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FOREWORD 
 

 

The history of understanding of the phenomenon of synchronization 

begins in 1665, with the famous experiment of H. Huygens with a 

clock hanging on one beam. Observing the course of a wall clock 

located on a beam, Huygens noticed an extraordinary coherence of 

the rhythms of their movement, whereas without a common beam, 

the coherence of the clock's course disappeared. He made the cor-

rect conclusion that the reason for this was the beam, which played 

the role of a coupling, leading to the interaction of objects and, as a 

consequence, to the coherence of their movements. Unfortunately, 

it is not known whether the genius scientist and inventor (among his 

inventions, there is a pendulum clock with a trigger, invented in 

1657) realized the global nature of the phenomenon that he ob-

served and its determining role in animate and inanimate nature. 

The next benchmark case in the history of synchronisation is the 

capture of organ tube vibrations by vibrations of the tuning fork 

(forced synchronisation), which was observed by D. Raleigh 

(1878), who later constructed the Theory of Sound (1878).  

The systematic character of experimental studies of synchronization 

is acquired only at the beginning of the 20th century resulting from 
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the origination and rapid development of new areas of engineering 

knowledge: radio engineering and radiolocation. 

The first experimental work on synchronization of triode generators 

is the work of E. V. Appleton. In 1922, studying the influence of 

periodic electromotive force (EMF) on the lamp generator, Apple-

ton found forced synchronization of oscillations of this generator. 

Since then, radio generators have been an extremely convenient 

tool for experimental research demonstrating not only the phenom-

enon of synchronization, but also general properties of dynamic 

systems.  

The lack of an adequate mathematical apparatus at the beginning of 

the 20th century did not allow generalizing numerous experimental 

results in the form of mathematical models, analysing them and ex-

plaining them analytically. Therefore, the essence of synchroniza-

tion as a purely nonlinear phenomenon has long been considered 

terra incognita. 

With regard to synchronization (and nonlinear physics in general), a 

revolutionary event was a creation of the qualitative theory of A. 

Poincaré's differential equations [1] and A. Lyapunov's theory of 

stability of motion [2]. The combination of these theories served as 

a basis for the development of all modern nonlinear dynamics, in-

cluding the theory of synchronization. 
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Analytical studies of synchronization of periodic oscillations begin 

with pioneering papers of Van der Pol (1927) [3], A. A. Andronov 

and A. A. Vitt (1930) [4]. Van der Pol formulated the problem of 

forced synchronization of a local oscillator in the form of a non-

autonomous nonlinear differential equation of the second order, 

which is nowadays known as the Van der Pol oscillator and became 

one of the canonical equations of nonlinear dynamics. Van der Pol 

also proposed an original method to investigate the equation, moti-

vating his actions (averaging) only by physical considerations of the 

different orders of magnitude (by a small parameter) of changes of 

the variables: amplitude and phase of oscillations. For a long time, 

this method and its results were considered at best as “approximate” 

and “engineering”. These were considered as such by A. A. An-

dronov and A. A. Vitt, who proposed a solution to the problem 

based on the Poincaré method, in a more general statement, with a 

mathematically rigorous justification of all “details” of the study. It 

was then surprising that in the particular case of cubic nonlinearity 

(Van der Pol's nonlinearity), the results of these two studies coin-

cided. Nowadays, when the meaning of Van der Pol's intuitive av-

eraging procedures has long been known, one can only be surprised 

by its ingenious discovery. 

Next in terms of importance and chronology are the works of L. I. 

Mandelshtam and N. D. Papaleksi [5], K. F. Teodorchik [6, 7], W. 

V. Lyon and H. E. Edgerton [8], L. D. Goldstein [9] and other au-

thors. An exceptional contribution to the theory of synchronization 
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of various systems was made by A. A. Andronov's colleagues and 

students: A. A. Vitt, S. E. Khaikin, N. A. Zheleztsov [10, 11], A. G. 

Mayer [12], N. N. Bautin, E. A. Leontovich [13], Yu. I. Neimark 

[14], N. V. Butenin, N. A. Fufaev [15] and subsequent generations 

of this research school. 

A defining event in the development of the theory of dynamical 

systems in general and synchronization theory in particular, was the 

discovery of Н. M. Krylov and N. N. Bogolyubov of the method of 

averaging (1934) [16]. As a set of theorems and algorithms, this 

method did not only justify the procedure of Van der Pol (a side 

result), but also initiated a whole direction of research of invariant 

manifolds of dynamical systems directly related to the theory of 

synchronization [17–20]. 

The exceptional efficiency of the method of the averaging, as well 

as its relation to the method of point mappings, together with the 

simplicity of the interpretation of results, have led to the massive 

appearance of works on various aspects of synchronization of peri-

odic oscillations. Significant contributions to the theory of synchro-

nization of systems with direct couplings, as well as its practical 

application were made by the works of N. N. Moiseev [21], I. I. 

Blekhman [22, 23], R. V. Khokhlov [24], G. M. Utkin [25], P. S. 

Landa [26], L. V. Postnikova and V. I. Korolev [27], V. V. Migulin 

[28], I. I. Minakova [29], Yu. M. Romanovsky [30], M.F. Di-

mentberg [31], L. Cesari [32], N. Levinson [33] and many others. 
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As for the directly related to the synchronization analytical studies 

of nonlocal bifurcations, the destruction of invariant tori and the 

formation on this base of chaotic attractors, the works of the Nizhny 

Novgorod mathematical school of L. P. Shilnikov [34–36] are fun-

damental in this area. 

The above refers to the case of synchronization of directly coupled 

dynamical systems. 

Simultaneously with the beginning of research on synchronization 

of directly coupled oscillators (generators) in the field of radio 

communication, a new direction emerged: systems for automatic 

frequency tuning of one source (tuneable generator) to the frequen-

cy of another (“reference”) oscillator: the automatic frequency con-

trol system (AFC); and the same sense of the phase-locked loop 

system (PLL). Together they are called the systems of phase syn-

chronization (SPS). 

The first phase-locked loop system was proposed by B.P. Terent'ev 

in 1930 [37], while the theory of these systems originates from the 

works of de Belsiz [38], F. Tricomi [39], and C. Travis [40]. 

At present, none of the means of television and radio communica-

tion can do without systems of phase synchronization, as well as 

none of the means of remote control of complex technical systems. 

The modern state of the art of systems of phase synchronization 

technology is due to the work of a large team of international re-
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searchers: the list of references is huge and most of it can be found 

in monographs [41–44].  

For the theory of oscillations as a scientific discipline that studies 

the dynamics of mathematical models common to various areas of 

natural science, it is important that PSS models are simultaneously 

mathematical models of a large number of physical systems. These 

models will be the subject of study in this monograph: dynamical 

systems of phase or, in other words, pendulum type 

( )( ) ( ) ( )1 21 , , , , ,i i i i i i i i i j jI f f Fϕ + λ + ϕ ϕ + ϕ = γ + ϕ ϕ ψ x x   
 

( ), , , ,= + µ ψx Ax X x  ϕ ϕ                                                               (F1) 

0.ψ = ω  

Here , 1, ,i j n=  ,i Sϕ ∈  ,Sψ∈  ;mR∈x  I, ,i iλ γ  are the constant 

parameters, A  is ( )m m×  constant stable Hurwitz matrix; ,iF X  

are the functions of couplings. All functions entering (F1) are peri-

odic according to the phase variables. The system is defined in a 

toroidal phase space ( ) 1, , , .n n mG T R+ +ψ = ×xϕ ϕ  

Among the physical systems that have mathematical models that 

belong to the (F1) class, there are autonomous and non-autonomous 

systems of coupled superconducting Josephson junctions [45, 46]; 

systems of coupled Froude pendulums [47]; coupled electrical ma-
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chines [13, 48, 49]; vibrational mechanisms for various purposes 

[22, 50–52]; unbalanced shafts that are flexible to bending and tor-

sion [50, 53, 54] and many other systems. We call equations of the 

form (F1) systems of coupled rotators. 

The development of new and adaptation of existing methods to 

study specific dynamical systems is an independent problem that 

presents one of the main tasks of the theory of oscillations. It must 

be said that the priority of this problem was determined by A. A. 

Andronov at the beginning of the creation of the theory of oscilla-

tions as a new scientific direction. As for systems of the class (F1), 

analytical and qualitative-numerical methods are most developed 

for the study of limited motions of pendulum systems. They are 

developed mainly for solving problems of the systems of phase 

synchronization and problems of automatic control, which is cov-

ered by papers of A. I. Lurie [55], E. A. Barbashin, N. N. Krasov-

sky, V. A. Tabueva [56, 57], V. M. Popov [58], V. A. Yakubovich, 

A. H. Gelig, G. A. Leonov [42, 59, 60], V. V. Shakhgildyan [41, 

61], Yu. N. Bakaeva [62], V. N. Belykh, V. I. Nekorkin [42, 63–

65], V. P. Ponomarenko, V. D. Shalfeev, L. A. Belyustina [42, 65, 

66] and other authors. In this monograph, an adaptation of the 

method of the averaging will be proposed for the effective study of 

synchronization, dynamical chaos in the class of rotational motions 

of systems of coupled rotators. 
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Discovery in 1983 of synchronization of chaotic oscillations for 

identical (Yamada T. and Fujisaka H. [67]) and, independently in 

1986, for non-identical self-oscillating systems with chaotic dynam-

ics (V. S. Afraimovich, N. N. Verichev, M. I. Rabinovich [68]) 

changed the existing to date understanding of the phenomenon of 

synchronization to a large extent. In contrast to classical synchroni-

zation (synchronization of periodic oscillations), due to its preva-

lence and familiarity seeming almost obvious, chaotic synchroniza-

tion, on the contrary, seemed unlikely and even impossible. The 

reason for this is the prevailing belief at that time that the interac-

tion of internally unstable systems can only generate an increase in 

the instability of a coupled system. However, it turned out that this 

is not entirely true: as a result of the “interaction of strange attrac-

tors”, a new strange attractor (an image of synchronization) can be 

born, such that the motions of the individual systems, while remain-

ing chaotic, become synchronized when a coupled system moves on 

this attractor. In the course of studying the chaotic synchronization 

(1985), it became clear that the very definition of synchronization, 

which had previously been reduced to the commensurability of fre-

quencies, needs an updating. At that time, it was already clear that 

chaotic synchronization, unique in its properties, which can be im-

plemented using simple technical solutions (in particular, radio cir-

cuits), will find the widest application, which has been confirmed 

over time. 
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One of the areas of application of chaotic synchronization is mod-

ern information technology. The first experiments on information 

transmission based on chaotic synchronization were carried out by 

A. S. Dmitriev, A. I. Panas, and S. O. Starkov [69]; L. Kocarev, K. 

S. Halle, K. Eckert, L. Chua, U. Parlitz [70]; H. Dedieu, M. Kenne-

dy, M. Hasler [71]. The use of PLL systems in the transmission of 

information with chaotic signals was investigated by V. V. Ma-

trosov [72]. 

The attractiveness of the dynamical chaos and chaotic synchroniza-

tion for the transmission of information is explained by several rea-

sons. First, by the broadband signal of the carrier, and, consequent-

ly, by the large information capacity. Second, by the possibility of 

confidentiality (secrecy) of information transfer. Communication 

confidentiality is achieved due to the fact that the “reference” signal 

generator (oscillator), which determines the chaotic carrier of the 

information signal, can be synchronized only with the signal gener-

ator (oscillator) that has analogous dynamics. 

Another area of application is modelling of the biological neural 

tissues and artificial neuron-like networks. Numerous physiological 

observations of the activity of various parts of the brain show the 

chaotic nature of their dynamics. It can be such as a reflection of a 

normal life activity or arise as a result of a crisis state of the object 

[73, 74]. Therefore, modelling neural networks in the form of inter-

connected dynamical systems with chaotic dynamics seems plausi-
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ble and provides quite adequate results. The number of publications 

devoted to modelling of such systems is large. Some of them are 

covered in reviews [75, 76]. Basically, the classical models of 

Hodgkin – Hasley [77], Fitz Hugh – Nagumo [78], Kolmogorov – 

Petrovsky – Piskunov [79] and their modifications are chosen as a 

base of the networks. 

Chaotic synchronization is a complex phenomenon, and research 

into its various aspects is still ongoing. Significant contributions 

were made by the studies of L. M. Pecora, T. L. Carroll [80], N. F. 

Rulkov, A. R. Volkovsky [81], P. Ashwin, J. Buescu, I. Stewart 

[82], S. C. Venkataramani, B. R. Hunt, E. Ott, D. J. Gaunthier, J. S. 

Bienfang [83, 84], A. S. Pikovsky, J. Kurths [85], V. S. Anischenko 

[86], etc. Due to the large number of papers, providing a somewhat 

complete and ordered list of publications is simply impossible. 

However, despite the large number of studies, the problem of chaot-

ic synchronization remains relevant to this day, and this primarily 

relates to research methods. Below we describe in detail both the 

phenomenon itself and its asymptotic theory. 

Another area of application of chaotic synchronization is dissipative 

structures, the study of which was initiated by I. R. Prigogine [87]. 

Chaotic synchronization adds a new aspect to the development of 

this trend, which can be expressed by the phrase “ordered chaos 

from universal chaos”, which in its meaning complements the dic-

tum fixed in the title of the famous monograph by I. Prigogine and 
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I. Stengers “Order out of chaos” [88]. In lattices of dynamical sys-

tems (oscillators), as discrete analogues of an active continuous 

medium, such structures are called “cluster” structures. In addition 

to modelling processes in a continuous medium, there is also an 

independent interest in the study of cluster structures in lattices of 

oscillators: a large number of objects of animate and inanimate na-

ture have or may have similar structures [89–93]. 

It should be noted that most of the results of studies of “cluster” 

dynamics were obtained by computer simulation of systems. Ana-

lytical results are not so numerous and mainly refer to isotropic lat-

tices [94–101]. Our interest will be in ordering the theory of cluster 

structures in oscillator lattices and bringing the mechanisms of their 

formation in accordance with generally accepted concepts of the 

phenomenon of synchronization. 

 

 

 

 



CHAPTER 1 

OSCILLATORS AND ROTATORS  
WITH CHAOTIC DYNAMICS  

 
 

 

In this chapter, we discuss classical and well-known oscillators with 

chaotic dynamics, which we will use as subjects of chaotic syn-

chronization to illustrate analytical results. Here we consider auton-

omous and non-autonomous models with a cylindrical phase space. 

Interest in such models has two aspects. First, along with oscilla-

tors, they are of interest as subjects of synchronization. Secondly, 

these systems are much less studied and described in the scientific 

and technical literature, despite being of considerable interest for 

their applications. 

1.1. Oscillators with chaotic dynamics 

Lorenz oscillator. In 1963, while studying convection in a layer of 

liquid heated from below, E. Lorentz presented a visually simple 

dynamic system of the form  
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  ,
,

.

x x y

y y rx xz

z bz xy

  

   
  



                                     (1.1) 

The system describes the dynamics of a fluid in the form of convec-

tive rolls. To construct it from the equations of hydrodynamics, the 

Galerkin method and the Boussinesq approximation [102] were 

used. The physical meaning of variables and parameters is as fol-

lows: х is the velocity of rotation of rolls; y, z is the temperature of 

the fluid in horizontal and vertical directions,  is the Prandtl num-

ber, r is the normalized Rayleigh number, and b is the convection 

cell scale parameter. In a numerical study of equations (1.1), E. Lo-

rentz discovered a complex non-periodic behavior of the system, 

which corresponds to a nontrivial attracting set in the phase space 

of the model, called the strange attractor or the Lorentz attractor 

(Fig. 1.1). Subsequently, the chaotic nature of this attractor was 

proved in [103].  

There exist numerous publications devoted to the study of various 

properties of this system. The derivation of the Lorentz equations 

from the Navier – Stokes equations, as well as the properties of this 

system, can be learned from [104 – 108]. Note that in addition to 

thermal convection in the layer, the Lorentz system also simulates 

fluid convection in an annular tube, the dynamics of a single-mode 

laser, and dynamics of a water wheel [106]. As it will be shown 

below, this system is also related to the dynamics of vibrational 
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mechanisms, superconductive junctions, as well as bending vibra-

tions of shafts. 

 

Fig. 1.1. Projections of Lorentz attractor onto coordinate planes for: 

 = 10, r = 25, 8 3b  . 

In what follows, let us list certain the properties of the Lorentz sys-

tem that will be required by us later on. 

1. Dissipativity. Consider a quadratic form 

  22 21
.

2
V x y z r    

 

The derivative of this function, calculated by virtue of system (1.1), 

has the form  

 2 2 2V x y bz b r z      
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and is negative outside the ball  22V r    (it is assumed that 

).b   That is, all limit sets of trajectories in the phase space 

 , ,G x y z  of Lorenz system are limited by a dissipation ball. Due 

to the invariance of the system to a change of the form: ,x x  

y y , any limit set of trajectories is symmetric with respect to 

the plane x y  or has a symmetrical “twin”. 

2. Equilibria. In a general case, there exist three equilibria: 

 0, 0, 0 ,O   1 1, 1, 1O r r r    and  2 1, 1, 1 .O r r r      

а) For 1r  , a single equilibrium  0, 0, 0O  is globally asymptoti-

cally stable (GAS). This is established using the Lyapunov function 

2 2 21 1 1
,

2 2 2
V x y z  

  

the derivative of which by virtue of system (1.1)  

 2 2 21V x r xy y bz     
 

is negative in the entire phase space for 0 1.r   

b) For 1r  , equilibrium  0, 0, 0O  represents a saddle with two-

dimensional stable and one-dimensional unstable manifolds, 

dim 2,su   dim 1.uu   For 
 3

1
1

b
r

b

   
 

  
, equilibria 1O  and 
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2O  (“twins”) are stable knots or focuses, while for 

 3

1c
b

r r
b

   
 

  
, they represent saddle-focuses with 

dim 1,su   dim 2.uu   Loss of stability occurs through the reverse 

Andronov-Hopf bifurcation (“sticking” into the equilibrium of an 

unstable limit cycle).  

3. For *
cr r r  , a loop of the saddle separatrix is formed such 

that for * 0r r   a pair of saddle cycles and a strange Lorenz at-

tractor are simultaneously born out of it [103]. For the values 

*
cr r r  , either a strange attractor or stable equilibria are realized 

depending on the initial conditions: the region of “metastable” cha-

os. For cr r  (but not too large ones), the chaotic Lorentz attractor 

is the only attracting limit set of phase trajectories of the system.  

4. For large r (for 10,   8 3,b   300)r  , a symmetric limit 

cycle exists in the system. For reduced r, this limit cycle loses its 

stability with the birth of a pair of stable “twin” cycles. With a fur-

ther decrease of parameter r, these cycles undergo a period-

doubling cascade with the development of the chaotic Feigenbaum 

attractor [109] (one of the scenarios).  

Generalized Lurie Oscillator. This oscillator describes the dynam-

ics of a nonlinear automatic control system [55] and is governed by 

differential equations of the form  
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  ,

.

Tx f x

x

  

 

a y

y By b


                                  (1.2) 

Here 1,x R   1 2, ,..., ,
T

ny y yy  1,iy R  B is the constant sta-

ble Hurwitz matrix; a, b are  1n  constant vectors. 

It must be said that equations (1.2) were not investigated by the au-

thor in relation to chaotic dynamics. For this, the system was dis-

covered too early: in 1951. However, at present it represents a gen-

eralization of many known models of physical systems with chaotic 

dynamics. 

It is assumed in equations (1.2) that nonlinear function  f x  is a 

continuous function and has a form similar to a cubic parabola with 

three zeros. For this reason, we will assume that the following ine-

quality is fulfilled for all x: 

  2 ,xf x mx l                                       (1.3) 

where m, l are some positive constants. The order of their choice 

will be discussed below. This condition is satisfied for a large num-

ber of applied problems (for the case of local oscillators, it is suffi-

cient to recall the form of the current-voltage characteristics (CVC) 

of tunnel diodes and of other nonlinear active elements). 
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Of all the properties (1.2), here we point out only the existence of a 

dissipation ball, and we provide rest of information about the dy-

namics of the system using an example of another oscillator, which 

represents a particular case of (1.2). 

Let us introduce an auxiliary linear system of the form 

 

,

, , .
T

T m
x



     
 

u Au

a
u y A

b B



                           (1.4) 

With respect to system (1.4), we will assume: 

a) equilibrium 0u  is asymptotically stable; 

b) derivative of the Lyapunov function of the form 

 21
,

2
TV x  y Hy  calculated along the trajectories of system 

(1.4),    2 , ,
T TV mx x Q x     Hb a y y HBy y =  where Н is a 

certain positive symmetric matrix, is negative in the entire phase 

space. 

The values of parameter m will be chosen as the minimum of those 

values for which properties of system (1.4) are satisfied. This 

choice has a simple physical meaning: m is the minimum active 

resistance, replacing the nonlinear element, at which the corre-

sponding linear system acquires the property of absolute stability. 
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In the language of phase space, such a choice defines a surface 

without contact for linear system (1.4):  minconst ,V V m   

which represents the boundary of the dissipation ball of nonlinear 

system (1.2). 

Let us show that under condition (1.3) and conditions of system 

(1.4), system (1.2) is dissipative. 

Consider the following quadratic form:  21
.

2
TV x  y Hy  Taking 

its derivative by virtue of system (1.2) and taking into account ine-

quality (1.3), we obtain the following form and estimate:  

     , .
T TV xf x x Q x l       Hb a y y HBy y

 

Obviously, the last expression is non-positive outside some ball 

22 2.x r y  In turn, the negativity of the derivative outside this 

ball determines the dissipation ball 2 2Tx R y Hy  of system 

(1.2).  

Chua’s Oscillator. One of the electric circuit diagrams of a local 

oscillator of chaotic oscillations, proposed by L. Chua [110], is 

shown in Fig. 1.2. In this Figure, G  denotes nonlinear element 

with current-voltage characteristic I(V). 
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G C* C G* 

L R 

I 
I(V) 

V * 
V 

 

Fig. 1.2. Electric circuit diagram of Chua’s oscillator. 

This circuit is quite simple as for practical implementation as for a 

physical experiment. In addition, all the “necessary” properties of 

this oscillator are found with a piecewise linear volt-ampere charac-

teristic, which makes its mathematical model as simple as possible 

for analytical research. For these reasons, the dynamics of this local 

oscillator (and its analogues) has been well studied experimentally, 

numerically, and analytically [111]. At present, the Chua’s oscilla-

tor has actually become a classical object of nonlinear dynamics. 

In physical variables and parameters, the meaning of which is re-

flected in Fig. 1.2, the dynamics of the circuit is described by the 

following equations: 

 
*

* * *

,

,

,

CV I I V

LI RI V V

C V I GV

 

   

  






 

where I(V) is the volt-ampere characteristic of the nonlinear ele-

ment with nonlinear conductivity *.G  

R L V 

G C 

I(V) 

V 

GC

I 
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By introducing dimensionless time and dimensionless variables and 

parameters, of the form 

   

* *
0 0 0

0
2 * 2 *

0

, , , ,

, , , ,

R
V V x I I y V V z t

L
I V xL L GL

h x
ICR C R C R

    


       

 

where 0 ,V  0 ,I  *
0V  are the scale factors, we obtain the following 

dynamical system:  

   ,
,

.

x y h x

y y z x

z y z

  

   
   





                                     (1.5) 

The idealized volt-ampere characteristic of the nonlinear element 

has the form  

   0 1
1 1 1 ,

2

m m
h x m x x x


    

 

where 0 ,m  1m  are the constant parameters. Comparing equations 

(1.5) with (1.2), we see that the Chua oscillator is a special case of 

the Lurie oscillator. To pass from (1.5) to (1.2), one should assume 

that  , ,
T

y zy      ,f x h x    ,0 ,T  a  
1 1

,
 

    
B  

 1,0 .
T b  
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Fig. 1.3 graphically illustrates the fulfilment of condition (1.3) for 

the nonlinear function    .f x h x   It follows from the figure 

that the value of the parameter m can also be chosen to be arbitrari-

ly small. 

 

x 

xf(x) f (x) 

mx2-l 

-1 1 

 

Fig. 1.3. Graphical illustration of the property of a nonlinear function 

(1.3). 

Let us discuss some properties of dynamical system (1.5). 

1. Dissipativity. Let us show that conditions of system (1.4) are sat-

isfied when its parameters are the parameters of the Chua’s oscilla-

tor. Let   .f x mx  In this case, system (1.5) transforms into equa-

tions (1.4) and  0, 0, 0O  is it’s only equilibrium. Consider the 

Lyapunov function of the form 2 2 21
.

2 2 2
V x y z

 
  


 It’s deriv-

ative taken along trajectories of system (1.5) has the form 

xf(x) 

2mx l
x 

f(x) 
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2 2 2 .V mx y z
 

      
  Since the derivative is negative in the 

entire phase space, the equilibrium  0, 0, 0O  is generally asymp-

totically stable. In this case 
0

,
0

 
    

H  and 

2 2 2 0.Q mx y z


    


  

Let us find a dissipation ball of system (1.5). From Fig. 1.3 and ine-

quality (1.3), we find that maximum 
 1 0 ,

2

m m
m

 
  wherein 

 1 0 .
2

m m
l

 
   

Suppose that   1max 1, , ,      and   2min , , .m        

In this case 2 2 2 1

2

x y z l


   
 

 is the dissipation ball. 

2. Equilibria of system (1.5). Note that due to oddness of the func-

tion  h x , the system is invariant to the change of the variables 

,x x  ,y y  ,z z  i.e. possesses central symmetry and all 

of its limit sets of trajectories inside of the dissipation ball either 

symmetric with respect to the origin, or have a “twin” symmetric 

with respect to zero. Naturally, bifurcations of “twins” occur for the 

same values of parameters. 


