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1 Preface

Let us consider an ideal classical gas consisting of NV identical molecules
(atoms) in a container with volume V; the molecules are free of inter-
action (ideal gas) and obey the classical laws of Mechanics (classical
gas). Each molecule collides with the walls of the container and suf-
fers a change of momentum 2muv, along the z-direction, in an elastic
collision, where m is the molecule mass and v, is the z-component of
the molecule velocity. Consequently, a force 2muv, /At is exerted upon
the wall in the collision duration A¢. During this time %nvatAS
molecules hit the area element AS of the wall, with the same velocity,
where n is the density of molecules. We note that n is a function of
position, and we associate a molecular velocity to that position. This
amounts to a continuum model of the gas. The total force exerted
on AS is 2muv, /At - %nvatAS = nmv2AS. Therefore, a pressure
p = nmv? is exerted on AS during this molecular collision. The
molecular velocities are different for various collisions occurring in
various moments of time, such that it is reasonable to take a mean
value @ = %F and a pressure p = %nmﬁ = %n@, where w is the
mean energy of a molecule. Noteworthy, the velocities and their com-
ponents are viewed as independent statistical quantities. Obviously,
this pressure may generate a change

dE = —pdV (1.1)

in the energy of the gas. It is worth noting that this result (the
pressure) is not derived from the mechanical laws of molecular motion.
The additional element in this derivation is the mean value of the
energy, which implies a statistical distribution. We say that the gas
is a statistical ensemble.

A statistical distribution should have a probability density p and a
statistical set of variables. The molecular collisions may occur for
various momenta p and positions r of a molecule. It is worth noting
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that p and r are not related by a mechanical trajectory. Therefore,
we may view the mechanical states labelled by the set of momenta (p)
and the set of positions (¢) as independent statistical variables. We
denote by dvy the element of the number of states for one molecule,
and by dI" the element of the number of states for the whole gas. We
can write

m:/pwdw (1.2)

A mean-value theorem shows w = wpvy, i.e. p = 1/v an

wd(In~). It is convenient to denote W = 3T and Iny = [, Iny = [ =
s; it follows dw = T'ds and

=9
QU
g
I

dE = TdS (1.3)

for the whole gas. We call the parameter T' temperature and [, [
the entropy of a molecule, S = N[, S = Ns the entropy of the
gas. Indeed, the number of states is multiplicative with respect to the
number of molecules, such that its logarithm is additive. The change
in energy is

dE = —pdV +T4dS . (1.4)

We can see that this change of energy has nothing to do with the
mechanical motion. d@Q = T'dS is called heat. Indeed, the change of
mechanical energy is

dE = g—idqi + %dpi = g—iqidt + %pidt =
(1.5)
_BEaEdt aEaEdt:O

~ 0qi Opi "~ Opi Oai

i.e. the energy is conserved in mechanical motion.

From p = 1/T and S = InT" we get p = e~°. Since the mean energy is
minimal for an isolated ensemble, the statistical distribution p should
be minimal, so the entropy should be maximal. A minimal p means a
molecular chaos. The isolated ensembles evolve towards the maximum
of the entropy, where the disorder is maximal. This is the law of
increase of entropy. In addition, when the molecular motion ceases,
the temperature is zero and the ensemble occupies one state; therefore,
at zero temperature the entropy is zero. An isolated ensemble has
the tendency to increase its volume (in order to minimize the energy).
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From equation (1.4) we get d(E—TS) = —pdV —SdT', where F' = E—
TS, called free energy, is the energy in variables V' and T'. Therefore,
an isolated ensemble tends to increase the volume and to decrease the
temperature. Free bodies get colder and the universe evolves towards
its Waermetod.

The introduction of the mechanical states as statistical variables opens
the way to a statistical description for quantum-mechanical ensembles
as well, by replacing the integration over the number of mechanical
states by summations over quantum-mechanical states. A quantum
gas has an occupation number for each particle state. While the states
are fixed, the occupation number may vary, such that the number of
particles may vary. Indeed, from equation (1.4) we get

d(E+pV —T8)=Vdp—SdT =
(1.6)
= N(vdp — sdT) = Ndu

where v and s are the volume and the entropy per particle. It follows
that the number of particles is variable, and

dE = —pdV + TdS + pdN (1.7)

such that d(E +pV —TS) = Ndp+ ppdN = d(pN). The chemical po-
tential p serves to fix the mean number of particles N. The probability
density p is a function of S, which should be a function of the energy
&, the volume Vand the number of particles N' (N = A); we may take
as variables V, N and T instead of energy. To the first approxima-
tion the probability density can be written as p ~ e~ (95/9E)(E+uN)
where (0S§/0€) = 1/T. Possible configurational correlations may in-
troduce a dependence on V. The approximation consists in neglecting
deviations from mean values, i.e. the fluctuations. For independent
statistical variables the fluctuations go like Af2 = > j AfiAf; ~ N;
therefore, the approximation is valid in the limit of large N (IV > 1).
We can see that the statistical description, which arises from an ideal
classical gas, can be applied to many other ensembles, of a reasonable
generality.
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2.1 Mechanics

At first sight the space is homogeneous and isotropic and the time
flows uniformly. A body, viewed as a point, covers a small distance
Ar in the small duration At, where 7 is its position at time ¢. Since
the space and the time are uniform, in the next time interval At the
point covers the same distance Ar, with the same magnitude and the
same direction as the previous one. The small quantities Ar and At
may vary, but each time their ratio Ar/At is the same. In order to
eliminate the arbitrary variation of Ar and At we take both Ar and
At simultaneously to zero, i.e. they are so small that we may neglect
them. It follows that the motion is such that the velocity
s Ar  dr
v = ZmAt—>OE ~a

is a constant. This is Newton’s Principle of Inertia. The position
of the point is modified during the time, but its velocity is constant.
This law identifies the velocity as the basic quantity which describes
the motion. If the space, or the time, or both are not uniform, then
the velocity changes in time. According to the notation introduced
in equation (2.1) this change is written as dv/dt. It is caused by
a property of the space and the time, the presence of other bodies;
we call it force, denoted by F. The change may also depend on the
properties of the moving body; we call this property the mass of the
body, denoted by m. This is an unknown quantity. The law of the
change of the velocity can therefore be written as

dv
m— (2.2)

This is Newton’s law of motion, known also as F' = ma, where
a = dv/dt is called acceleration. It is worth noting that, although

(2.1)
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the bodies are viewed in Mechanics as being point-like (or consisting
of point-like bodies), the motion is made by infinitesimal distances
and durations, not by points. This special contradiction permeates
the whole Physics and calls for a special caution. If we give the po-
sition and the velocity at one point, then the motion is determined
at the subsequent point. It follows that the equation (2.2) written
as md?r/dt?> = F should be a second-order differential equation, i.e.
the ratio F'/m should be a function of time, position and velocity at
most; this equation gives the trajectory of the motion.

The Newton law of motion can be solved for a body in an external
force field and for two interacting bodies; for more than two bodies it
has, practically, no solution. This is an imperfection of the theory.

2.2 Electromagnetism

Let point-like electrical charges ¢ be distributed in space with a uni-
form concentration n; and let a rigid neutralizing background of charges
—q be also present. The electrical charge ¢ is an unknown quan-
tity. Let w be a local displacement; it produces a net charge density
p = —nqdivu. Let us call —4mnqu electric field, denoted by E. It
follows

divE = 4mp . (2.3)

This is the Gauss law of the electric field and the first Maxwell equa-
tion.

By introducing fields, like the displacement w and the electric field
E. the Electromagnetism departs from Mechanics. When mechani-
cal point-like charges are used, with density of the form p = ¢d(r),
singular solutions are obtained, like E = gr/r® (Coulomb law). This
contradictory framework calls for certain limitations.

We note that p = qu is a dipole moment; P = np is a density of dipole
moments, called polarization (and, here, E = —47 P = —47mnp).

There exists a similar quantity. Indeed, apart from a displacement
u, a charge ¢ with position r, may rotate about a point placed at
r with velocity v,. The quantity qv, is a current, j,, = nqv, is a
current density, and the quantity (rq — r) X qv, would be similar to
p, provided we divide it by a velocity c.
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It is worth noting that the velocity ¢ is a universal velocity, inde-
pendent of the charges, or the space, time, etc. It is an unknown
quantity.

We call m = (r, — r) X qv,/2c magnetic moment, and M = (r, —
T) X J,,/2¢ magnetization. For small magnitudes of the rotation ra-
dius 7, — r the magnetic moments are a distinct type of moments of
point-like charges. The magnetization has the remarkable property
curlM = j,,/c. Let us call B =47 M = 4wnm magnetic induction.
It satisfies the equation

4
curlB = —ﬂjm = 4mcurlM . (2.4)
c
The magnetization current has the property divj,, = 0. But there

exists another current, corresponding to the displacement u, given by
J = ngu. Therefore, the above equation should be written as

4
curlB = —7Tj + dmeurlM | (2.5)
c
or, denoting H = B — 47w M,
4
curl H = —j (2.6)
c

H is called magnetic field. Equation (2.6) is the Ampere equation
and, partially, the fourth Maxwell equation. At this moment there
appears a contradiction between equations (2.3) and (2.6). Indeed,
by the continuity equation, we get from equation (2.3) divE = drp =
—4wdivg, while divy = 0 from equation (2.6). The contradiction
disappears if we add the term E/c to the right of equation (2.6),

which reads now
10F 4r

IH=-—+—3. 2.7
cur c Ot + ¢’ 27)
This is Maxwell-Ampere equation and the fourth Maxwell equation.
Again, a constant point-like current I leads to AA = — 47”I5(r), where

H = curlA, divA =0, and H = 1T x r/r® (Biot-Savart law), which
is singular in origin.
Moreover, from the definition m = (r,—7r) X qv, /2c it follows divm =
0, divM = 0 and

divB =0 . (2.8)
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This is the Gauss equation for the magnetic induction and the second
Maxwell equation. It shows that there is no magnetic charge.

We note that, if the charges belong to a material medium, this medium
disappears from equations (2.3) and (2.7), so we may view these equa-
tions as valid for vacuum; or an immaterial medium, which historically
is called aether. In vacuum B = H and equation (2.8) reads

divH =0 . (2.9)

Finally, we note that there exists a symmetry between E and B, since
both are given by moments of charges (p and m). It is worth noting
that while E is related to —47np, the magnetic induction is related
to 4mnm. Therefore, in writing down this symmetry we should note
that E corresponds to —B and there is no magnetic charge and no
associated current. Equation (2.7) reads

10FE  4n .

curlB = —— 4+ —j + dwcurlM (2.10)

c Ot c

for the couple B, E; therefore, the corresponding equation for the

couple E, B reads

10B
IE=———. 2.11
cur c Ot ( )
This is the Faraday equation and the third Maxwell equation. In
10H

vacuun it reads curl B = - %

The Faraday equation can be derived in another way. According to
the Helmholtz theorem the variation of the displacement w is given
by

1 1
du; = 8ju7;d$j = 5 (8]111 + 8in) dl‘j + 5 (83‘11,1' — 8iuj) dJ?j . (212)

The first bracket in equation (2.12) indicates a deformation, i.e. a

change in the element of the distance dl = (dx?)l/ ?. The second

bracket indicates a rotation; indeed, it can be written as

1 1
dul®" = 5 (0ju; — Oyu;) daj = 5 (curlu x dr), (2.13)

or
1
du™" = geurlu x dr ; (2.14)



2 Introduction

we can see that curlu is a rotation angle ¢. It follows that du"°! is
related to the rotation connected to the magnetic moment, such that
the electric field is related to the magnetic induction. Indeed, from
equation (2.14) we get

2
curlu = Wdr X du™" | (2.15)

which can be written as

curlu = %d(ra —7) X v, = f;;:z d(rg — 1) X J,./2c =
(2.16)
dt
- 7rnch7"2 dB .

In this equation dr = d(r, — 7); the variation of this quantity may be
set equal to 2cdt, such that we get

1

=—dB 2.1
curlu Trnge dtd , (2.17)
o 10B
IE=———. 2.18
cur parn (2.18)

It is worth noting that equations divE = 4mp and divH = 0 (in
vacuum) follow from equations
_19E | 47 :
curlH = 252 + <27
(2.19)
curlE = —% ‘98—1;1

and the continuity equation. It follows that only two (coupled) Maxwell
equations are independent, which include two unknown vectors E and
H (or, similarly, E and B, provided M is known). This means that
we have in fact only one unknown field vector.

As it is well known the standard way of solving the Maxwell equations
is the introduction of the scalar potential ® and the vector potential

A through
10A
E = B grad® , B = curlA (2.20)
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assuming M is known. In vacuum B = H and we get the wave
equations

1 0%2A A 47 1 0%

—T8 A= 29T A4 2.21
c? ot? ¢l 2 e (221)
providing the Lorenz gauge
100
il WA = 2.22
T + div 0 (2.22)

is satisfied; this condition reduces the number of four unknowns of the
potentials to three. The wave equations have also advanced solutions,
which are unphysical; they are discarded. These solutions originate in
the existence of the velocity ¢ and are an imperfection of the theory.

The electrical charge is extraneous to the theory of electromagnetism.
Similarly, the universal velocity ¢ introduced in the definition of the
magnetic moment, the magnetic induction and the magnetic field is
arbitrary. Not only "the electrical charge is a stranger" in Electromag-
netism (Einstein, Pauli), but also the universal velocity c is a stranger.
The velocity c of the electromagnetic waves has been measured. It co-
incides with the measured speed of light, ¢ = 3 x 10'%m/s. This
made Maxwell to suggest that light and electromagnetic radiation are
the same thing.

The solution of the wave equations (2.21) is given by the Kirchhoff’s

(retarded) law
/ t_ !
@:/dr’p(r ’| r_";, |T D (2.23)

(for the scalar potential); For p = ¢d(r) f(t) we get ® = qf(t—r/c)/r,
which, apart from being propagated, it is again singular at the origin.

In vacuum the Maxwell equations are

divE = 4mp , divH =0 ,
(2.24)

_ _18H _10E | 4rm;
curlE = —2 %5 curlH = 57 + 7j .

A polarization P = nqu appears in matter, from a charge density
—nqdiu = —div P; it carries a current density P. In addition a mag-
netization M may appear, from a magnetization current c - curlM,

10
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and a magnetic induction B. According to the above discussion, the
Maxwell equations read

divE = 4mp — AndivP | divB =0 ,

curl B = —%%—? , (2.25)

curlB = %%—? + 47”P + 47”_7' + dmwcurl M |

or, introducing the electric displacement (induction) D = E + 47 P
and using the magnetic field H = B — 47 M,

divD = 4mp , divB =0,
(2.26)

_ _19B _ 10D | 4x;
curlB = —-52  curlH = 52 + <77 .

Again, only the two equations (2.26) in the second row are indepen-
dent, but now they include four unknown vectors. Additional infor-
mation is necessary to reduce the number of these unknowns to two.

The displacement u obeys the equation of motion
mit + mw?u +myt = qEo + qF; (2.27)

for a charge ¢ with mass m in an external electric field E(, where
we 18 a characteristic frequency, v is a dissipation coefficient and
E; = —4mnqu is the internal (polarization) electric field. This equa-
tion allows the definition of a polarizability a by P = aF, and
the definition of the electrical susceptibility x. by P = x.E;, where
E, = Eq+ E; = E, as well as the definition of the dielectric function
¢ by Eg = ¢Ey; the external field E( turns out to be the electric
displacement D. The polarizability may include also the atomic and
molecular polarizability, the molecular vibrational polarizability, the
molecular rotational polarizability and the Curie-Langevin orienta-
tional polarizability of the electric moments, proportional to the in-
verse of the temperature 1/7. These relations establish a connection
between D and E.

Similarly, the equation of motion of the magnetization is M = 5= M X

B, or M = vB x M, where v = p/h is the gyromagnetic factor and p
is the magnetic moment. This equation does not establish a relation

11
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between M and B, but it indicates an eigenfrequency of the magneti-
zation, given by the magnetic induction. The magnetic susceptibility
Xm defined by M = y,, H and the magnetic permeability defined by
B = puH are derived by the induced magnetic moment in an external
magnetic field (diamagnetic susceptibility) and the alignment of the
statistical magnetic moments (Curie-Langevin law).

2.3 Relativity

The universal velocity ¢ which appears in the Maxwell equations has
far-reaching implications. First, we should note that in the time vari-
ation written as % = % + v% we may view ¢ and r as independent
variables, but we may also view ¢ and r as being related through
the velocity v. Second, the electromagnetic waves propagate such as
cdt — dl = 0 (retarded waves), where dl is the infinitesimal distance,
but they propagate also as cdt + dl = 0 (advanced waves), which is
unphysical. Therefore, we must admit the relation c2dt? — di? = 0 for
electromagnetic waves, or c?dt? — dr? = 0. This means that we may
change the reference frame by a constant velocity v and this relation
is preserved. For bodies moving with velocity v this relation should
read c2dt?> — v2dt? = c*dr? > 0, where 7 is the time measured at
rest (proper time). It follows that ¢ is the maximum velocity in the
universe. Also, it follows that the change of coordinates in referential
frames, i.e. frames moving with constant velocities with respect to
each other, should obey the condition ¢?dt? — dr? = ds®> = const; ds
is called the element of the line of universe. The coordinate trans-
formations which preserve this condition are the Lorentz trasforma-
tions. Moreover, the Maxwell equations preserve their form under
these transformations, such that the relativity principle for electro-
magnetic waves is satisfied. This can be seen very easily by using four-
vector notations: contravariant vectors like z# = (ct, r) and covariant
vectors like x,, = g, 2", where goo = 1, g11 = g22 = g3z = —1, other-
wise zero. Similary, the electromagnetic potentials are A" = (9, A),
the field tensor is F,, = 0,4, — 0, A, and the Maxwell equations

12
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become
0pFu +0uF,, +0,F,, =0,
(2.28)

)

9, Fm = A ju

with the Lorentz condition 0,A4" = 0, where j* = (¢p, ) is the cur-
rent density (and 9, = 9/0x"). The equations for the potentials are
0, 0" AP — 99, A”) = 47”3'”.

On the other hand, the Fermat (or Maupertuis’) principle for a moving
body with mass m is immediately generalized to the extremum of the

action
S = —mc/ds = —ch/ V1—v%/c3dt (2.29)

which leads to the lagrangian

L=—-mc*\/1—v2/c% | (2.30)

the momentum oL
p=-= _mv (2.31)

T J1—v2/c?
and the energy

2
1
e =mc? + —mv* + ..., (2.32)

Nierar: 2

whence we can see the rest energy mc?. In addition, £2 = m2c* +p?c?
and £dE = ?pdp, d€ = vdp. The variation of the action gives

E=vp—-L=

05 = —meu, bzt | +mc/6x“ddl:ds , (2.33)

where
%
. dx

p dxh 1 v
YT s <\/1—v2/02’c\/1—v2/02> (2.34)

is the four-dimensional velocity. Also, from equation (2.33), the four-
dimensional momentum is

Pp = —<— =mcu, , (2.35)

13
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or

me mv
VI=02/c2 /1 —v2/c?
2.2

(and ptp, = m?c®). The variation of the action in equation (2.33)
gives also the equations of motion

pt = meut = < ) = (&/¢,p) (2.36)

S (im @) . (2.37)

where gt is the generalization of the force f; or d€/dt = vf and
dp/dt = f. This way, the motion of the bodies satisfies the relativity
principle. Therefore, the relativity principle is satisfied by both the
electromagnetic equations and the mechanical equations; extended to
all motions it is called Einstein’s Principle of Relativity. The specific
way it works is called the Theory of Relativity. We note that, although
the electromagnetic equations indicate the necessity of Lorentz trans-
formations for coordinates, this requirement for other vectors, tensors
follows from the Principle of Relativity.

As it is well known the Maxwell equations in vacuum lead to the
Lorentz force pE + % 7 X H which acts upon charges and currents.
Making use of j, = puu% and the field tensor F'*” defined above
this force density can be written as % pF* ., such that the equation
of motion for the mass density u is

dut 1
uc% = EpF’“’ul, . (2.38)

We can see that the four-dimensional velocity determine the electro-
magnetic field through the Maxwell equations (2.28), and, conversely,
the electromagnetic field determines the four-dimensional velocities
through the equations of motion (2.38). Obviously, this is a self-
interaction, which is unphysical. It should be avoided, by treating
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these equations separately, as if the charges, or the fields, were exter-
nal. The estimation of the self-interaction effects leads to the Lorentz
damping, which indicates the limits of such an improper formula-
tion of the problem. In particular, such restrictions lead to distances
larger than the classical charge radius e?/mc?, or Compton’s wave-
length Ai/mc = (62/m02) %, where e is the charge, m is the particle
mass, h is Planck’s constant and e?/hc = 1/137 is the fine struc-
ture constant. Also, the fields should be restricted to Schwinger limit
e/(e?/mc?)? = m2ct/e3, or mc?/e(h/mc) = (m2c*/e?) %2, which is a
very high field. If e is the electron charge (e = 4.8 x 10*%esu) and m
is the electron mass (m = 10727g), the rest energy of the electron is
mc? = 0.5MeV (1eV = 1.6 x10~*2erg), the classical electron radius is
re = €2 /mc? = 2.8x 107 13¢em, the Compton wavelength of the electron
is A\e = A/mc = 3.8 x 10~ em and Schwinger’s limit for the fields is
Es =mc?/e(h/mc) = 6 x1083esu (lesu = 3x 10*V/m). Beyond these
limits the Electromagnetism, either classical or quantum-mechanical,
becomes meaningless.

2.4 Quantum Mechanics

The world is made of many small, very small, particles, which we call
atoms and molecules; which may have their own structure, consisting
of subatomic particles, like the electron, the proton, the neutron, etc.
Of course, such particles are much more numerous than the big bod-
ies, i.e. bodies with dimensions at the macroscopic scale. Mainly the
atomic particles move over limited small spatial regions, such that it
may not only be impossible to fully characterize their motion, but,
often, not even desirable. An example is the small magnetic moments
which served above to define the magnetic field. We may expect a
certain indefiniteness, a certain uncertainty in characterizing the mo-
tion of the atomic and subatomic particles; for instance, we may not
expect to be possible to define a trajectory of such moving particles.
Rather, we may speak of waves (actually oscillations), which would
characterize a mechanical state. However, the motion over a limited
spatial region can be describable globally by local differential equa-
tions; consequently, it has a certain characteristic imposed by bound-
ary conditions, which implies discrete values of the physical quantities.

15



2 Introduction

Indeed, the conditions satisfied at a portion of the boundary, should
meet the conditions satisfied at the opposite portion of the bound-
ary. Of course, speaking in such terms we should have a wavefunction
obeying certain differential equations, which defines mechanical states
characterized by discrete values of the physical quantities.

Indeed, Planck realized that the electromagnetic radiation with fre-
quency w, exchanged by the atoms of the wall of a black body, has
energies which are integral multiples of hw, where h = 10~ %7erg - s is
a universal constant, called Planck’s constant. This is an unknown.
Einstein gives individuality to this quantum of energy, which later was
called photon. Rutherford suggested that the electrons moving about
the nucleus in an atom have a discrete set E,, of energy levels, where n
labels these levels. We arrive at speaking rather of a motion state for
such particles, instead of definite mechanical quantities. An electro-
magnetic radiation with frequency w = 10'°s~! would have an energy
quantum Aw = 10~ *2erg, which may be exchanged with the electrons
in an atom. Being so small, how would we measure it? We will mea-
sure it only indirectly, by measuring many such identical processes.
It follows that the measurement has a statistical character and, also,
during the measurement the measured mechanical motion would be
perturbed, to a smaller or a larger extent. We can see that the motion
of these atomic and subatomic particles implies quanta of energy. We
say that this motion is quantized. This is the Quantum-Mechanical
Principle of motion. Quantum Mechanics introduces many new con-
cepts for describing the motion, so it needs a longer discussion.

Motion is described by functions of time; any such function is decom-
posable in a Fourier series,

F(t) = % /dwe*ith(w) ; (2.39)

according to the quantization idea, we can replace w in this equation
by w = E/h, where h = h/27, h and h being Planck’s constants. How-
ever, these energies are discrete, so we should have w,, = E,,/h, where
n is an integer, and the integral should be replaced by a summation.
We measure only energy differences, such that we should have

¢ i (Em=En)t (2.40)
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instead of e~*! where n, m denote sets of integers; in this case F(w)
should be replaced by a quantity denoted F},,,, such that

F(t) =Y e #En=BItp, (2.41)
n,m

this was the starting point of Heisenberg’s matricial mechanics. The
representation given by equation (2.40) is a new representation for
time-dependent functions, with far-reaching implications. We note
the principle that "only measurable quantities are admitted in theory"
(which, in fact, is a relative principle) and the additional freedom
brought by two labels instead of one in equation (2.41).

The quantities F},,, were recognised to be matrix elements. This im-
plies that an operator I is associated to any physical quantity. F' acts
in a linear space of vectors ¢, 1, ... with a scalar product of the form
(¢, 1); the operator F' has eigenvectors ¢, and eigenvalues f,, such
that

Fon = fnpn ; (2'42)

the matrix elements are written as

Fom = (on, Fom) (2.43)

and the mean value is F,,, = (¢n, F@y), or, generally, F = (¢, F).
We may assume that the mean values are measurable quantities and
the eigenvalue f;, is the value the quantity I has in the state ¢,,; since
they are real, the associated operators should be self-adjoint (hermi-
tian). A hermitian operator has orthogonal eigenvectors for distinct
eigenvalues. If there exist several eigenvectors for the same eigenvalue,
that eigenvalue is degenerate, and we can orthogonalize the degener-
ated eigenvectors; we may also orthonormalize the eigenvectors, i.e.
we can impose the condition (¢, ©m) = dnm. The set of eigenvalues
fn is the spectrum of F' (together with the corresponding eigenvec-
tors); it may be discrete, or continuous; in the latter case the label n is
continuous and we may write f,, as f(n) and summations of the type
>, should be replaced by [ dn; the orthonormality condition reads
in that case (¢n, Pm) = 0(n — m), where § is Dirac’s delta function.
By > or [ we understand indistinctly either Y, or [, or both.
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Since the eigenvectors are linearly independent (and orthogonal), they
may be taken as a basis of expansion for any other vector

b= cnpn (2.44)

where ¢, are some complex coefficients. It follows that the vectors
represent the states of the "physical system", and any state can be
written as a superposition of other states; the operators act on the
state vectors; the eigenvectors are also called eigenstates. This is the
superposition principle of the Quantum Mechanics. The mean value
is

= (1, F1p) = an len |, (2.45)

which means that | ¢, |? is the probability to have the state ¢, in
the state v, and ¢, = (pn,1) is the amplitude of the corresponding
probability. This observation was made by Born. We must have

W)=l P=) |ea P=1 (2.46)

n

(since ¢, are orthonormal). Similarly, ¢, is the amplitude of proba-
bility of being in state n (or ¢,,), and (¢n, ©n) =| @, |*= 1 is the prob-
ability of being in state n, which is unity. We can see that the vector
1) defines the state up to a phase. We note also that the quantum-
mechanical operators are linear operators. The expansion given by
equation (2.44) means that the eigenvectors ¢, form a complete (or
closed) set of vectors, and equation (2.46) is the closure equation.

The matrices (operators) do not commute with one another, in gen-
eral; we write

FG—GF =[F,G] £0 (2.47)

for two operators F' and G that do not commute; [F,G] is called the
commutator of F' and G (or the commutator of F' with G). It is easy
to see that if two operators commute, they have common eigenvectors,
and if they have common eigenvectors, they commute. This means
that they have well-defined values on the same state, they may be
simultaneously measured. It follows that the quantum-mechanical
state is defined as the common eigenvector of the maximum number
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of commuting operators. This would be the maximum information
we may have about the quantum-mechanical motion. The hermitian
operators associated to physical quantities are also called observables.

A matrix (operator) can be diagonalized, in general; hermitian oper-
ators always. The linear transform U which diagonalizes an operator
F acts like _

U'FU=F |, (2.48)

where F is diagonal; if F is hermitian, then U~! = U+ and UTU = 1;
then, U is called an unitary operator; it may be written as U =
e", where S is hermitian. A unitary transformation preserves the
commutation relations.

A convenient notation has been introduced by Dirac, who has written
the scalar product as a "bracket" (¢,1¢) =< ¢ | ¥ >; then, Dirac
called "kets" the vectors | 1» > and "bras" the vectors < ¢ |. More-
over, Dirac viewed functions of the form ¢,,, or ¢(n) if n is continuous,
as scalar products < n | ¢ >; the closure equation (2.46) can be writ-

ten as
W) =32, [ en P= 3, (e,n)(n,c) =

=), ,<c|ln><nlec>=1,

(2.49)

whence

Y ln><n=1, (2.50)

n

since < ¢ | ¢ >=1.

2.4.1 Equation of motion

By differentiating equation (2.41) with respect to the time we get

d i
We may imagine that the states n are eigenvectors of the hamiltonian
H,

Hy, = Eypn (2.52)
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(or H | n >= E, | n >); then, removing the scalar products in
equation (2.51), we get

dr 1 i
— =_-(HF —-FH)= —[H,F] ; 2.53
= )= 118, F] ; (253)
this equation is general; it can also be written as

F(t) = er T F(0)e~ #Ht (2.54)

The resemblance of the equation (2.53) with the classical equation of
motion IF

o {H,F} |, (2.55)
where {} is the Poisson bracket, is striking; to the same extent to
which equation (2.55) gives the equations of motion of Newton’s Me-
chanics, equation (2.53) gives the quantum-mechanical equations of
motions. The quantum-mechanical equations of motion are given by
the commutator with the hamiltonian. These are the canonical equa-
tions of motion; for this reason, the unitary transformations which
diagonalize hermitian operators (the observables), and preserve the

commutation relations, are also called canonical transformations.
The association
S[H,F| — {H.F} , [H,F] = ~ih{H,F) (2.56)

was noted by Dirac. It is worth noting that in the limit z — 0 the
commutator is vanishing: the operators become classical quantities.
If the operators have an intrinsic time dependence, not given by the
dynamics, then their full equation of motion reads

dF  O0F i
o = o TR EL (2.57)

in full analogy with the classical equations of motion.

In scalar products of the form

(0, F(t)) = (p, en 1L F(0)e~ 7 1ty) (2.58)
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we may write

(@, (1)) = (p, e# M F(0)e ™7 Mtyp) =
| | (2.59)
= (e, F(0)e™ 7 Mty)

and we may imagine that the operators do not depend on the time
but, instead, the state vectors do; then we write simply F'(0) = F and

plt) = e g (2.60)

which leads to the equation

S o(t) = Holt) ; (2.61)

this equation was later called the Schroedinger equation. Time-
independent operators and time-dependent state vectors of the form
given by equation (2.60) are said to belong to the Schroedinger picture
(or Schroedinger representation); while time-dependent operators and
time-independent state vectors of the form given by equation (2.58)
are said to be in the Heisenberg picture (or Heisenberg representation).
If the Heisenberg picture is performed only for the non-interacting part
of the hamiltonian, while the interaction is left in the Schroedinger
picture, then we say that we have the interaction picture.

We note here that in the above considerations H is independent of
time, as for a closed, conservative motion, and the (constant) ener-
gies do exist. The corresponding states are called stationary states.
If the hamiltonian depends on the time, then the energy eigenval-
ues E,(t) and the corresponding eigenvectors ¢, (t) depend on the
time; although, formally we may define time-dependent frequencies
w(t) = [En(t) — En(t)]/h, the quantization idea of absorbing and
emitting such energy differences raises difficulties, since the absorp-
tion and emission processes are not instantaneous. However, the Pois-
son brackets for the classical dynamics are valid, and their quantum-
mechanical counterpart with commutators is their expression for fi-
nite amounts h of mechanical action; the classical limit is achieved by
these equations of motion in the limit A — 0, so we may maintain the
quantum-mechanical equations of motion for time-dependent hamil-
tonians; the only difference is that expressions like Ht (in equation
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(2.54), for instance) are replaced by [ Ydt' H (t') and expressions like
E,t (in equation (2.41), for instance) are replaced by ft dt' E,(t'). In
addition, the time-dependent Schroedinger equation is satisfied by a
linear combination of wavefunctions ¢y, (t) with time-dependent coef-
ficients.

Let us consider a particle with mass m in a potential V' (r); the hamil-
tonian of its motion is

1
H=—p*+V 2.62
5 V(@) (2.62)

where p is momentum. The motion of both the position r and the
momentum p is given by

P = +[H,r] = +[5=p% 1] = 5= {p[p, 1] + [P, 7P} .

p=;[Hp]=V().p|;

if in the classical limit 7 — 0 we are going to recover the Newton'’s
equations of motion

(2.63)

. ) ov
r=p/m, p= Sy (2.64)

from the above equations (according to the correspondence principle),
we should have

[pxam] = _Zh ) [p:my] = 0 ,etc ; (265)

these commutation relations should be read [p;,z;] = —ihd;;, where
i, j denote cartesian components. The first Newton’s equation follows
immediately from the first equation (2.63) and the second Newton’s
equation follows from the second equation (2.63) by a series expansion.
It results that the commutation relations between canonical conjugate
variables are the fundamental elements of the quantum-mechanical
dynamics.

2.4.2 Uncertainty principle

The eigenvalue f, in the eigenvalues equation Fy, = f,¢, (or F' |
n >= f, | n >) is the quantity F' we are able to measure (exactly) in
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