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CHAPTER ONE 

INTRODUCTION   
 
 
 
Over the past 60 years, the field of Quantum Optics has seen 

technological developments in various attempts to develop sources emitting 
a single-photon per radiation mode, as well as corresponding photodetectors 
for resolving very low numbers of photons (e.g., Hepp et al. [1]; Lodahl et 
al. [2]).   

Quantum Optics (e.g., Garrison and Chiao [3]) is predicated on the 
superposition and entanglement of apparently single-photon number states. 
The processing of such quantum states by means of beam splitters is 
supposed to enhance the performance and sensitivity of various information 
assessing operations. The theoretical model is based on the mixed quantum 
states of an ensemble of measurements, which provides time-independent 
distributions for the numerical evaluation of probability amplitudes 
associated with alternative propagation pathways of one single-photon. 

The detection and measurement of correlated photons and their degrees 
of freedom constitute the experimental demonstration of concepts in 
Quantum Optics. The three stages of generation, propagation, and detection 
impact, in various ways, on the properties of measured outcomes.    

An early application of Quantum Optics occurred in the experiments 
intended to prove quantum nonlocality by generating a pair of polarised, 
highly correlated (or entangled) photons, with an optically nonlinear crystal 
(e.g., Garrison and Chiao [3]). One photon is sent in one direction and the 
other in the opposite direction. Remote and independent measurements 
would appear to be correlated, leading to the concept of quantum 
nonlocality. Surprisingly, though, the same correlation function can be 
derived without entanglement, by using single and independent quantum 
polarisation states, or qubits (Vatarescu [4-5]).  

In an article published in August 2014 by Tipler [6] and titled “The 
quantum nonlocality does not exist”, the author detailed physical arguments 
for the statistical nature of the experimental results contradicting the concept 
of quantum nonlocality. While initiating the analysis with ensemble 
entangled states, Tipler points out that quantum wave functions need not 
collapse into a specific state upon measurement. Rather, the overall wave 
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function continues to evolve and branches out into one of four possible 
options, thereby generating an ensemble distribution of measured values.  

A recent article in the Physical Review A authored by R. B. Griffiths 
[7], appears to be the first editorial exception to the uncompromising 
protection of the concept of quantum nonlocality. Additional analyses 
disproving the physical validity of the concept of quantum nonlocality have 
been published recently in other journals, e.g. (Boughn [8]; Khrennikov [9]; 
Kupczynski [10]). 

It is noteworthy that a large body of analytic rebuttals of the concept of 
quantum nonlocality has been continually ignored in tens of articles which 
are published every year on this subject. These continual omissions, in the 
legacy journals of professional literature, of challenging and physically 
meaningful interpretations of the experimental results can only be an 
indication of the resistance organised by vested interests. As yet, not one 
single article has reported any evidence – at the level of pure quantum states 
of a single measurement – of a correlated or entangled collapse of the 
quantum wave function at one location as a result of a measurement carried 
out at another remote location. The global, mixed quantum states which are 
claimed to generate those quantum correlations are distributions of 
ensemble measurement possessing no dependence of the time and location 
of the measured observables.   Despite the physical impossibility of a photon 
to maintain its polarisation state or even survive propagation through a 
dielectric medium because of the quantum Rayleigh scattering (Louisell 
[11]; Marcuse [12]), the concept of quantum nonlocality is still believed to 
provide an untapped resource for some future applications.        

Additionally, in 2015, experimental results presented by Qian et al. [13] 
in the classical regime of large numbers of photons, found strong 
correlations, known as concurrences, between variables of polarised light. 
These results broadened the concept of correlation between observable 
values of quantum variables, raising questions about the quantum signature 
of such correlations. 

These analytic and experimental results prompted this author to 
scrutinise the physical processes and interactions involved in the 
experimental setups, and which have continually been ignored and 
overlooked in major professional journals. Although detrimental to 
scientific development, the editorial policy of many journals would aim to 
preserve the status quo of physical understanding. 

Another application of Quantum Optics has to do with the combination 
of a single-photon source, a beam splitter and simultaneous detections with 
two separate photodetectors. This combination is commonly described by 
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means of a time-independent mixed state of correlation measurements 
(Garrison and Chiao [3]; Mandel [14]). 

However, a few questions have been overlooked: 1) How can a single-
single propagate in a straight line in a homogenous dielectric medium given 
the multitude of electric dipoles it encounters? 2) How can a probability 
amplitude, instead of an optical field associated with a photon throughout 
its propagation, trigger or activate a photodetector? 3) How can a single-
photon state of an ensemble of measurements, at a given time, interfere with 
another state that is physically absent at the same time?  4) How can the 
physical duration of a monochromatic photon be described mathematically 
by a polychromatic Fourier wave packet of the ensemble of measurements, 
given that only one Fourier spectral line would be measured at any given 
time?   

Technological advances in material fabrication for integrated photonic 
devices and circuits will need to be matched by improved physical 
understandings of light-matter interactions. These will facilitate the design 
and operations of functional devices such as phase-sensitive amplifications 
of photons, sub-Poissonian sources of photons, low-power phase-sensitive 
switches and modulators, etc. and will have the potential to open up new 
applications in optical communication relying on easy to control quantum 
interactions.  

The tenets of Quantum Optics consist of single photons propagating in 
a straight line in a dielectric medium, the interference patterns of probability 
amplitudes based on ensemble-evaluated mixed states of photons, and the 
use of beam splitters as entangling devices. Nevertheless, any probability 
amplitude of a quantum event should be evaluated from wave functions that 
reflect the physical reality. Discarding temporal information – which 
becomes a lack of information – about the propagation pathway of a single 
photon does not create a physical effect; it can only mask or obscure the 
existence of physical interactions.  

This book adopts a physical approach. As photons propagate through a 
dielectric medium, the quantum Rayleigh spontaneous emission replaces 
entangled photons with independent ones in homogeneous dielectric media 
where single photons cannot propagate in a straight line. Pure quantum 
states of wavefronts of independent groups of photons deliver the intrinsic 
field profile associated with a photonic wavefront and the correct 
expectation values for its number of photons, its complex optical field, and 
phase quadratures. The spatial distribution of a photon, both longitudinally 
and laterally, is found from the quantised Maxwell equations in the context 
of a Wigner-type monochromatic time-varying spectral component.  These 
photonic properties enable a direct analysis of various beam splitters and 
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interferometric filters, leading to generalized expressions for the correlation 
functions characterizing counting of coincident numbers of photons for the 
fourth-order field interference. 

1.1 A Historical Perspective 

The need to detect and analyse very week optical signals from distant 
stars led in the 1950s to the method of intensity interferometry in a bid to 
overcome the sensitivities associated with optical fields’ interference. The 
Hanbury Brown and Twiss experiment [15] of 1956 with a mercury arc 
lamp as the optical source of radiation, measured “correlation between 
photons in coherent light rays”. In that experiment, the light was produced 
by many different atoms, and one spontaneously emitted photon would have 
been slightly amplified on its way out. Thus, some photons might arrive in 
pairs at the half-silvered mirror (or beam splitter), which may explain the 
results showing a correlation between pairs of photon counts in terms of 
statistical distributions of bosons (Purcell [16]). 

In 1961, Fano developed a theory of two-photon interference involving 
two emitting atoms and two photo-detecting atoms [17]. Employing generic 
transition or interaction matrix elements, the theory leads to ”… a cosine 
function of both space and time” of the joint one-photon absorption by each 
of the two detectors.  

The next stage of the theoretical development in 1963, saw Glauber 
specify the probability amplitude of photon detection in terms of the 
annihilation operator and input quantum states [18-19]. Given that the 
photon creation operator and the annihilation operator are the adjoint of 
each other, the detection probability became identical to the expectation 
value of the number operator. This enabled the use of number states defined 
as the eigenstates of the free-space Hamiltonian operator of optical fields. 
An equivalence with classical optical fields was derived in the form of an 
ensemble eigenstate of the annihilation operator, and which became known 
as the coherent states of light. While the removal of one photon may not 
have any consequence for a very large number of photons as is the case in 
the classical regime, in the quantum regime of a few photons per radiation 
mode, ironically, the coherent state is impractical; additionally, the coherent 
states fail to deliver the eigenvalues of phase quadratures (Carruthers and 
Nieto [20]).   

The Glauber theory of photon detection and correlation (or coherence) 
is based on ensemble distributions of photons However, the corresponding 
quantum states lack information about time-dependent, instantaneous 
measurements or interactions which require the use of pure quantum states 
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that are allowed to be time-dependent. This shortcoming of quantum 
evaluations was pointed out by Mandel and Wolf in 1965 [21, Section 7.3] 
where one finds the following statement:  

“We have already shown in Sec. 3.2 that a description of ordinary 
interference effects may readily be given in terms of the quantized field, and 
that it follows the classical treatment fairly closely. It might therefore be 
thought that the transient superposition effects discussed in the last two 
sections can also be described quantum mechanically, in a closely parallel 
manner. However, here we come up against the basic feature that quantum 
mechanics is always concerned with expectation values of observables, 
whereas the calculation of expectation values was deliberately avoided in 
the simple treatment leading to Eqs. (7.6) and (7.10).” 

This shortcoming of the quantum approach was ignored in the 
developments of following decades. This book aims to rectify this 
deficiency, prompted by the very fact that experimental results are measured 
one value at a time, and the final resultant distribution of the ensemble of 
measurements is time-independent once the experiment is complete.   

Equally, the Glauber theory would have properties of instantaneous 
photons determined by the ensemble distribution to which they belong. For 
the number states, the photons would have no optical field, while for the 
coherent states the optical field arises from the overall superposition of a 
very large, if not infinite, number of photons. Yet, photons interact with 
dipoles and are detected at a given location and a particular time. 

Another branch of Quantum Optics was initiated in 1965 by Jaynes and 
Cummings with an article analysing the interactions between single photons 
and atoms placed in resonant cavities [22]. In this case the photonic state is 
time-dependent, consisting of two consecutive number states.   

Over the next two decades, 1965 to 1985, laser sources were used to 
prove interference between independent radiation modes of various 
numbers of photons. A review of possible single-photon interference 
patterns was presented by Walls in 1977, and space and time overlaps were 
included [23]. As the photon is the lowest amount of indivisible energy 
carried by an electromagnetic field, it can only be detected at one of two 
photodetectors located in the two alternative pathways. By contrast, the 
ensemble distribution of measurements would attach a non-zero value to 
both possibilities of the transition matrix evaluated with a pathway-
entangled state of one photon.  It is this discrepancy between the single 
measurement and the overall distributions that gives rise to a mathematical 
single-photon interference pattern in the context of a large number of 
measurements. The corresponding experimental results seemingly 
supporting quantum interference of probability amplitudes, are interpreted 
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on the basis of there being only one photon emitted by the optical source for 
each measurement.  

In a 1986 article  (Grangier et al. [24]), an optical source based on 
Calcium atoms was reported to yield an anti-correlation parameter as low 
as 0.18 which the authors classified as practically a single-photon source. 
The apparent quantum interference patterns of probability amplitudes 
obtained with a Mach-Zehnder configuration containing two beam splitters 
are interpreted as a clear evidence of single-photon interference. However, 
as one single photon would be scattered randomly in a quantum Rayleigh 
interaction with electric dipoles in the dielectric medium of the beam 
splitter, the possibility does exist that the interference was, in fact, created 
by the 18% of the groups of photons emitted spontaneously and slightly 
amplified on their way out, and which split at the first beam splitter and 
recombined at the second one, on their way to the same photodetector.     

Over the next 15 years, to the turn of the century, optically nonlinear 
parametric crystals occupied centre stage as the most practical source of 
allegedly single photons. Pairs of spontaneously emitted photons are 
generated simultaneously by the interaction of an optical pump with 
nonlinear crystals. The optical frequencies and wavevectors of the two 
emitted photons obey conservation laws resulting in a high degree of 
correlation between the same degrees of freedom, and known as 
entanglement of photon states.  From a physical perspective, measuring one 
photon’s characteristic values would indicate the pair photon’s values of 
frequency, wavevector, and, given the anisotropic polarisation or 
birefringence of the crystal, the polarisation of the other photon. 

Although the optical pump pulses exciting the nonlinear crystals have 
relatively low levels of power, parametric amplification cannot be prevented 
resulting in a few, rather than one, photons per temporally discrete group. 
Therefore, the experimental results presented in the 1999 review article by 
Mandel [14] can be explained without quantum interference of probability 
amplitudes, and, in so doing, taking the counterintuitive element out of the 
picture [25]. This is, particularly, the case for the Hong-Ou-Mandel dip 
associated with a reduced counting of photon coincidences between the 
output modes of a beam splitter mixing two input synchronised and identical 
streams of single photons.   

Similarly, the claim of remotely collapsing a wave function is highly 
questionable (Fuwa et al. [26]). A single photon propagating through a 
beam splitter would be deflected from its planned pathway by quantum 
Rayleigh scattering.  Furthermore, the maximum likelihood method of 
numerically reconstructing a quantum state from raw data “aims to find, 
among the variety of all possible density matrices, the one that maximizes 
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the probability of obtaining the given experimental data set and is physically 
plausible”  (Lvovsky and Raymer [27]). From the experimental point of 
view, the observer B’s “photoreceivers do not have to be efficient, and he 
can post-select on finding his system in a particular subspace” [26]. The 
maximum likelihood method of reconstruction requires a target state, and 
the sign parameter s is delivered from observer A for the reconstruction of 
the quantum state by observer B. Therefore, the reconstruction is not 
independent. Indeed, the quantum Rayleigh scattering would deflect any 
single-photon crossing the beam splitter, and bearing in mind the slight 
parametric amplification inside the source, the two observers share the same 
photon phase from the same group of photons split at the beam splitters. 
There was no direct link at the level of a pure quantum state of a single 
measurement between the two observers, if only, because with only one 
photon in the experimental setup at any given time, only one detector can 
be triggered, whether or not the photon is entangled.  Additional 
experiments (Ringbauer et al. [28, p. 4]) attempting to identify a cause and 
effect for quantum nonlocality between remote photodetectors found that “a 
direct causal influence from one outcome to the other can therefore not 
explain quantum correlations “. 

This century, the next stage in the quest for practical single-photon 
sources involved semiconductor quantum dots placed inside dielectric 
micro-cavities (e.g., Hepp et al. [1]; Lodahl et al. [2]); Senellart et al. [29]). 
It is pointed out in [30] that a quantum dot “emits a cascade of photons and 
a single photon is obtained only through spectral filtering of one emission 
line”.  High-finesse optical cavities incorporated in a measurement setup 
distort the temporally regular sequence of single photons because of 
multiple internal reflections. The emerging stream may contain groups of a 
few temporally overlapping photons, e.g. five, which may be unevenly split 
by a beam splitter and reduced in number through quantum Rayleigh 
spontaneous emission, so as to generate no coincidence for a zero delay-
time, in a Hanbury Brown and Twiss measurement.  Obviously, the beam 
splitter can precede the interference filter, in which case quantum Rayleigh 
stimulated emission can cause two photons from different radiation modes 
to interact with the same dipole so that one of the photons is coupled into 
the other radiation mode.  

A quantum dot placed in a high finesse micro-cavity of a few- 
wavelengths long and excited with a picosecond pulse, can emit a photon 
spontaneously and be re-excited within the duration of the same pulse. If 
the photon was reflected towards the quantum dot, stimulated emission may 
occur due to the small dimensions of the micro-cavity. This will result in 
two, or more, photons leaving the emitter simultaneously, as well as a 
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reduced lifetime of the excited state of the quantum dot, manifesting itself 
as a higher decay rate overshadowing the Purcell effect.  

The conventional description of a photon as an ensemble wave packet 
composed of Fourier components - which can only exist individually one at 
a time - leads to counterintuitive explanations. A physically meaningful 
description of a photon can be identified as a monochromatic Wigner-type 
spectral component which varies with time. Furthermore, any photon-dipole 
interactions occurring during the propagation is completely ignored in the 
professional literature, with the propagation phase being attached to the 
optical field operator, as the number states carry no optical field. 

Equally, in the professional literature, an interference term for a single-
photon is provided, mathematically, by creating a pathway-entangled 
quantum wave function for the photon’s propagation (Garrison and Chiao  
[3]; Walls [23]). Thus, a mysterious quantum effect appears as a result of an 
ensemble distribution, even though each individual measurement described 
by a pure quantum state, i.e., only one component of the ensemble, fails to 
generate that particular effect.  This contradiction leads to the question of 
whether or not the optical source emits only one photon. Additionally, rather 
puzzlingly, the operations of beam splitters and interference filters are 
modelled in terms of continuous waves, ignoring the temporally discrete 
nature of the stream of photons.  

The probability amplitude approach to photonic quantum interference 
leads to physical contradictions and counterintuitive conclusions which are 
held up as evidence of non-classical features. These are, however eliminated 
and physically explained by identifying the intrinsic field of photonic 
wavefronts, as explained throughout this book. 

1.2 An Outline of This Book 

Four major elements underpin the purpose of this book.  The first two 
elements are linked to the presence, in a homogeneous dielectric medium, 
of the quantum Rayleigh conversion of photons. As a result, one photon 
cannot propagate in a straight line and, initially, entangled photons are 
annihilated and replaced with independent photons.  The other two elements 
arise from employing a time-dependent pure quantum state to deliver the 
measured values of photonic degrees of freedom.  As a consequence, the 
quantization of the optical field is derived without any equivalence to 
quantum harmonic oscillators, and the photon is identified as an energy 
excitation characterised by a Wigner-type or mixed time-frequency 
representation of a monochromatic signal pulse.  
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With a view to identifying and probing a possible boundary between the 
quantum and classical regimes of optics, Chapter 2 of this book headlined 
“The Quantum Rayleigh Coupling of Optical Waves” describes the 
functional roles of the quantum Rayleigh emissions of photons and the 
resultant classical manifestations.   

The conventional interpretation assigns no optical field to photon 
number states which are the number eigenstates of the electromagnetic field. 
Any propagation effect is attached to the field operators and the absorption 
of a particle-like photon requires a transition between two consecutive 
number states. An optical field, known as a coherent state, is generated by 
an infinite superposition of number states under the condition of an 
ensemble eigenstate of the annihilation operator.  Nevertheless, a photonic 
wavefront interacts with electric dipoles instantaneously, and the need arises 
for an intrinsic and instantaneous optical field for any number of photons, 
regardless of the overall distribution of the optical beam. A physical solution 
to this problem is presented in Chapter 3 which identifies dynamic and 
coherent number states under the headline of “The Intrinsic Optical Field of 
Photons”    

“Photonic quantum noise reduction” can be implemented by means of 
parametric processes. Their scrutiny reveals common features such as phase 
dependent gain coefficients accompanied by a phase pulling effect as 
described in Chapter 4. These physical mechanisms can generate sub-
Poissonian distributions of photons through a saturation-like effect and 
using only integrated photonic circuits. 

In Chapter 5, “The Quantum Regime Operation of Dielectric Devices” 
is analysed in the light of evidence that emerged from the previous chapters, 
leading to different physical processes for various types of beam splitters, 
and to the temporal role that interferometric filters play in altering the 
original time sequence of a beam of single photons. As a consequence, 
individual measurements reveal the physical processes involved in creating 
interference patterns and are represented by pure quantum states which are 
dependent on the position and time of the measurements. The ensemble 
statistical distribution ensues from repeated measurements. 

“Photonic coincidences and correlations“ is the headline of Chapter 6 
which identifies temporal and spatial properties and aspects of an individual 
measurement, as well as photon-dipole interactions by means of the pure 
dynamic and coherent number states derived in Chapter 3. The use of pure, 
dynamic and coherent quantum states enables us to demystify the quantum 
nonlocality alleged to create coincidences between two separate 
photocurrents generated by mixing single photons across a beam splitter. 
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“Quantum Rayleigh Annihilation of Entangled Photons” of Chapter 7 
specifies the Hamiltonian of interaction between the electric dipoles in a 
dielectric medium and the optical field of photons propagating through that 
medium. As a result, one single photon is absorbed and spontaneously 
emitted in a random direction with a random state of polarisation. Yet, the 
remote correlations between these individual photons lead to the same 
correlation functions producing the same Bell-type outcomes as the 
absorbed entangled photons.  The statistical character of the “quantum 
nonlocality” outcomes is reinforced by the possibility of obtaining the same 
correlations with two separate sources placed in the vicinity of the 
respective photodetectors.  

In Chapter 8, recent experimental and theoretical developments are 
explained in the context of this textbook’s formalism, pointing to a blurred 
boundary between quantum and classical regimes, which is borne out by the 
analyses of the previous chapters. A paradigm shift in the interpretation of 
experimental outcomes of Quantum Optics is highly necessary, being based 
on the following physical processes and elements: 

1. The quantum Rayleigh spontaneous and stimulated emissions; 
2. The unavoidable parametric amplification of spontaneous emission, 

and the formation of groups of monochromatic photons in a high 
finesse cavity incorporating a quantum dot; 

3. Self-contained quantisation of the optical field without any harmonic 
oscillators leading to the dynamic and coherent number states; 

4. The intrinsic optical field of photons and their localised spatial 
distributions; 

5. The description of instantaneous and localised photon-dipole 
interactions by means of pure, dynamic and coherent number states; 

6. The quantum evolution and predictions being described by the 
Ehrenfest theorem, for any level of optical field excitation, to 
evaluate the expectation value of an operator in the context of a given 
set of pure wavefunctions. 

7. Identifying quantum phenomena at the level of single events and 
measurements with a space- and time-dependence, leading to 
quantum locality and realism.  

       
Overall, there are no quantum optic “miracles” once the physically 

present effects are correctly identified. 
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1.3 Remarks 

The smooth transition from the quantum regime of one or a few photons 
to the classical one of a large number of photons is due to the adequate 
choice of a wavefunction in the form of the pure, dynamic and coherent 
number states derived in Chapter 3. These states deliver the correct number 
of photons carried by a radiation mode, its field amplitude and phase 
quadratures. The equations of motion for the evolution of these variables 
are derived in Chapter 3 and applied in the following Chapters for any levels 
of mode excitation and photon-dipole interactions. 

Measurements of instantaneous wave fronts are described by dynamic 
and coherent number states which erase any quantum-classical boundary. 
While the intrinsic optical field of photons is critical for time-correlations 
at the level of one or a few photons, its importance could still be significant 
at high levels of photon numbers for a monochromatic group of photons as 
the optical field does not have a Fourier spectrum but is represented by a 
mixed time-frequency structure of the form S (ω, t). That is, the 
monochromatic spectral component exhibits a time-varying amplitude 
which is not related to an optical Fourier spectrum corresponding to time-
independent spectral components. 

Entangled photons are scattered by the quantum Rayleigh spontaneous 
emission but remote correlations of measured states of polarisations are still 
reproduced by single and independent photons.  

The quantum Rayleigh photon-dipole interaction may involve two 
photons colliding at a dipole, with a possible outcome being the transfer of 
the excitation from one radiation mode to the other. This process may take 
place inside the dielectric medium of an interference filter or beam splitter, 
thereby creating groups of monochromatic photons from initially 
independent photons bouncing back and forth inside a resonant cavity. This 
quantum Rayleigh coupling of photons may explain the Hong-Ou-Mandel 
dip as one photon carried by one radiation mode may be captured by another 
photon associated with a second radiation mode inside a cavity.  

Equally, a remote wavefunction state preparation through a detection of 
one of the entangled photons is practically impossible because the 
photodetector’s excitation is triggered by an energy level of its structure 
rather than a quadrature state of a quantum harmonic oscillator.     
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CHAPTER TWO 

THE QUANTUM RAYLEIGH COUPLING  
OF OPTICAL WAVES 

 
 
 
Most activities in Quantum Optics aim to generate and manipulate one 

photon per radiation mode. It is assumed that once generated, a single 
photon will propagate unimpeded through a dielectric medium despite 
encountering a large number of electric dipoles. However, as a result of 
photon-dipole interactions, the process of quantum Rayleigh scatterings or 
emissions comes into play involving the absorption of one photon and the 
spontaneous emission of another photon of the same energy or frequency. 
At the photodetection stage, the temporally discrete electronic signals are 
assumed to be triggered by one single photon despite the possibility of a few 
photons arriving simultaneously and triggering a similar signal.  

From a physical perspective, in dielectric devices such as optical fibres 
and integrated optic waveguides, beam splitters, interference filters, 
polarisation controllers, etc., a single photon cannot propagate in a straight 
line, thereby raising significant questions about the validity of the 
conventional model or interpretation of Quantum Optics experimental 
outcomes. 

Despite having been well documented before the 1980s, the quantum 
Rayleigh spontaneous and stimulate emissions were totally ignored in any 
explanation of optical mode coupling devices such as directional waveguide 
couplers. Two optical beams of the same frequency but different wave 
vectors propagating through a homogeneous dielectric medium can 
exchange photons with each other and/or undergo mutually induced phase 
shifts as a result of stimulated Rayleigh emission underpinning the coupling 
term of the Poynting theorem. Quadrature fields of the same optical wave 
exchange power as they propagate through a homogeneous and linear 
dielectric medium. Consequently, coupling of photons between two optical 
waveguides takes place in the shared cladding region. 

The widely used coupled-mode theory describing optical power 
coupling between two adjacent waveguides – introduced in the 1960s – 
relies on a perturbation of the cladding as a physical mechanism. However, 
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the gradient of the perturbed dielectric constant gives rise to a randomly 
scattering term in the comprehensive wave equation. This approach is 
inconsistent with directional coupling of photons and leads to physically 
impossible outcomes raising questions about the validity of its application 
as in recently published articles in the IEEE J. Quantum Electron., vol. 54, 
2018 (no. 1, article 6300206, and no. 2, article 6800207). 

A physically meaningful and correct identification of processes 
underpinning the description of propagation and coupling of photons in 
dielectric media is crucial in order to open up new practical ways of 
designing, fabricating, and operating integrated photonic devices. The 
quantum Rayleigh conversion of photons (QRCP), provides a meaningful 
explanation for the operation of the optical directional couplers, in contrast 
to the perturbation approach based on the fictional splitting of the dielectric 
constant ε (x, y, z) = εb + Δ ε into a uniform background εb and a perturbation 
Δ ε (x, y, z)  which is supposed to generate a coupling polarisation   Δ P  = 
Δ ε  E induced by an overlapping optical field.  No explanation has been 
provided, at least in this context, as to how the optical field can discriminate, 
physically, between the total local value of the optical susceptibility and the 
added perturbation to the refractive index, as opposed to the mathematical 
splitting of the permittivity.   

2.1 Coupled-Wave Interactions in a Homogeneous 
Dielectric Medium 

Optical parametric processes are well established for the second- and 
third- order susceptibilities (Shen [1]; Boyd [2]) and are characterized by 
conservation of the total energy of photons before and after the 
interactions.  The parametric gain displays a strong dependence on the 
relative phase between the pump and signal waves. A quantum feature of a 
parametric process of photon conversion is the amplification of 
spontaneously emitted photons to generate another optical wave (Vatarescu 
[3]; Inoue and Mukai [4-5]). These interactions can take place in both 
homogeneous and inhomogeneous dielectric media. 

 Similarly, an optically linear parametric (OLP) interaction consists of 
an electric dipole absorbing one photon and emitting one photon of the same 
frequency or energy, e.g. the elastic or Rayleigh scatterings (Marcuse [6]; 
Louisell [7]). The corresponding Hamiltonian of interaction and the 
Heisenberg equation of motion for the photon annihilation and creation 
operators are presented below in this Chapter.   

 This quantum process is localized, can take place in both homogeneous 
and inhomogeneous dielectric media, and is described macroscopically, or 
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classically, by means of the interaction term included in the Poynting 
theorem of the flow of energy. The resultant combination of in-quadrature 
waves is similar to the quadrature states of light (Mandel and Wolf [8], Ch. 
21) exchanging photons through parametric interactions. 

 The classical Rayleigh scattering which is attributed to local 
perturbations or fluctuations in the dielectric constant is linked to optical 
power losses in optical fibers.  

Quantum electronically, an oscillating electric dipole polarisation can be 
the source of spontaneous and stimulated emissions of photons [6-7]. 
Consequently, coupling of photons between two arbitrary waves interacting 
simultaneously with the same dielectric medium can take place with one 
beam of photons exciting the electric dipole polarisation and the other beam 
de-exciting the dipoles and gaining power through stimulated emission. The 
direction of coupling will depend on the relative phase between the waves. 
These physical processes require that Maxwell’s curl H equation of each 
wave be driven by the total electric dipole polarisation available in the 
medium. 

A practical device based on optical power coupling is the two-
waveguide optical directional coupler.  The conventional electromagnetic 
coupled- mode theory, e.g., (Huang [9]; Yishen,et al. [10]; Huang and  Mu 
[11]; Marcatili [12])  links the optical power coupling between two single-
mode waveguides to the perturbation of the permittivity of the optical 
waveguide cladding and the unperturbed evanescent modal fields that 
existed in the absence of the second waveguide. But the tail end of these 
fields no longer exists physically, having been disturbed by the introduction 
of the other waveguide. In reference [12], two sets of wave equations are 
mixed up to generate an “interaction” between the guided modes of the 
individual waveguides. One set of equations involves the normal, even and 
odd, modes of the coupler and the other set involves the modes of the 
individual waveguides. But no physical effect underpins this mathematical 
technique. Equally, the incoming guided mode of one waveguide is instantly 
converted, at the input to the coupler, into a superposition of the normal 
modes. But no explanation is provided as to how the propagation constant 
of the incoming photons is converted into the propagation constants of the 
normal modes. 

 Additionally, the approach based on the normal modes [9], [12] of the 
two-waveguide structure fails to explain how the incoming guided wave is 
converted instantly, at the input, into the orthogonal even and odd modes or 
why the same converting process does not occur between the two single 
mode waveguides in the cladding region they share. Equally, a group of 
photons cannot simultaneously cross from one waveguide into the other 
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while propagating in the same normal mode without converting the 
propagation constant.  Furthermore, the comprehensive wave equations 
incorporating the gradient of the dielectric constant would cause the tail end 
of the evanescent field of one waveguide to be scattered by the existence of 
the second waveguide. 

It is the effect of stimulated emission which is capable of causing 
photons to propagate with the same wave vector as the stimulating field [6-
7] instead of being spontaneously emitted or classically scattered. The gain 
providing stimulated emission is always the source of spontaneous 
emission. The spontaneous emission, which is a feature of the quantum 
wave-dipole interactions, is dependent on the optical susceptibility and the 
level of the optical pump and is distinct from the zero-point fluctuations of 
the electromagnetic field, as presented below in this Chapter. 

The phase-dependent parametric gain in optical fibers for the third-order 
susceptibility involving four-photon mixing interactions was analyzed [3] 
and demonstrated experimentally [4-5]. Conceptually, the following 
analysis adapts reference [3] to an optically linear medium. 

In this Chapter, a physically meaningful framework is developed – 
Section 2.1.1 – for the optically linear parametric (OLP) coupling of 
photons by making it consistent with the quantum effects of spontaneous 
and stimulated emissions associated with the linear parametric gain. The 
optical wave propagates forwards through stimulated emission as a result of 
the optimal phase-dependent gain.  This propagation involves a cascade of 
photonic conversions between quadrature waves in dielectric media, 
emerging from the Poynting theorem of the flow of energy. The refractive 
index results from local exchanges of energy between the optical field and 
the electric dipole polarisation.  

 In the case of an optical directional coupler – Section 2.1.2 – composed 
of two waveguides, the extinction of the wave launched into one waveguide 
gives rise to in-quadrature waves, one in each waveguide. The related 
coupling coefficients are determined from the total value of the local 
susceptibility at every point in space where any two waves overlap. No 
approximations are made in the derivation of results and no assumptions are 
needed. Previous experimental results are reassessed and physical aspects 
of optically linear parametric interactions (OLP) are outlined.  

2.1.1 Inter-quadrature Coupling through Optically  
Linear Parametric Interactions 

An optical collimated beam, or a travelling radiation mode, 
characterized by a field amplitude Eo, an initial phase φ, an angular 
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frequency ω, a wave vector k and a field polarisation unit 𝒖, is represented, 
at time t and distance r = (x, y, z) from origin, by the relations: 

 
𝑬 ሺ𝒌,𝜑ሻ ൌ  𝐸௢ ሺ𝑧ሻ 𝑓ሺ𝒓ሻ𝑒ି௜ఝ 𝑒௜ሺ ఠ ௧ ି  𝒌∙ 𝒓 ሻ 𝒖                                          ሺ2.1𝑎ሻ 

 
∬  𝑓ଶ ሺ𝑥,𝑦, 𝑧ሻ𝑑𝑥 𝑑𝑦 ൌ 1                                                                           ሺ2.1𝑏ሻ 

 
P ሺ𝑧ሻ ൌ 0.5 𝜀௢𝑛 𝑐 𝐸௢ଶ ሺ𝑧ሻ                                                                            ሺ2.1𝑐ሻ 

                              
The field distribution E  is given in terms of the peak amplitude Eo and the 
spatial distribution f (x, y, z) which has units of m -1 and is normalized across 
any (x, y)-plane in eq. (2.1b) so that P(z) represents the total average power 
crossing that surface.  Additionally, εo is the permittivity of free space, n is 
the refractive index of the medium, and c is the speed of light in vacuum.  

The dipole polarisations involved in the interaction are linear, i.e.     
P   = εo  E 

 where (x, y, z) is the susceptibility of the medium, and in terms of the 
photon frequency notation,  

P (ω) = εo  (ω ; ω)  E (ω) 
indicating a parametric dipole polarisation with one photon being absorbed 
and one photon being emitted, both having the same energy [1-2].      

The conventional approach in electromagnetic theory is to insert the 
total field Etot = E1 + E2 in the Maxwell equations and then select terms of 
identical indices on both sides. This approach, however, leads to two 
difficulties: 1) the need to single out one wave by using an orthogonality 
condition; and 2) it disregards the quantum process of two optical waves of 
the same frequency but different wave vectors interacting with each other 
in an optically linear dielectric medium (as described below). As any wave 
propagating through the dielectric medium will interact with every electric 
dipole polarisation P oscillating at the same frequency, the Maxwell curl H 
equation (Ampère’s law) needs to be driven by the total electric dipole 
polarisation or the macroscopic dipole polarisation, leading to an additional 
term:  

 

∇  ൈ𝑯ଵ ൌ  
𝜕 
𝜕𝑡

 ሺ𝑬ଵ ൅  𝑷ଵሻ ൅
𝜕 
𝜕𝑡

 ሺ𝑷ଶሻ                                                        ሺ2.2ሻ 
 
And a similar equation applies, with the indices interchanged, for the 
magnetic field H2.    

  As the optical beam crosses an (x, y) - plane interface from free-space 
into a dielectric material, the wave equations for its electric E1 and magnetic 
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H1 fields describing its propagation are derived from the Maxwell equations 
(Orfanidis [13, Ch. 14]) as 

 

∇ଶ𝑬𝟏 ൅ ሺ 𝑘௢𝑛ሻଶ 𝑬𝟏 ൌ  ∇ ൬𝑬𝟏  ∙  
∇𝜀
𝜀

 ൰ െ 𝜔ଶ 𝜇଴ 𝑷𝟐                                  ሺ2.3aሻ 
 

∇𝟐𝑯𝟏 ൅ ሺ 𝑘௢𝑛ሻଶ 𝑯𝟏 ൌ  െ𝑖 𝜔 ∇ 𝜀 ൈ 𝑬𝟏 െ  𝑖 𝜔 ∇ ൈ  𝑷𝟐                        ሺ2.3𝑏ሻ 
                                                                      

where ko =  ω / c ,  ε / εo = n 2 = 1 +is the dielectric constant, and the time 
derivative operator was replaced with  ∂ E, (or H) / ∂ t = i ω E, (or H). The 
polarisation density P1 was included on the left-hand side of eqs. (2.3) and 
a second source polarisation P2 was added in the curl H Maxwell equation 
in order to point out the various quantum operations that these polarisations 
carry out simultaneously. Equivalent equations apply to E2 with the indices 
interchanged.  

The initial direction of propagation of the refracted wave from the 
boundary between the free-space and the medium is determined from 
Snell’s law which is indicative of the conservation of wave momentum in 
the (x, y) - plane. The refracted wave is generated by a boundary layer of 
source terms incorporating the gradient ε and E1 in eqs. (2.3). Inside the 
medium, for ε ≠ 0, scattering of the optical wave takes place – see the right-
hand side of eqs. (2.3) – unless the field propagates along an optical 
waveguide, satisfying the boundary conditions for a guided mode.  The 
polarisation P2 can radiate into mode k1 and a mutual interaction emerges 
from the Poynting theorem. 

The differential, local and temporal, Poynting theorem [13, Ch. 1] of the 
optical flow of energy has the following form, with the asterisk denoting the 
complex conjugate of the variable: 

 
∇ ∙ 𝓟𝟏 ൌ  െ𝑖 𝜔 𝑫ଵ ∙ 𝑬ଵ 

∗ െ 𝑖 𝜔 𝑩ଵ ∙ 𝑯ଵ
∗ െ 𝑖 𝜔 𝑷ଶ ∙ 𝑬ଵ∗                             ሺ2.4ሻ 

     
where 𝓟ଵ ൌ  𝑬ଵ  ൈ   𝑯ଵ

∗
  is the Poynting vector parallel to the wave vector 

𝒌ଵ, and the vectors k , E and H are perpendicular to each other for the same 
radiation mode. We align k1 to be parallel to the z-axis in a bulk medium. 
The constitutive relations are: D = ε E and   B = µ H.   Making use of the 
identity 1/ c 2 = εo µo and, for a radiation field   E 2 =  µ H 2 , we obtain from 
the real part of eq. (2.4) the longitudinal rate of change of the optical 
intensity Ej

2 at a point (x, y, z), and from the entire complex equation, the 
rate of change of the field E(kj) = Ej exp (i φ) of eq.(2.1a) after setting                  
E j =  E o j  fj (x, y, z), with  j  = 1 or 2 : 
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𝑑 𝐸ଵଶ

𝑑𝑧 
ൌ  െ2 𝛾𝐸ଵ 𝐸ଶ 𝑠𝑖𝑛 𝜃ଶଵ                                                                           ሺ2.5𝑎ሻ 

 
𝑑 𝐸 ሺ𝒌ଵሻ
𝑑𝑧 

ൌ  െ𝑖 ൬𝑘଴ 𝑛 ൅   𝛾 
𝐸ଶ
𝐸ଵ
𝑐𝑜𝑠 𝜃ଶଵ൰  𝐸ଵ െ  𝛾𝐸ଶ 𝑠𝑖𝑛 𝜃ଶଵ                ሺ2.5𝑏ሻ 

 
𝑑 𝜃ଶଵ
𝑑𝑧 

ൌ ሺ 𝒌ଶ െ  𝒌ଵሻ ∙  𝒖௭ ൅  𝛾 ൬
𝐸ଵ
𝐸ଶ
െ  
𝐸ଶ
𝐸ଵ
൰ 𝑐𝑜𝑠 𝜃ଶଵ                                  ሺ2.5𝑐ሻ 

 
𝑑 
𝑑𝑧 

𝜑ଵ ൌ 𝛾
𝐸ଶ
𝐸ଵ

 𝑐𝑜𝑠 𝜃ଶଵ                                                                                   ሺ2.5𝑑ሻ 

 
𝜃ଶଵ ൌ ሺ 𝒌ଶ െ  𝒌ଵሻ 𝒛 ൅ 𝜑ଶ െ 𝜑ଵ                                                                  ሺ2.5𝑒ሻ  
   
where γ = ko  𝒖ଵ ∙  𝒖ଶ / (2 n) is the local coupling coefficient, 𝒌ଵ = ko n 𝒖௭ 
is the wavevector, with 𝒖௭  being a unit vector in the z-direction, and θ21 is 
the phase difference between the two fields. Similar equations to (2.5) hold 
for 𝐸ଶ with the indices interchanged. 

The refractive index n in eq. (2.5b) arises from the first two terms on the 
right-hand side of eq. (2.4) and is the result of local and instantaneous 
exchanges of energy between the optical field and the dielectric medium.  It 
corresponds to the self-coupling term with P1 from D1 = E1 + P1 replacing 
P2 in eq. (2.4) and setting θ = 0 in eqs. (2.5). The second term on the right-
hand side of eq. (2.5b) emerges from the last term of eq. (2.4), indicating a 
possible phase shift brought about by a mutual interaction between the 
optical waves E2 and E1.  

As indicated by the last term of eq. (2.4) or by eq. (2.5a), for E1 ≠ 0, 
coupling of power can take place in a homogeneous medium, i.e. where           
ε = 0. This effect is not identified by the wave equations (2.3). For a real 
value , the coupling term in eq. (2.4) conserves the number and energy of 
the photons involved in the process of stimulated emission. A non-vanishing 
stimulating field of a particular radiation mode k1 is obtained from 
spontaneous emission or scattering of the incoming wave, e.g. elastic or 
Rayleigh scatterings. An expression evaluating the amount of spontaneous 
emission is outlined at the end of this Chapter. 

The maximum parametric gain is found from eqs. (2.5) to occur in the 
same direction as that of the pump wave E2 , i.e.  k1 = k2 , and for θ = −π / 2. 
Groups of photons spontaneously emitted by P2 and identified as E1 will 
have their arbitrary phase changed rapidly by the interaction as pointed out 
by eq. (2.5c), and the relative phase will become locked at  θ = −π / 2. As a 
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result, an optical field E1 will appear and the outgoing field will consist of 
an amplitude modulation, taking the form: 

 
𝐸௢௨௧ ൌ ሺ 𝐸ଶ ൅ 𝑖 𝐸ଵሻ 𝑒௜ 

ሺ ఠ ௧ି𝒌 ∙ 𝒓 ሻ ൌ  
 

                              ൌ  𝐸௢ሾ 𝑐𝑜𝑠 ሺγ zሻ ൅  𝑖 𝑠𝑖𝑛 ሺγ zሻሿ 𝑒௜ ሺ ఠ ௧ି𝒌 ∙ 𝒓 ሻ              ሺ2.6𝑎ሻ 
 

 
𝑅𝑒𝐸௢௨௧ ൌ 𝐸௢ ሾ c𝑜𝑠  ሺγ zሻ  𝑐𝑜𝑠ሺ𝜔 𝑡 െ 𝒌 ∙ 𝒓ሻ  െ 
 
                                    െ 𝑠𝑖𝑛 ሺγ zሻ  𝑠𝑖𝑛  ሺ𝜔 𝑡 െ 𝒌 ∙ 𝒓ሻሿ                                ሺ2.6𝑏ሻ 
  
which has the appearance of a phase modulation. The real part of Eout reveals 
two quadrature waves [8] exchanging power as they propagate alongside 
each other in the z- direction, i.e. k r  kz  z . Each quadrature field rotates 
in the (x, y) plane with its amplitude varying periodically. 

2.1.2 The operation of optical waveguide directional couplers 

Bearing in mind the physical elements of the quantum Rayleigh 
emissions as outlined in Section 2.1.1 above, and relying on the quadrature 
states derived in the previous Section, we turn our attention to the case of 
an optical directional coupler composed of two single-mode waveguides. 
After identifying the waveguides by the letters a and b, we define the 
normalized fields e = E / Eo  ( where  Eo

2 corresponds to the normalizing 
input power ) as  

 
e a ൌ ൫𝑝௔ 𝑒

ି௜ఝ೛ೌ ൅  𝑞௔ 𝑒
ି௜ఝ೜ೌ  ൯ 𝑓௔ ሺ𝒓ሻ 𝑒௜ ሺ ఠ ௧ି𝒌ೌ ∙ 𝒓 ሻ                              ሺ2.7𝑎ሻ                        

 
e b  ൌ ൫𝑝௕ 𝑒

ି௜ఝ೛್ ൅  𝑞௕ 𝑒
ି௜ఝ೜್  ൯ 𝑓௕ ሺ𝒓ሻ 𝑒௜ ሺ ఠ ௧ି𝒌್ ∙ 𝒓 ሻ                              ሺ2.7𝑏ሻ                        

                                                                                         
where the subscripts p and q correspond, respectively, to the initial 
quadrature phases of  φ =  0 and π /2, and amplitudes  𝑝௔ ሺ௕ሻ and 𝑞௔ ሺ௕ሻ. 

A mathematical solution to eqs. (2.5) can be derived by means of elliptic 
functions for the total field phasors of ea and eb as defined in eqs. (2.1) but 
its complexity obscures physical features of the optically linear parametric 
interactions. Such characteristics are outlined in the remainder of this 
Section. 

As the waves propagate along a directional coupler – illustrated in cross-
section in Fig. 2.1 – changes in the evanescent fields spread across the entire 
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modal field through the boundary conditions. For an input launched into one 
of the waveguides, the generated in-quadrature wave appears in both 
waveguides – see Fig. 2.2 – from amplified spontaneously emitted photons 
captured by each modal field. The evanescent fields of the two waveguides 
overlap in the cladding region they share – see Fig. 2.1 - bringing about 
coupling interactions between the two modal fields through the quantum 
Rayleigh field-dipole effects.  

The tail of the evanescent field of either waveguide is scattered by the 
gradient of the local dielectric constant created by the core-cladding 
boundary of the other waveguide, as indicated by the source terms of the 
wave equations (2.3) containing ε. This scattering will lead to a loss factor 
being added to eqs. (2.4) and (2.5) and the scattered photons could become 
seed photons to be amplified in the other waveguide.   

 

                                 n3        n1   n2 

 
Fig. 2.1 The Rayleigh induced coupling of photons takes place in the cladding            

between the two waveguides with refractive index n 3     
 

  p a                                  qa 
 

                                        q b                                                              p b  
Fig. 2.2 A diagram of the longitudinal stages of the comprehensive coupling effects 

between the two waveguides of a directional coupler. 
 
These effects are illustrated in (Marcatili et al. [14, Fig. 1(c)]; Syms and 

Peall [15]) where the measured optical power is coupled into the output 
waveguide through the cladding region, predominantly from the wave 
emerging from the terminated input waveguide. A small fraction of power 
associated with the evanescent tail of the input guided wave may directly 
excite the outgoing modal core field. These interactions are also present in 
Fig. 1(a) and (b) of [14] where two coupling stages can be identified: the 
conventional two-waveguide coupler and the coupling between the mode of 
the waveguide continuing to the output and the optical field propagating 
alongside the waveguide and originating from the terminated waveguide. 

The exchange of power between any two modal fields is evaluated from 
eq. (2.4) integrated over the (x, y) - plane. Eqs. (2.5) are modified by 
substituting P1/2 from eq. (2.1c) for the fields E, by replacing k with the 
propagation constant  𝛽 ൌ 𝒌 ∙  𝒖𝒛 and γ  with this coupling coefficient: 


