condition for the wave function:∫∫

ψ∗(x, y, z)ψ(x, y, z)dxdydz = 1, (1.71)

or:

(ABC)2

∫
sin2

( lπ
a
x
)
dx×

∫
sin2

(mπ
b
y
)
dy×

∫
sin2

(nπ
c
z
)
dz = 1 .

(1.72)
As the three integrals are respectively a

2 ,
b
2 and c

2 , the resulting ex-
pression for the wave function is:

ψ(x, y, z) =

√
8

abc

(
sin

lπ

a
x
)(

sin
mπ

b
y
)(

sin
nπ

c
z
)
. (1.73)

Degeneracy and density of states

Considering the expression of energy of the particle (Eq. 1.69), we
see that it can take a succession of discrete values corresponding to
the integers l, m and n. Being characterized by the three quantum
numbers l, m, n, the energy of the particle is thus quantized. It may be
noted in passing that quantification is a consequence of the boundary
conditions of the wave function on the box walls and that the energy
decreases as the particle mass and the box sizes are increasing, for
given quantum numbers.

The fact that many wave functions may possess the same energy
is an important aspect of the energy quantization. Assuming that
a = b = c, the wave function and energy become respectively:

ψ(x, y, z) =

√
8

a3

(
sin

lπ

a
x
)(

sin
mπ

a
y
)(

sin
nπ

a
z
)
, (1.74)

E =
~2π2

2µa2
(l2+m2+n2) . (1.75)
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Therefore, for each triplet of values (l,m, n), the permutation of two
of them keeps the energy unchanged while giving different wave func-
tions. The energy states are then said to be degenerate. For instance,
if l = m = 3 and n = 4, the energy is:

E =
~2π2

2µa2

[
(3)2 + (3)2 + (4)2

]
, (1.76)

and does not vary by permutation of the integers l, m, n. Conversely,
after permutation of the integers l, m and n, the wave function takes
one of the three following forms:

ψ3,3,4 =

√
8

a3

(
sin

3π

a
x
)(

sin
3π

a
y
)(

sin
4π

a
z
)
, (1.77)

ψ3,4,3 =

√
8

a3

(
sin

3π

a
x
)(

sin
4π

a
y
)(

sin
3π

a
z
)
, (1.78)

ψ4,3,3 =

√
8

a3

(
sin

4π

a
x
)(

sin
3π

a
y
)(

sin
3π

a
z
)
. (1.79)

In this case, the energy is three-fold degenerate. It should be noted
that, if the three quantum numbers are equal, there is only one wave
function so that the energy is non degenerate.

When the values of integers l,m and n are very high, the intervals
between the energy levels become so low that a continuous variation
of energy can be admitted. The relative energy difference reduces
indeed with equation (1.75) to:

El,m,n+1 − El,m,n
El,m,n

=

[
l2+m2+(n+1)2

]
− (l2+m2+n2)

l2+m2+n2

=
2n+ 1

l2+m2+n2
� 1. (1.80)

As a result, the density of states defined as the number of states per
interval of energy at each energy level is usually evaluated as follows.
For this purpose, each energy state, El,m,n, is depicted by a point of
coordinates √

~2π2

2µa2
l ,

√
~2π2

2µa2
m,

√
~2π2

2µa2
n . (1.81)
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Figure 1.1: (a) Representative points of the energy states in the αβγ space.
(b) Schematic representation of the variation of the density of states versus
energy.

in the (αβγ) Cartesian coordinate system made of elementary cubes of

side
√

~2π2

2µa2 and volume
(

~2π2

2µa2

)3/2
constituting a cubic lattice (Fig. 1.1).

As each elementary cube has 8 vertices and each vertex is shared
by 8 cubes, the volume available for each point (state of energy) is

the volume element
(

~2π2

2µa2

)3/2
. It could be noted that the square of

the distance ρ from a point of the network to the origin is:

ρ2 =
~2π2

2µa2

[
l2+m2+n2

]
= El,m,n . (1.82)

The higher the values of l,m, n the higher the number of points
located on a sphere of equal energy. Therefore the number of energy
states in the volume of a spherical ring, between ρ and ρ+ dρ, can be
obtained by dividing the volume of the spherical ring 4πρ2dρ by the
volume attributed to each point. As the numbers l,m, n are positive
integers, only 1/8 of the spherical ring has to be considered, so that
the number of energy states dG in the spherical ring is reduced to

dG =
1

8

4πρ2dρ(
~2π2

2µa2

)3
2

=
π

2

(
2µa2

~2π2

)3
2

ρ2dρ . (1.83)
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When it comes to calculating the density of states g(E) = dG
dE as a

function of energy, the variable ρ is substituted by the variable E by
using equation (1.82) and by:

dρ =
1

2E1/2
dE . (1.84)

Consequently, the density of states g(E) is expressed as:

g(E) =
dG

dE
=

a3

4π2

(
2µ

~2

)3
2

E1/2 . (1.85)

The density of states is proportional to the square root of energy
(Fig. 1.2c), that is to say to the square root of the sum of the squares
of quantum numbers. Furthermore, it is an increasing function of the
particle mass and box size and has the dimensions of inverse of energy.
More importantly, it represents the number of wave functions per unit
of energy between E and E+dE. For instance, let us calculate the
density of states dG in the energy interval E±∆E with ∆E = 0.01E
for a classical particle (ion) of mass µ(= 2·10−27 kg) in a cubic box of
side a = 10−2 m, at temperature T = 300 K. The energy E

(
= 3

2kBT
)
,

where kB = 1.38·10−23 J·K−1, is E' 6·10−21 J, and the number of
energy states is:

dG =
a3

4π2

(
2µ

~2

)3
2

E
1
2 dE

=
10−6

4π2

[
4·10−27

(1.054·10−34)2

]3
2

(6·10−21)
1
2

6·10−21

100
' 2.5·1022 . (1.86)

As a result, the degeneracy of a classical particle at room tem-
perature is considerable. However, It should be stressed that the
degeneracy i of a quantum particle is just slightly lower than that of
a classical particle. It is indeed easy to check whether the number of
energy states of an electron of mass µ = 0.911·10−30 kg at the Fermi
temperature of 50000 K and under the same conditions as those of the
classical particle is a few hundred times lower. Moreover, if N ' 1023

particles are considered in the cubic box in place of a unique parti-
cle, a calculation more complex than the previous one shows that the
number of energy states is dG ' 10N , i.e. considerably higher than it
would be for a single particle.


