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PREFACE 
 
 
 
The notion of force has a very important meaning in physics, from very 
early one we learn how to describe the particle trajectories by solving the 

equation 

2

2

dm
dt

=
r F

 in the framework of Newtonian mechanics. Things 
get a lot more complicated at high speeds, in the framework of special 
relativity, where the equation of motion takes a much more complicated 

form of 

2

2

( )
1

dm
dt u

c

=

−

u F

where 

d
dt

=
ru

 . We dedicate the first one 
third of the book to these cases by studying different forms of the equations 
of motion as a result of the different expressions for the force F . Much 
effort is dedicated to the case of the general Lorentz force,

( )q= × +F v B E that intervenes so often in the design of particle 
accelerators. We present a few new derivations for Thomas precession and 
Thomas Wigner rotation as well as applications to the Compton effect. As 
we will see later on in the book, the situation is even more complicated in 
the case of the fictitious forces (d’Alembert, centrifugal, Coriolis and Euler) 
that appear only in non-inertial frames (accelerated linearly, uniformly 
rotating and in accelerated rotation). It is interesting to note that the 
equations of motion in this case fall out directly from the double integration 
with respect to time of the fictitious accelerations. The second third of this 
book is dedicated to these forces. The last third deals with forces in a 
roundabout way, since in General Relativity gravitation is not a force, so, 
we solve the equations of motion by deriving the Euler-Lagrange equations 
directly from the different metrics (Schwarzschild, Reissner-Nordstrom).  

Adrian Sfarti, 2021 
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COVARIANT TREATMENT OF COLLISIONS  
IN PARTICLE PHYSICS 

 
 
 

Synopsis 

The use of relativistic frame invariants is very well established, especially 
when it comes to the energy-momentum. In the current paper we show how 
the conservation of the energy and momentum applies to collisions of 
particles moving at relativistic speeds, like the ones encountered in nuclear 
accelerators. We derive the equations for two main types of collisions: 
elastic and inelastic. The starting point in both cases is the well known 
theorems of conservation of total energy and conservation of momentum for 
isolated systems [1-3].  The covariance, once proven, becomes a very useful 
tool due to the fact that researchers can use any inertial frame in solving the 
particle collision problems, thus greatly simplifying the solutions. 

1. Fundamental notions 

You should know by now the definition of proper time:  

21 ( / )d dt u cτ = −  where u is the coordinate speed and t is the 
coordinate time. Coordinate time is the time measured by a clock in an 
arbitrary inertial frame. Proper time is the time measured on a clock 
commoving with the observer. The coordinate velocity is defined as a 3-
vector: 

u=(dx/dt,dy/dt,dz/dt)     (1.1) 

Now, proper velocity, by contrast, is a 4-vector defined as: 

U=(dx/dτ,dy/dτ,dz/dτ, d(ct)/dτ)    (1.2) 

It is easy to show that: 
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2 

2

2

( )( , )
1( )

1

u c

u
u
c

γ

γ

=

=

−

U u

    (1.3) 
 
Since 𝜏𝜏  can be viewed as a proper parameter of a wordline in 4 space, it 
follows that, by the way it was defined, U is the tangent to that wordline.  
 
Further, we can now define the proper acceleration: 

/d dτ=A U      (1.4) 

We can show that: 

( ) ( )( ) ( )( ( ), )d d u d uu u u c
dt dt dt

γ γγ γ γ= = +
UA u a

 (1.5) 

where a=du/dt is the coordinate acceleration 

We also know that in the proper frame of the particle (the frame commoving 
with the particle) u=0 so, in the proper frame:  

That is, the proper acceleration coincides with the coordinate acceleration 
in the proper frame of the particle. Thus, A=0, if and only if a=0. By 
contrast, U can never be equal to zero based on its definition. Based on the 
definitions of velocity, we can define the 3- and the 4-momentum 
respectively, as: 

( )u m
m
γ=

=
p u
P U       (1.7) 

Based on the above definitions, we can define the 3- and the 4-force as: 



Relativistic Forces in Special and General Relativity 3 

( ( ) )d d um
dt dt
d dm m
d d

γ

τ τ

= =

= = =

p uf

P UF A
     (1.8) 

Note that the derivatives are taken with respect to different times, coordinate 
for 3-force and proper for 4-force. Sometimes we see the 3-force defined as: 

( ( ) )d d um
d d

γ
τ τ

= =
p uf

     (1.9) 

2.  Introduction, Inelastic Collisions 

In the present chapter we demonstrate that the equations of conservation 
have a covariant form, that is, they have the same form in all inertial frames. 
This conclusion is far from obvious since it needs to be proven 
mathematically. The existent [2,3,8] literature on the subject does not prove 
the covariance but rather assumes it from the start. We move from simple 
to complex, from inelastic collisions to elastic ones. 

Consider two particles of proper masses 𝑚𝑚1 and 𝑚𝑚2traveling at speeds 
𝑢𝑢1and 𝑢𝑢2 with respect to frame F. The particles collide and travel as one 
body at speed 𝑢𝑢 after collision. The equations of conservation of momentum 
and energy in frame F are [1-3]: 

1 1 1 2 2 2( ) ( ) ( )u m u u m u u muγ γ γ+ =
            (2.1) 

2 2 2
1 1 2 2( ) ( ) ( )u m c u m c u mcγ γ γ+ =

where 
( )i i iu m uγ

 represent the momenta before collision, 
2( )i iu m cγ
 

represent the energies before collision, ( )u muγ  represents the momentum 

after collision and 
2( )u mcγ  represents the energy after collision. 

Obviously, (2.2) can be rewritten as: 
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1 1 2 2( ) ( ) ( )u m u m u mγ γ γ+ =
                (2.3) 

where ( )uγ is  a shorthand for 

2

1

1 ( )u
c

−
 

In other words, while rest mass is not conserved, relativistic mass is. 
Expression (2.3) will come in handy later on. The question is, are the 
equations (2.1) and (2.2) frame invariant? Is the equation of conservation of 
energy and momentum frame invariant? The reason it is important to settle 
this question is that we always prefer equations that are frame-invariant [4], 
due to not only their intrinsic elegance but also due to the fact that we may 
need to switch frames in order to be able to solve the particle trajectories [4] 
easier.  Let a frame F’ be another inertial frame moving with speed V with 
respect to F. Substituting: 

2

2

'( ) ( ' ) ( )(1 )

'
'1

( ) ( ' ) ( )( ' )

i
i i

i
i

i

i i i i

u Vu u V
c

u Vu u V
c

u u u V u V

γ γ γ

γ γ γ

= +

+
=

+

= +             (2.4) 

into (2.1) we obtain: 

1 1 1 2 2 2( ' ) ( ' ) ( ' ) ( ' ) ( ')( ' )u m u V u m u V u u V mγ γ γ+ + + = +
    (2.5) 

that is: 

1 1 1 2 2 2

1 1 2 2

( ' ) ' ( ' ) '
( ') ' ( ( ') ( ' ) ( ' ) )

u m u u m u
u u m V u m u m u m

γ γ
γ γ γ γ

+ =
= + − −         (2.6) 
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1 1 2 2

1 1 1 2 2 22

( ') ( ' ) ( ' )

( ( ' ) ' ( ' ) ' ( ') ' )

u m u m u m
V u m u u m u u u m
c

γ γ γ

γ γ γ

− − =

= + −
   (2.7) 

Substituting (2.7) back into (2.6) we obtain the final result: 

2

1 1 1 2 2 22(1 )( ( ' ) ' ( ' ) ' ( ') ' ) 0V u m u u m u u u m
c

γ γ γ− + − =
    (2.8) 

In other words: 

1 1 1 2 2 2( ' ) ' ( ' ) ' ( ') 'u m u u m u u u mγ γ γ+ =
         (2.9) 

So, the equation of conservation of momentum is frame invariant. 
Substituting (2.9) in (2.6) we obtain that: 

1 1 2 2( ') ( ' ) ( ' ) 0u m u m u mγ γ γ− − =
    (2.10) 

i.e., the conservation of energy is frame invariant as well. The fact that both 
momentum and total energy conservation equations are frame invariant 
gives researchers the option to write the equations in whatever frame makes 
the calculations easier to perform [4]. Often the importance of covariance 
of the conservation of energy- momentum is ignored or underestimated, due 
to the fact that neither the energy nor the momentum is covariant as 
explained in [5]. The use of relativistic frame invariants is very well 
established, especially when it comes to the energy-momentum. Most 
traditional treatments use this particular invariant in order to calculate the 
“equivalent mass” of a system or, the “mass added to a system”. The 
systems under evaluations are a most general hybrid made up of both 
massive particles and photons. One question that arises is what happens for 
the case when the direction of the boost is different from the one of the 
particle trajectory. To answer this question we will study a simplified case 
when the boost is oriented along the x-axis and the particle collision is along 

the y-axis, that is: , 1,2(0, ,0)i y iu ==iu
. In other words, we must substitute  

,i i yu u=
 with 1, 2i =  in (2.1)-(2.3): 
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1, 1 1, 2, 2 2,( ) ( ) ( )y y y y y yu m u u m u u muγ γ γ+ =
      (2.11) 

obtaining the equation of momentum conservation, while the equation for 
energy conservation becomes:  

1, 1 2, 2( ) ( ) ( )y y yu m u m u mγ γ γ+ =
             (2.12) 

On the other hand, (2.4) becomes: 

,
,

,
2

, ,

, ,2
,
2 2

,

, ,2

2

, 2 '2
,

2

,
, , 2 '2

,
2

'
0 '

1

' '
( ) ( ) ' ( )'

1 1

'
( )0 ' ( )

1

1( )

( ) 1

'
( )

1

i x
i x

i x

i y i y

i y i y
i x

i y

i z i z

i y

i y

i y
i y i y

i y

u V
u u V

c
u u

V Vu u Vu V V
c c
u

Vu u V
V
c

u
V u

V
c

u
u u

V u
c

γ γ γ

γ γ

γ

γ

γ

+
= =

+

= = =
+ −

= = =
−

=
+

−

=
+

−
   (2.13) 

 

where V is the relative speed between frames F and F’. Substituting (2.13) 
into (2.11)-(2.12) we obtain a very interesting result: 
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1 1, 2 2,

2 '2 2 '2 2 '2
1, 2,

2 2 2

' ' '

1 1 1

y y y

y y y

m u m u mu

V u V u V u
c c c

+ =
+ + +

− − −
  (2.14) 

1 2
2 '2 2 '2 2 '2

1, 2,
2 2 21 1 1y y y

m m m
V u V u V u

c c c

+ =
+ + +

− − −
     (2.15) 

The equations are not as elegant as (2.11)-(2.12). There is a very profound 
lesson resulting from this very simple exercise, the covariance of the 
equations of conservation for energy-momentum is not a given, it needs to 
be established. A judicious choice of frames of reference, like in the 
beginning of the paragraph, results into one (elegant) covariant expression, 
while choosing a frame orthogonal onto the direction of collision results 
into a different-looking, not as elegant, still-covariant expression. In both 
cases the problem reduces to solving a system of non-linear equations of the 
form: 

1 1 1 2 2 2( ) ( ) ( )u m u u m u u muγ γ γ+ =
             (2.16) 

1 1 2 2( ) ( ) ( )u m u m u mγ γ γ+ =
              (2.17) 

that, fortunately, has a very nice solution for both the speed of the resulting 
particle and its rest mass: 

1 1 1 2 2 2

1 1 2 2

1 1 2 2

( ) ( )
( ) ( )

( ) ( )
( )

u m u u m uu
u m u m

u m u mm
u

γ γ
γ γ
γ γ

γ

+
=

+
+

=
              (2.18) 

Or, written in frame F’: 
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1 1, 2 2,

2 '2 2 '2
1, 2,

2 2

1 2
2 '2 2 '2

1, 2,
2 2

' '

1 1
'

1 1

y y

y y

y

y y

m u m u

V u V u
c cu m m

V u V u
c c

+
+ +

− −
=

+
+ +

− −
    (2.19) 

A second question that often arises is: “what happens for collisions between 
particles at non-zero angles”? The answer is very simple, we only need to 
project equations (2.1),(2.3) thrice, once for each axis of coordinates: 

1 1 1, 2 2 2,( ) ( ) ( )
{ , , }

w w wu m u u m u u mu
w x y z
γ γ γ+ =

=            (2.20) 

1 1 2 2( ) ( ) ( )u m u m u mγ γ γ+ =
              (2.21) 

Note that the projection formalism does not affect the 1,2( )i iuγ =

expressions. Therefore, the proof of covariance of the equations of motion 
reduces trivially to the previous proof.  In a frame S’ boosted in the x 
direction with respect to the original frame S, the equations become: 

1 1 1, 2 2 2,( ' ) ' ( ' ) ( ') 'x x xu m u u m u u muγ γ γ+ =
        (2.22) 

1 1 2 2( ' ) ( ' ) ( ')u m u m u mγ γ γ+ =
             (2.23) 

1 1, 2 2,

2 '2 2 '2 2 '2
1, 2,

22 2

1 2
2 '2 2 '2 2 '2

1, 2,
22 2

' ' '

11 1

11 1

w w w

w w w

w w w

m u m u mu
V u V u V u

cc c
m m m

V u V u V u
cc c

+ =
+ + +

−− −

+ =
+ + +

−− −
 (2.24) 
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where { , }w y z= .So, what about the four-vector formalism? It is well 
known that four-vectors provide a “shorthand” way of expressing the same 
information as three-vectors, so recasting the above equations in the four-
vector formalism does not add any information, nor does it simplify the 
proofs8. Using (2.13) we can re-write the energy-momentum four vector as: 

' 2
,

1,22 '2 2 '2 2 '2
, , ,

2 2 2

' 2

2 '2 2 '2 2 '2

2 2 2

( , ,0, )

1 1 1

( , ,0, )

1 1 1

i i yi i
i

i y i y i y

y

y y y

m umV m c
V u V u V u

c c c

mumV mc
V u V u V u

c c c

=

−
=

+ + +
− − −

−
=

+ + +
− − −

'
i

'

p

p

 (2.25) 

Armed with the above, we can write the covariant form of the energy 
conservation theorems in a much more concise form7: 

2

1
2

1

i

i

=

=

=

=

∑

∑

' '
i

i

p p

p p
                (2.26) 

Nevertheless, if we want to derive any measurable information, like the 
speed of the particle after collision or its mass, we need to go back to 
the three-vector formulas (2.18)-(2.19).  

3. Elastic Collisions 

Let’s consider now a more complicated case, the case of elastic collisions. 
After collision the particles have different speeds from each other: 

1 1 1 2 2 2 1 1 1 2 2 2( ) ( ) ( ) ( )u m u u m u U mU U m Uγ γ γ γ+ = +
 

 (3.1) 
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1 1 2 2 1 1 2 2( ) ( ) ( ) ( )u m u m U m U mγ γ γ γ+ = +
              (3.2) 

( )i i iu m uγ
 represent the momenta before collision, 

2( )i iu m cγ
 represent the 

energies before collision, 
( )i i iU mUγ

 represents the momenta after 

collision and 
2( )i iU m cγ
 represent the energies after collision. Inserting 

(2.4) into (3.1) we obtain: 

1 1 1 2 2 2

1 1 1 2 2 2

( ' ) ( ' ) ( ' ) ( ' )
( ' ) ( ' ) ( ' ) ( ' )

u m u V u m u V
U m U V U m U V

γ γ
γ γ

+ + + =
= + + +     (3.3) 

where V is the relative speed between frames F and F’. After isolating the 
terms in V: 

1 1 1 2 2 2

1 1 1 2 2 2 1 1

2 2 1 1 2 2

( ' ) ' ( ' ) '
( ' ) ' ( ' ) ' ( ( ' )
( ' ) ( ' ) ( ' ) )

u m u u m u
U mU U m U V U m
U m u m u m

γ γ
γ γ γ
γ γ γ

+ =
= + + +
+ − −      (3.4) 

Inserting (2.4) into (3.2): 

1 1 2 2 1 1 2 2

1 1 1 2 2 22

1 1 1 2 2 2

( ' ) ( ' ) ( ' ) ( ' )

( ( ' ) ' ( ' ) '

( ' ) ' ( ' ) ' )

U m U m u m u m
V u m u u m u
c

U U m U U m

γ γ γ γ

γ γ

γ γ

+ − − =

= + −

− −   (3.5) 

Substitute the right hand side of (3.5) into the right hand side of (3.4): 

2

1 1 1 2 2 22

1 1 1 2 2 2

(1 )( ( ' ) ' ( ' ) '

( ' ) ' ( ' ) ' ) 0

V u m u u m u
c

U mU U m U

γ γ

γ γ

− + −

− − =      (3.6) 

That means that the equation of momentum conservation is frame-invariant: 
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1 1 1 2 2 2

1 1 1 2 2 2

( ' ) ' ( ' ) '
( ' ) ' ( ' ) '

u m u u m u
U mU U m U

γ γ
γ γ

+ =
= +            (3.7) 

Substituting (3.7) into (3.5) we obtain that the energy conservation equation 
is frame invariant: 

1 1 2 2 1 1 2 2( ' ) ( ' ) ( ' ) ( ' )U m U m u m u mγ γ γ γ+ = +
             (3.8) 

The fact that both momentum and total energy conservation equations are 
frame invariant gives researchers the option to write the equations in 
whatever frame makes the calculations easier to perform. 
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CONSERVATION LAWS FOR PLASMA SYSTEMS 
 
 
 

Synopsis 

The use of relativistic frame invariants is very well established, especially 
when it comes to the energy-momentum. In the following paper we clarify 
the terms “conserved” vs. “frame invariant” and we explain the differences 
between the two concepts. Our paper is divided into three main sections. In 
the first section we explain the notion of frame invariance. In the second 
section we explain the energy-momentum conservation. We end up by 
giving a practical example (a hybrid plasma gas) of an open system, 
whereby energy and momentum are added from outside the system. We will 
show the interesting effects caused by adding photons to a system of 
massive particles. The new approach is extremely important in applications 
like particle accelerators where we can only work with directly measurable 
quantities, the kinetic energy KE and the momentum p. 

1. Relativistic Frame Invariance 

Frame-invariance is one of the most important properties in special 
relativity. As physicists, we try to express the laws of physics in frame 
invariant quantities in order to take advantage of the important property of 
such quantities remaining unchanged when passing from one inertial frame 
to another. It is well known that in relativity, the total energy (E) and the 
three-vector momentum (p) of a single particle are frame variant:  

2( )E u mcγ=      (1.1) 

( )u mγ=p u      (1.2) 

The kinetic energy: 
2 2( )KE u mc mcγ= − is also frame variant. 

By contrast, the norm of the energy-momentum four-vector ( , )E c=P p
 

is frame invariant: 
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2 2 2 4. ( )E c mc  PP p 
    (1.3) 

In the present paper we will make extensive use of the frame variant 
quantities E and p as well as the frame invariant norm of the energy-
momentum. 

2. Transformation of Energy and Momentum between 
Frames 

We have already shown that neither energy, nor the momentum is frame 
invariant, therefore it becomes interesting to derive the mathematical 
transformations when passing from one inertial frame to another. In the 
general case of arbitrary orientation between the axes of S and S’ moving 
with the relative velocity v: 

( )( ' ' . )E v E  p v     (2.1) 

2
1

2 2' ( )((1 ( )) '. ')vv v E
c v

     
vp p p v

  (2.2) 

Since the velocity v between S and S’ is constant, by differentiating (2.1)-
(2.2) we obtain: 

( )( ' ' . )dE v dE d  p v     (2.3) 

2
1

2 2' ( )((1 ( )) '. ')vd d v v d dE
c v

     
vp p p v

 (2.4) 

Both (2.3) and (2.4) are instrumental in the computations involved in the 
next section. 

3.  The Theorems of Energy-Momentum Conservation  
for Closed Systems of Massive Particles  

Let the total energy of a system of particles with arbitrarily distributed 

velocities iv
  in a frame of reference S be: 
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2
i iE c m 

     (3.1) 

2

2

1

1
i

iv
c

 


 

The total momentum in frame S is: 

i i imp v
     (3.2) 

Let us calculate: 

2 2 4 2 2( ) ( ) ( )i i i j i j i jE c c m c mm      p v v
 (3.3) 

We can always find M and V such that: 

2 2 ( )i iE c m c V M   
    (3.4) 

( )i i im V M  p v V
    (3.5) 

so 
2 2 2 4( )E c M c p     (3.6) 

is clearly invariant. Obviously from (3.1),(3.2),(3.4) and (3.5) we obtain: 

i i i

i i

m
m








vV

     (3.7) 

( )
i imM
V





     (3.8) 

Expression (3.8) provides the relativistic equivalent mass of the system of 
massive particles while (3.7) represents the average relativistic speed. In 
classical mechanics energy and momentum conservation are independent of 
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each other. Not so in relativity, courtesy of expression (3.6). Differentiating 
(3.6) we obtain: 

2 4EdE c d c MdM p p     (3.9) 

A closed system is defined by dM=0, or its equivalent:  

2 0EdE c d p p      (3.10) 

Theorem1: A closed system that exhibits conservation of three-momentum 
p will also exhibit conservation of energy. 

Proof: 0 0d dE  p     (3.11) 

Theorem2: If energy is conserved with respect to an inertial frame S’, then 
it is conserved with respect to any other inertial frame S. 

Proof: We start with: 

 ( )( ' ' . )dE v dE d  p v     (3.12) 

From (3.10) we infer that ' 0 ' 0 0d dE dE    p  so 

 ' 0 0dE dE        (3.13) 

Theorem3: A closed system that exhibits conservation of energy will 
exhibit conservation of momentum. 

Proof: From theorem2 we obtain  

0 ' 0 ' 0 ' 0dE dE d d      v. p p . (3.14) 

Theorem4: If momentum is conserved with respect to an inertial frame S’, 
then it is conserved with respect to any other inertial frame S. 

Proof: We start with: 

2
1

2 2' ( )((1 ( )) '. ')vd d v v d dE
c v

     
vp p p v

 (3.15) 
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We already know that ' 0 ' 0d dE  p  so (3.15) implies 
immediately that ' 0 0d d  p p . 

Theorem5: If the four-vector momentum is conserved then the total energy 
and the total three-vector momentum are also conserved: 

Proof:  

If 
0d P

     (3.16) 

then: 

0d E and 
0d p

    (3.18) 

Consequence: since 
0d p

it follows trivially that
0d

dt
 p

, that 
is:  

0f
      (3.19) 

4. Open Systems: Hybrid Plasma Gasses Composed 
 of a Mix of Massless and Massive Particles 

Imagine that we add a photon to the system of massive particles described 
in the previous paragraph. Such hybrid systems made up of photons injected 
into plasma form the object of statistical [8] or of kinematic treatments [9]. 
By contrast, we will show a relativistic-invariant based treatment, similar to 
the one shown in [7] while using the theory developed in the preceding 
paragraphs.  Obviously, since the system is not closed, the energy and 
momentum will vary due to the addition of the photon to the existent system. 
To fix the ideas, let’s assume that we add a photon of energy e and 
momentum p to a system of massive particles of total energy E and total 
three-vector momentum P. This is a common application in the study of 
plasma systems where electromagnetic energy is injected gradually. By 
using (3.3) we can derive a very interesting result. Let us calculate: 
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2 2 2 2 2

2 2 2

( ) ( ) ( ) ( )( )
( ) 2( )

E c E e c
E cP Ee c
        

   

p P p P p
Pp  (4.1) 

max PpPp
     (4.2) 

2 2
min( ) Pp=pc(E-Pc) 0Ee c Epc c   Pp

 (4.3) 

2 2 2 2( ) ( )( ) ( )E e c E cP     P p P p   (4.4) 

The above shows that the addition of the photon results into an increase of 
the value of the expression (4.1). 

Adding a system of photons having the total energyEeand the total three-
vector momentum  p  to the system of massive particles produces an 
interesting situation: 

2 2

2 2 2 2 2 2

2 2 2

( ) ( )( )
2 ( ) ( ) 2
( ) 2( )

E e c
E E e e cP c p c
E cP E e c

    

          

     

P p P p
P p

P p  (4.5) 

max( ) P p  P p
     (4.6) 

2 2
min( ) ( ) 0E e c E e c P p c E Pc p          P p

  (4.7) 

2 2 2 2( ) ( )( ) ( )E e c E cP     P p P p  (4.8) 

In other words, the addition of photons to a system of particles always 
results into an increase of the expression evaluated by (4.5). Finally, from 
the above formalism we can easily compute [6] the “equivalent mass” of the 
system as a function of its directly measurable kinetic energy KE and the 
three-vector total momentum P: 
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2 2

2

( )
2 *
c KEM
KE c

−
=

P
     (4.9) 

From (4.9) it follows that when photons are injected, the system mass can 
also be expressed as a function of directly measurable quantities like the 
total kinetic energy KE and its total momentum P. The equivalent mass 
variation for such an open system as a function of the variation of the total 
kinetic energy d(KE) and the variation of total momentum dP (also as a 
scalar) is: 

2 2

2 2

( ) ( )
2

P Pc KEdM dP d KE
KE KE c

+
= −

  (4.10) 
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PRACTICAL AND THEORETICAL METHODS  
FOR DETERMINING THE TRAJECTORIES FOR 

PARTICLES INVOLVED IN ELASTIC COLLISIONS 
 
 
 

Synopsis 

The present chapter shows how to use the conservation of the energy-
momentum in order to determine the trajectories of two particles after they 
are subjected to an elastic collision. While the problem is studied in existent 
literature, there are severe limitations in the solutions, like the fact that the 
solution only determines the angle between the particles after the collision 
and not their exact trajectories. This is not very satisfactory when it comes 
to setting up experiments aimed at verifying the theoretical predictions.  In 
the following paper, we will show how to obtain a much more detailed fix 
of the trajectories of the particles post collision by determining their exact 
angles with respect to the trajectory of the particles before the collision. The 
new approach is extremely important in applications like particle 
accelerators where we can only work with directly measurable quantities, 
the kinetic energy KE and the momentum p.  

1.  Elastic collision of two arbitrary mass particles 

Consider two particles of rest masses 1m
 and 2m

.  In the most general case 

1 2m m≠
. The case 1 2m m=

 is well represented in literature [1,2] and 
we will show later on how our solution reduces in the limit to the existent 
ones. It is well known that in relativity, the total energy (E) and the three-
vector momentum (p) of a system of particles involved in a collision are 
conserved [3]:  

1 2 3 4E E E E+ = +
     (1.1) 

1 2 3 4+ = +p p p p
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In the above, 1 2 1 2, , ,E E p p
 are the total energies / momenta of the two 

particles before the collision,  3 4 3 4, , ,E E p p
 are their total energies / 

momenta after collision.  

2

2 2 2 2
i

2

2

( ) , 1, 2,3, 4
( )

(p c) ( )
1( )

1

i i i

i i i i

i i

i

i

E v m c i
v m

E m c

v
v
c

γ
γ

γ

= =
=

− =

=

−

p v

    (1.2) 

 

Fig. 1 The collision of two particles 


