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PREFACE 
 
 
 

During the eighties and nineties, many statistical/thermodynamical 
models emerged to describe the nucleon structure functions and the energy 
distribution of quarks. Most of these models describe the compound 
quarks and gluons inside the nucleon as a Fermi-Dirac or Bose-Einstein 
gas, confined in an MIT bag with continuous energy levels. These models 
obtained some relevant features of the nucleons, like the asymmetries 
between  and , the spin-dependent structure functions, and the ratio 

, for instance. 
In this work, we reviewed the hadronic models. They use 

statistical/thermodynamic features to describe the hadrons’ structure 
functions, polarized and unpolarized. The revised works were described, 
as far as possible, in chronological order. We believe this book is 
convenient for researchers and students because it put together several 
studies about the thermodynamic features of nucleons and their structure 
function. Because this subject is yet to undergo research, there is no 
unique approach or model that is in complete accord. 

I wish to thank Professor Lauro Tomio for his criticism; Professor 
Tobias Frederico for discussions, and mainly Professor Airton Deppman 
for the discussion, and for allowing me to use some files in this manuscript. 

 
 

 
 
 
 
 
 
 
 
 
 
 





CHAPTER 1 

INTRODUCTION 
 
 
 
QCD (Quantum Chromodynamics) is the theory of strong interaction 

in the standard model. This theory describes the short-range interactions 
among the subnuclear components, the quarks. The gluons mediate the 
interactions and the main difference with the QED (Quantum 
Electrodynamics) is the use of a Lagrangian, where gluons may interact 
among them (in opposition to the photons from QED, that don’t interact). 
Although this theory describes many relevant aspects, some open 
questions have been studied with effective alternative models, respecting 
the basic principles of QCD. One of the questions that concerns the 
structure-function is the distribution of energy of quarks inside the 
nucleon. We show some reasons to use effective models in the following:  

The perturbative theories (short distances) describe the interactions 
inside the nucleon (strong interactions between quarks and gluons). 
However, including more diagrams and details makes this method too 
complex. We need to include many loopings and renormalizations, which 
is almost impracticable. In principle, this is already a 3-body problem, 
without an analytical solution, even in classical cases. On the other hand, 
the lattice quantum field theory also demands great computational efforts. 

Some effective models do not include Fermi-Dirac and Bose-Einstein 
statistics as relevant physical effect, such as, the valon model and 
perturbative chiral. The parameters fit according to the experimental data 
available. Field and Feynman6 pointed out that including the Fermi-Dirac 
statistics is relevant to describing the sea asymmetry in the nucleon , 
which explains the violation of the Gottfried sum rule7. Another very 
important characteristic is the confining and the asymptotic freedom, 
predicted by QCD, considered in the models through the effective 
potential. The effective temperature for each model is also relevant, and it 
is interesting to compare the obtained temperature of the different models. 

The Deep Inelastic scattering (DIS) process between leptons and 
nucleons has been an indispensable tool in describing the hadron structure. 
Interest in describing the partonic distribution and the different phenomena 
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involved, such as the sea asymmetry, strangeness in the nucleon, EMC 
(Euro Muon Collaboration) effect, and the ratio  has generated 
many theoretical models in recent decades. 

These models have the appeal of simplicity and are physically well-
founded. The phenomenology to explain such models is in the following 
way: even though valence quarks must lie in discrete energy levels, they 
can emit gluons that may split in a quark-antiquark pair, with continuous 
energy. 

In the framework of the MIT bag model5, an estimate for the structure-
function was presented by Jaffe8. As it can be speculated, with partons 
bound in the wee volume of the nucleon, we have not only the dynamic 
but also the statistical properties; for example, the Pauli exclusion 
principle should have a relevant effect on PDF (Particle Distribution 
Function). Most statistical/thermodynamic models proposed in the eighties 
and nineties consider the confinement given by the MIT bag model, and 
treat the quark/gluons inside de nucleon as a Fermi-Dirac and Bose-
Einstein gas of free particles with a continuous spectrum). 

In this book, we may check the main features of the statistical model. 
In the next chapters, we describe the statistical models, clarifying focus, 
motivation, and results. The following papers are studied in chronological 
order, as follows:  

1. Angelini and Pazzi’s works (1982-1983)9 used a statistical model 
with a Boltzmann distribution and scaling violation.  

2. The Cleymans-Thews’ model (1988)10 started with the transition 
rate of scattering in the framework of the temperature-dependent 
field theory and explored a statistical way to generate compatible 
pdfs.  

3. The Mac and Ugaz’s work (1989)11 incorporated first-order QCD 
corrections, introduced by Altarelli and Parisi12.  

4. Bickerstaff and Londergan (1990)15 interpreted the finite-
temperature property to mimic some volume-dependent effect due 
to confining. They also discussed the theoretical validity of the 
ideal gas assumption in detail.  

5. The Ganesamurthy, Devanathan, Rajasekaran and Karthiyaini 
(1994,1996)16,17,18 proposed a thermodynamical bag model, which 
evolves as a function of . The structure-function they got is 
practicable for  and has the correct asymptotic behavior for 

; in addition, they parametrized on  and exhibited the 
scaling behavior.  
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6. Soffer-Bourrely-Bucella have been working with parametrization 
based on the Fermi-Dirac and Bose-Einstein distributions (1995-
today)19,20,22,23,21. We reviewed the polarized case (1995-today).  

7. Bhalerao and Bhalerao et al. (1996, 2000)25,26 introduced finite size 
corrections to the statistical model and got more accurate results 
for unpolarized and polarized structure functions.  

8. Trevisan, Tomio, Mirez, Frederico (1999 and 2008)27,28 presented a 
statistical model based on the Dirac equation with a linear 
confining potential. They also obtained the strangeness in the 
nucleon.  

9. Trevisan and Mirez presented “A very simple statistical model to 
quarks asymmetry”267 that considers the meson-hadron fluctuations 
as energy states with some probability varying according to the 
temperature.  

10. Zhang, Shao and Ma (2009)29 intended to present a statistical 
model using few parameters to fit the data. They also studied the 
EMC79 effect with the statistical model.  

11. Deppman33, and Deppman et al. 34, presented a relation between the 
fractal structure of the nucleons and Tsallis statistic (nonextensivity).  

12. Trevisan and Mirez35 presented a statistical model that considered 
the nonextensivity introduced by Tsallis112,113.  

13. Trevisan, Mirez, and Silva presented a model with different sizes 
for quarks and gluons to fix the low moment carried by gluons in 
the previous statistical model.37  

14. Trevisan and Mirez gave a version of the nonextensive statistical 
model applied to the EMC effect.  

15. On the framework of the valon model38,30,39, Mirjalili and collaborators 
studied the statistical approach40,41.  

 
Interestingly, despite the fact that the models basically start from the 

same physical description, there are some remarkable variations such as 
scale variance, the dependence of the temperature with the Bjorken 
variable , and different ways of taking into account the polarization.  

 
 
 
 
 





PART I 

 REVIEW ON PARTONS MODEL 

 



CHAPTER 2 

PARTONS MODEL AND THE NUCLEON’S 
STRUCTURE FUNCTION 

 
 
 

2.1 Introduction 

This chapter is a brief introduction to the main concepts of QCD quark 
models31,32, which we will use in the following chapters. 

For the process  , we initially describe the kinematics for 
the proton model. After, we do the elastic and inelastic electron-proton 
scattering process. Finally, we study the momentum distribution of the 
Bjorken scale. 

2.2 Process   

The Feynman’s diagram for scattering  is illustrated in Fig. 
(2.1). Applying Feynman’s rules, we calculate the invariant amplitude  
 

                      (2.1) 
 
From Fig. (2.1), we have the quad-moment . We can 

calculate the non-polarized shock section by simply squaring the 
amplitude and summing the spins (we sum the spins separately for each 
electron and muon), in the form  
 

      (2.2) 
 
where the tensor for the electron vertex is  
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  (2.3) 
 
The same is true for the tensor . 
 
 

 
 

Figure 2.1: Feynman diagram for electron-muon scattering. 
 
Applying properties of the traces, we have from Fig. (2.1)  

 

       (2.4) 
where  is the electron mass. 

For muon, we have the same procedure to do  
 

  (2.5) 
 
where  is the muon mass. 

Now by multiplying both terms , we get  
 

 
(2.6) 

 
At the “relativistic limit” we assume that , so squared 

amplitude will be reduced to the following expression  
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  (2.7) 
 
The Mandelstam variables at the relativistic limit are  
 

 (2.8) 
 

   (2.9) 
 

   (2.10) 
 
therefore the spreading amplitude takes the final form  
 

     (2.11) 

2.2.1 Process e   e  in the lab frame  

For the scattering form  
 

 
 
considering the electron mass  and the muon mass , we have the 
amplitude  
 

 (2.12) 
 
The scattering process in the laboratory reference frame is illustrated in 

Fig. (2.2) 
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Figure 2.2: Process , in the lab frame. 
 

The scattering process in the laboratory reference frame is illustrated in 
Fig. (2.2). So we have , ,  and 

, if we replace in Eq. (2.12), we get  
 

 (2.13) 
 
If we consider that the muon is initially at rest, that is , then 

we have  
  

  
(2.14) 

 
and since the kinematic relations  
 

  (2.15) 
 
then, for the amplitude we have  
 

  (2.16) 
 
and we squared , where ,  so 
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that results  
 

 
 
Having these relations, and using the formula that relates amplitude 

and shock sections (see Eq. (4.27) from Ref. 31), we obtain  
 

   (2.17) 
 
By performing the integration into the Dirac delta functions, we have  

 

   (2.18) 
 
Inserting Eq. (2.16) into Eq. (2.17) and using the delta integration of 

Eq. (2.18), we get  
 

 
(2.19) 

 
Performing integration over  and replacing  with 

, we get the differential shock section in the lab frame  
 

 (2.20) 
where . 
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2.3 Electron-Proton scattering 

2.3.1 Elastic Scattering 

 
 

Figure 2.3: Elastic scattering process electron-proton:  
 

The scattering amplitude for the Fig. (2.3) is given by the following 
expression:  

 

     (2.21) 
 
where the transition currents of the electron (the electron mates with the 
photon as a Dirac particle) and the proton (not a Dirac particle because it 
has an internal structure) are respectively  
 

    (2.22) 
 

   (2.23) 
 
As we do not know the structure of the proton, we will use the most 

general combination of Dirac arrays between square brackets. Matrix 
terms like  are discarded due to parity conservation because of the  
anti-commutation matrix. The  object (parameterized the coupling of 
the proton with the photon) has the general form expressed as 

 

   (2.24) 
 
where  and  are two independent form factors and  is the anomalous 
magnetic moment. Using Eq. (2.24) to calculate the differential shock 
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section of the electron-proton elastic scattering we obtain the 
Rosembluth31 formula. 
 

 

    (2.25) 
 
The form factors  and  (anomalous magnetic moment coupling) 

represent the fact that the proton is not an elementary particle and these 
factors are determined experimentally by measuring  as a function 
of  and . These form factors are energy-dependent and 

. In Eq. (2.25) the value of “ " is the 
anomalous magnetic moment of the proton. If we increase the energy and 
the proton is broken, then we can study its internal structure. 

   If the proton were a point-like particle (without structure) like the 
electron (or muon), having a charge “  ", and magnetic moment of Dirac 
“ ", the result for the scattering  would also be valid for the 
proton case, exchanging the mass of muon for the proton. So in Eq. (2.25), 
we have  and  for every . So we get Eq. (2.20)  

 

 
(2.26) 

 
where the factor  
 

    (2.27) 
 
originates from the retreat of the target. 

2.3.2 Inelastic scattering 

For high energy scattering where , the proton becomes a 
complicated multi-particle system, illustrated by Fig. (2.4) 
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Figure 2.4: Diagram for the scattering  
 

The differential shock section is of the form  
 

      (2.28) 
 
is described more generally  
 

      (2.29) 
 
where  represents the leptonic tensor. The most general form of the 
hadronic tensor  should be constructed with  and the independent 
moments  and  . 

So we have for the hadronic tensor  
 

  (2.30) 
 
we disregard the antisymmetric contributions to  because they 
disappear after we insert them into Eq. (2.29) because the  tensor is 
symmetrical.  is reserved for a parity-violating structure when a beam 
of neutrinos interacts rather than electrons so that the virtual photon is 
replaced by a weak boson. 

The conservation of current  (ou  in the space of 
the moments) implies that   
 

 (2.31) 
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by grouping terms, we observe  
 

 
 
So only two of the four inelastic structure functions are independent, 

so  
 

 
(2.32) 

 
so in inelastic scattering we have 02 (two) important variables  
 

      (2.33) 
 
The invariant mass  of the final hadronic system is related to  and 

 per  
 

 
 
and we have the dimensionless variables  
 

   (2.34) 
 
so the kinematic region is  and . Also consider that in 
the resting frame of the target proton, we have  
 

 
 
where  and  are the start and end energy of the electron, respectively. 
The shock section for  is similar to the , 
replacing  with , so using the expression  
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       (2.35) 
 
and considering that  (current conservation), we have  
 

 (2.36) 
 

Using the kinematic relations Eq. (2.15), we obtain in the laboratory 
reference 
 

 
(2.37) 

 
including the flow factor and the phase space factor, we have the 
differential shock section even for the electron-proton inelastic scattering 

  
 

(2.38) 
 
The extra factor  arises by normalization of . Inserting Eq. 

(2.37) into Eq. (2.38), we finally get  
 

 
(2.39) 

 
where the mass of the electron  is neglected. 

   The test for the proton to be composed of point particles is the 
behavior of the differential shock section, within the process  
the differential shock section is given as follows  

 

 
(2.40) 

 



Chapter 2 
 

16

If we compare the result with the elastic shock section with a point 
proton, in the scattering of high-energy virtual photons , we can 
write 
 

 (2.41) 
 
So the proton structure function is  

 

   (2.42) 
 

     (2.43) 
 

 
 

Figure 2.5: Illustration of the Eq. (2.43)  

2.4 Bjorken scale and the Partons model 

When entering a positive variable , where  is the mass of 
the quark, then at  in DIS, electron-proton scattering is an elastic 
scattering of an electron by a free quark within the proton. 

Using the delta identity of Dirac  in Eq. (2.43) we were 
able to rearrange the terms to introduce the dimensionless structure 

 

   (2.44) 
 

    (2.45) 
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These functions are just functions expressed in terms of  and 
not  and , so if the virtual photons in  solve the point 
constituents within the proton, we can get the following expressions for 
point particles  
 

    (2.46) 
 

    (2.47) 
 
where  
 

    (2.48) 
 
Note that in Eq. (2.48) there is no scaling. The proton mass  is used, 

instead of the quark mass , to define the dimensionless variable . The 
presence of free quarks is signaled by the fact that the inelastic structure 
function is independent of  to a fixed  value in Eq. (2.48). 

In the parton model, a connection is created between fundamental 
particles (quarks) and hadrons. Basically, in the parton model, we have 

 
• The proton is made up of a group of partons.  
• In deep inelastic scattering, the photon interacts with a parton.  
• Partons are elementary particles whose interactions we can 

calculate.  
• These partons are identified as quarks and gluons. The patron has 

negligible or null transverse momentum.  
 
So the proton is made up of other particles, the partons; these are 

elemental. Several types of point protons make up the proton. They can 
carry different fractions  of the energy and total momentum of the proton. 
We illustrate the momentum distribution of the pattern in Figure (2.7). 
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Figure 2.6: The proton consists of point quarks. 
 

The distribution describes the probability of a constituent  carrying a 
fraction  of the momentum of the proton . So the sum of the fractions  
is equal to 1  
 

     (2.49) 
 
where the sum over  denotes summation over all partons (quarks and 
gluons included). 
 

 
 

Figure 2.7: Distribution of Momentum of Partons. 
 

 
 
Both the proton and proton move along the z axis, (i.e. transverse 

moment ) with longitudinal momentum  and . As for dot-
type protons, we have  
 

  (2.50) 
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so the momentum of a patron is: . So for an electron colliding 
with a fraction with momentum  and unit charge , from Eq. (2.45) and 
Eq. (2.47) we have the functions of dimensionless structure  
 

  (2.51) 
 

   (2.52) 
 
where we use the kinematics of Eq. (2.51) and  is the dimensionless 
variable defined in Eq. (2.48). The  structure function is for a proton in 
Eq. (2.51), now we add over all the proton constituent protons, Fig. (2.6) 
and Fig. (2.7) so we get  
 

    (2.53) 
 

      (2.54) 
 
It is conventional to redefine  as  and express the result 

in terms of . When compared to Eq. (2.47), Eq. (2.53) takes the same 
expression when . So to sum all the partons,  
 

   (2.55) 
  

  (2.56) 
 
being  
 

      (2.57) 
 
The moment fraction is identical to the  kinematic variable of the 

virtual photon, so the virtual photon must have exactly the value of the  
variable to be absorbed by a parton with a moment fraction  . Due to the 
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“delta  function” in Eq. (2.53) we can equate these two distinct physical 
quantities. 

Thus, the structure function for a parton with momentum   
 

  (2.58) 
 

   (2.59) 
 
where  the approach  is used. 

We can add the result of a proton over all the protons, in this case for 
the proton  
 

 (2.60) 
 

 (2.61) 
 
These structure functions for  spinning partons are related by the 

Callan - Gross Relation,1 where  
 

   (2.62) 
 
The inelastic structure functions  from Eq. (2.55) and Eq. (2.56) are 

functions of the  variable only. They are independent from  to a fixed 
. So, it is said that they satisfy the Bjorken scale. 

In short we have 
 
In deep elastic scattering, we have  
• The proton is characterized by form factors that are independent of 

the energy scale. .  

 
1 This relationship is recurring from the details of the disturbing shock section, 
confirming between the patron the existence of Dirac particles, spin  
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The parton model  
• Reproduces Bjorken’s scaling behavior.  
• Is a model for the proton structure with structural factors (which 

are measured experimentally) interpreted as distribution functions 
of quarks and gluons within the proton, which are independent of 
the energy scale.  

• Predicts the Callan-Gross relationship:   
• Considers the partons as free particles inside the hadron (inelastic 

structure function is independent of  for a value of )  
In QCD, some important features  
• Asymptotic freedom (quarks are treated as free particles inside 

high energy hadrons).  
• Confinement, not observing free quarks and gluons, which 

guarantees the existence of colorless hadrons.  
• Gauge theory (predicts a massless particle which carries the strong 

interaction: the gluon). Therefore, QCD fits perfectly into the 
standard model.  

2.4.1 Distribution function with partons 

Measurements of the large inelastic structure functions for  reveal the 
hadron structure to quarks. The sum in Eq. (2.55) is overall protons in the 
proton, so  
 

 

     (2.63) 
 
where  e  are the probability distributions of the “ ” quarks and 
antiquarks in the proton and neglect the presence of “ " quark charm and 
heavier quarks. 

The inelastic structure function for neutrons is performed 
experimentally by scattering electrons by a deuterium target.  
 

       (2.64) 
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and since proton and neutron are members of an isospin doublet, their 
quarks are related by  
 

     (2.65) 
 

     (2.66) 
 

    (2.67) 
 
The proton consists of valence quarks with the combination 

, accompanied by quark-antiquark pairs known as “sea 
quarks”. Fig. (2.8) illustrates this process in detail. 

If we assume that the sea is symmetrical in the flavors of the  
quarks, then for each  quark we have a valence quark  and a sea 
antiquark  listed as follows.  
 

  (2.68) 
 
therefore, we have  
 

   (2.69) 
 

   (2.70) 
 
where  is the distribution of the sea common to all flavors, if we 
assume that sea is symmetrical. So we have  has 06 antiquarks from 
the sea. 
 

 
 

Figure 2.8: Proton with valence quarks , gluons and sea quark-antiquark pairs 
  


