Overturn Countermeasures for Vehicles

Overturn Countermeasures for Vehicles:

 $History\ of\ the\ Rollbar$

Ву

Melvin L Myers

Cambridge Scholars Publishing

Overturn Countermeasures for Vehicles: History of the Rollbar

By Melvin L Myers

This book first published 2022

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2022 by Melvin L Myers

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-7788-0 ISBN (13): 978-1-5275-7788-6 I dedicate this book to the memory of my loving wife, Annette Bass Myers, who instilled fiction-like narration into my approach by example and provided me with time to write this book before her death in 2020, a victim of the Corona-19 pandemic.

Annette Bass Myers December 23, 1939-December 14, 2020

"These machines are potential death traps."
—O.S. Randall, MD, 1949

TABLE OF CONTENTS

List of Figures	xiv
List of Tables	XVii
Cast of Characters	xix
Preface	xxi
Part I: Silent Epidemic	
Chapter 1	3
Life in the Balance	
The Horseless Carriage	5
Strength and Safety	6
Auto Polo	7
The Little Bull	8
On-Road Fatalities	11
Off-Road Fatalities	12
Stability	13
Cars	15
Tractors	
Chapter 2	19
Engineering Revision	
Be Careful	22
Fundamental Attribution Error	24
Common Causes	
The Safety-Risk Paradox	
Eliminating the Overturn Hazard	
Guarding against the Overturn Hazard	
Warning about the Overturn Hazard	

Chapter 3	34
The Tipping Point	
Steamrollers	36
Traction Engines	
The Fordson	
Tip-Over Propensities	
McKibben and Tractor Stability	
Tipping Time	
Sprags	
The Three-point Hitch	
Chapter 4	47
Rollovers and the Farm Safety Movement	
Death Toll	54
National Safety Program	
National Institute for Farm Safety	
Rollover Demonstrations	
Chapter 5	59
Other Prime Movers and Falling Objects	
Forestry	61
Construction	62
US Forest Service	65
US Army Corps of Engineers	
US Bureau of Reclamation	
US Bureau of Mines	
Engineering Science	
CIMA Proposals	
SAE ROPS Standards	
Falling Object Guards	
Stability	
Conclusion	
Part II: Prevention	
Chapter 6	81
The Roll Guard Idea	
A Human Hazard	83
Tractor Guards	85
Sweden and the Safety Frame	87
New Zealand and the Anti-Roll Device	

Inventors Recognize the Problem 91 California and the Driver Safety Frame 93 North Dakota and the Anti-Rollbar 96
John Deere and the Dreyfuss Effect
Michigan and the Utility Rollbar
Chapter 7
Prevention Affirmed
1960—The McClure and Lamp Study
1962, 1968—The Knapp Epidemiology Studies
1966-1968—The National Safety Council
1966-1968—The Schnieder Study
Symposium on Tractor Rollbars
Public Employee Protection
Tractor Overturn Prevention and Protection (TOPP)
Resolutions
The Roll-Gard 111
Few Takers
International Harvester and Massey-Ferguson
Standards
Farm and Industrial Equipment Institute Proposed Standards
John Deere Contribution to the Deliberations
ASAE and SAE Standards
Race to the Bottom
Chapter 8
Federal Intervention
Construction Safety Act
Rulemaking
The Retrofit Issue
Industrial Lift Truck Standards
Logging Standards
Chapter 9
The International Picture
Sweden and the Nordic Countries
New Zealand 143
Great Britain 145
Canada
Germany
Australia 150

Italy	153
Other Countries	
Europe	155
International Standards Organization	
Organization for Economic Cooperation and Development	157
Chapter 10	162
Speed and Motorsports	
Motorsport	164
Fatalism	168
Deaths in Motorsport	169
Aley Rollbar	170
Roll-Cages	171
Crashworthiness	172
Rollover Protection	174
The Survival Cell	175
The Halo	178
Global Institute for Motor Sport Safety	179
Part III: The Wicked Problem Chapter 11	185
Moral Hazard	103
The American Society of Agricultural Engineers Plan	195
Congressional Action	
The Investigation	
The Public Meeting and Proceedings	
The Retrofit Issue	
Report and Recommendations	190
Safety Cabs	
Mounting Evidence	
The Standards Advisory Committee on Agriculture	
Subcommittee on ROPS	202
The Standard	
The Loophole	
The Compactor Loophole	
Protection Deferred	
Recognized Hazard	
10008111200 1102010	207

Chapter 12	211
Legacy of Human Wastage	
Loss of Life	212
Latency	212
A Machine Problem	213
ROPS Prevalence on Tractors	214
Avocational Farmers	216
The Advocates	218
Defects	220
Torts	221
Standard Equipment	222
A Report to the Nation	225
Surgeon General's Conference	226
Harvest of Harm	229
Occupant Restraints	231
-	
Chapter 13	234
Fixing the Problem	
The Stability Index	236
Cost-Effective ROPS (CROPS)	
Folding ROPS	239
AutoROPS	241
Industry Retrofit Campaigns	243
Kentucky Community Partners ROPS Project	244
The Virginia Farm Bureau Retrofit Grant Campaign	245
The Jelliff Initiative	246
Prevention Effectiveness	247
Benchmarks	249
Retrofit Barriers and Motivators	250
Social Marketing in New York	252
The CROPS Demonstration	254
The CROPS Curriculum	255
National Coalition	257
Chapter 14	260
Rollover Dangers of Small Vehicles	
All-Terrain Vehicles (Straddle Vehicles)	262
The Epidemic	
Australia and New Zealand	
Prevention Approaches	
Crush Prevention Devices	

Battle Royal	271
An Alternative to ATVs	274
An Emerging Epidemic	275
Rollbar Hand	
The Ride Act and Beyond	
The Lawn Tractor	
Ride-on Lawnmowers	
AutoROPS	
Chapter 15	286
Highway Travel and Roof Protection	
The Epidemic	
Early Policy	
Haddon Matrix	
The Nader Effect	292
Crashworthiness	293
Problem Recognition	295
Circumstances	296
The Jeep and MUTT	297
Sport Utility Vehicles	298
The Five Star Rating System	
Advocacy	303
Crashworthiness Revisited	
The Roof Standard	
Convertible Rollbars	
Trucks	
P. 11	212
Epilogue	312
Appendix A	314
Agricultural Engineering Historic Landmarks	
Appendix B	217
	31/
List of Fatal Overturns of Racecars	
Appendix C	319
Articles Related to Automobile Rollovers	
The Contents of a Compendium of Articles Related to Automobile	
Occupant and Vehicle Rollovers Based on a Literature Review, 2004	

Overturn Countermeasures for Vehicles: History of	the Rollbar xiii
List of Abbreviations	322
References	325
Index	368

LIST OF FIGURES

Part 1

- Fig. 1-1. The Jeep that overturned
- Fig. 1-2. Dodge Brothers Advertisement, all-steel body, 1926
- Fig. 1-3. Rough and tumble of auto-polo with rollbars between 1910 and 1915
- Fig. 1-4. Protective frame for an auto-polo sports car
- Fig. 1-5. Anti-tipping device for tractors on the Bull tractor.
- Fig. 1-6. 3,756,064 motor vehicle deaths by year, 1899-2017, United States
- Fig. 1-7. Stability baselines and the center-of-gravity on vehicle wheel stances
- Fig. 1-8. Example of a tilt table test on an all-terrain vehicle
- Fig. 1-9. The measurements for the Static Stability Factor
- Fig, 2-1. Waterloo Boy
- Fig. 2-2. The time to reach a tipping point in tractor overturns
- Fig. 2-3. A control chart
- Fig. 2-4. A safety device to stop an automobile rollover
- Fig. 2-5. A safety frame invention to guard against injury in an automobile rollover
- Fig. 3-1. US World War I poster
- Fig. 3-2. The Fordson, c. 1920
- Fig. 3-3. c. 1920 Fordson rear overturn
- Fig. 3-4. Time to the tractor tipping point to the rear
- Fig. 3-5. Fordson tractor with fenders attached as protection from rear flip over
- Fig. 3-6. Wheelie Bar
- Fig. 3-7. Safety attachment to tractors
- Fig. 3-8. Draft plow compared to the Ferguson 3-point hitch
- Fig. 4-1. The Farmall
- Fig. 4-2. General purpose tractor with rubber tires and attached cultivator
- Fig. 4-3. Barney Oldfield demonstrating speed using rubber tires
- **Fig. 5-1**. Exemplar relics of machines other than wheeled tractors that pre-date the adoption of rollover protection
- Fig. 5-2. Early crawler tractor logging in Arizona
- Fig. 5-3. A design of one the crawler tractor canopies used in the 1955 and 1956 US Forest Service falling tree and overturn tests
- Fig. 5-4. Two dozers grading—Alaska-Canada Highway
- Fig. 5-5. A patent drawing of an overhead protection rack

Part 2

- Fig. 1. A flowchart showing the steps for a prevention effectiveness analysis
- Fig. 6-1. Horse power decline among draft animals and the increase in tractor horsepower, 1910-1960
- Fig. 6-2. Crawler and wheeled tractor overturn-related deaths in New Zealand, 1949-1959
- Fig. 6-3. Osborne Maybrier. Safety Guard for a Tractor Operator
- Fig. 7-1. Rollbar use by the Illinois Division of Highways, 1965
- Fig. 7-2. Model of John Deere 4010 with a Roll Gard
- Fig. 7-3. Tractor Canopy
- Fig. 7-4. A flow chart of the standards development process
- Fig. 8-1. OSHA training depiction of the tipping point between the lift truck and load centers of mass (gravity)
- Fig. 8-2. Pie chart showing the percentage of lift truck overturn-related deaths by industry, 2005-2006
- Fig. 8-3. Surface mining equipment with ROPS-cab
- Fig. 9-1. The path to ROPS protection to implementation in Sweden, 1958-1990.
- Fig. 9-2. A PAMI retrofitted tractor in British Columbia, 2010
- Fig. 9-3. Unit Cost (Canadian) of ROPS from different sources.
- Fig. 9-4. Types of incidents causing 162 deaths or injuries in Australia 1964-1966
- Fig. 9-5. Annual reduction in tractor-related overturn-related fatalities in Victoria, Australia. 1985-2009
- Fig. 10-1. Rollover during the 1910 Prescott, California to Phoenix, Arizona Race.
- Fig. 10-2. Golden Submarine replica with an open door
- Fig. 10-3. The annual number of racecar deaths showing the proportion of lateral and longitudinal overturns, 1964-1969
- Fig. 10-4. Roll hoop, 1963
- Fig. 10-5. Roll-cage
- Fig. 10-6. A carbon fiber monocogue with a rollbar attached.
- Fig. 10-7. Aero roll structure
- Fig. 10-8. Roll blade structure

Part 3

- Fig. 11-1. An example of a ROPS on a compactor
- Fig. 12-1. The tractor-related fatality rate per 100,000 male farm residents in Wisconsin, 1961-1975
- Fig. 12-2. Percentage of tractors per farm without a ROPS in Kentucky
- Fig. 12-3. Yanmar markets in the United States, 1980
- Fig. 12-4. Tractors in use in 1993 by ROPS (including cab)
- Fig. 13-1. A CROPS mounted on a Massy-Ferguson 135 tractor
- Fig. 13-2. A fatal tractor rollover on which the FROPS is folded down.
- Fig. 13-3. AutoROPS field tests for side rollover.
- Fig. 13-4. Cost-effective Rollover Protective Structure (CROPS) on a Ford 8N
- Fig. 14-1. Decreased stability (roll angle) with riders on the vehicle.
- Fig. 14-2. An example of a three-wheel ATV

- Fig. 14-3. Example of a modern 4-wheel ATV (quad bike)
- Fig. 14-4. ATV fatalities in the United States, 1982-2016
- Fig. 14-5. Manikin on the ATV with a Quadbar CPD
- Fig. 14-6. Manikin on the ATV with a Lifeguard CPD
- Fig. 14-7. ATV interaction with ATD pelvis, abdomen, thorax, or head
- Fig. 14-8. A modern lawn tractor with a solid rollover protective structure
- Fig. 14-9. A side-by-side vehicle with a front passenger grasp handle
- Fig. 14-10. A pie chart of US fatalities regarding ATVs vs side-by-side vehicles
- Fig. 14-11. A modern lawn tractor with a solid ROPS.
- Fig. 14-12. Quadbar Flexi on a lawn tractor. Photo by author.
- Fig. 14-13. A Zero-Turn Radius (ZTR) Mower
- Fig. 14-14. NIOSH AutoROPS on a Scag Zero-Turn Radius Lawnmower
- Fig. 15-1. Trend of Motor Vehicle Fatality Frequency and Rates
- Fig. 15-2. Pillar (rollbar) alphabetical identification convention
- Fig. 15-3. Dynamic rollover test
- Fig. 15-4. An example of window labels required on new vehicles
- Fig. 15-5. Example of variable ride-height
- Fig. 15-6. Car rolled twice; driver protected by seatbelt, air bag, and roof
- Fig. 15-7. Fixed rollbars on a modern convertible
- Fig. 15-8. An active ROPS on a 2002 Volvo
- Fig. 15-9. Truck rollover sparking a fire, 1977
- Fig. 15-10. A ROPS fabricated for a heavy truck tractor

LIST OF TABLES

- Table 1-1 Haddon Matrix as applied to an exemplar scenario of an auto-polo crash
- **Table 2-1** Results of an analysis of 100 tractor overturns
- Table 2-2 Signal words for use on agricultural equipment
- **Table 5-1** Construction vehicle-related fatalities reported by the California Division of Labor Statistics and Research during 1965 and the first six months of 1966
- **Table 5-2.** Sequence of overturn tests conducted on two commercial canopies on two crawler tractors
- **Table 5-3.** Forces exerted on the canopy and canopy post in a sequence of five falling object and rollover tests
- **Table 5-4.** Specification for rollover protective system and protective canopies, 1967
- **Table 5-5.** Six phases of engineering of ROPS in order, protective canopies, 1967
- **Table 5-6.** Stability tests of lift trucks while stacking and traveling based on 1959 ANSI Standards
- **Table 6-1.** Fatal tractor overturns reported to the National Safety Council as of 1953 by one Province and five States based on all farm-related fatality reports
- **Table 7-1.** Participants in FIEI Safety Committee meetings considering SAE rollover protective recommend practice for agricultural and light industrial tractors, 1966-1967
- **Table 7-2.** ROPS standards established by ASAE and SAE for off-road vehicles
- **Table 8-1.** ROPS standards established by California and SAE for off-road Vehicles
- **Table 8-2.** OSHA roll-over protection structures and overhead protection requirements, 1972
- Table 9-1. Rules and average rate of overturn-related fatalities
- **Table 9-2.** Deaths related to tractor incidents in New Zealand. 1949-1959
- **Table 9-3.** Comparison of fatalities associated with side and rear tractor overturns on roads and farms by degrees in Alberta, Canada, 1963-1965
- **Table 9-4.** ISO standards regarding rollover protective structures for agriculture and forestry tractors
- **Table 9-5.** Countries that participate in the OECD tractor codes
- Table 9-6. OECD tractor codes related to rollover
- **Table 10-1.** The five tracks (circuits) with the most driver deaths as of 2014
- **Table 10-2.** A sample of circumstances of fatal overturns in motorsports, 1925-1992
- Table 10-3. Rollover protection FIA rules
- **Table 10-4.** Survival cell crashworthy protection FIA rules
- Table 10-5. FIA Institute for Motor Sport Safety Research Groups

xviii List of Tables

- **Table 11-1.** American Society of Agricultural Engineers Agricultural Safety 10-Year Plan
- **Table 11-2.** Two competing amendments in the U.S. House of Representatives to the National Traffic and Motor Vehicle Safety Act of 1966, P.L. 91-265, 1970
- **Table 11-3.** Farmer affirmative responses in the *Successful Farming* Poll, 1970
- **Table 11-4.** Public Perspectives
- **Table 11-5.** Industry Perspectives
- Table 11-6. Standards Advisory Committee on Agriculture
- **Table 12-1.** Tractor liability cases on the April 25, 1984 meeting agenda of the FIEI Product Liability Policy Advisory Committee
- Table 12-2. Barriers by interest groups to preventive actions to injuries on farms
- **Table 12-3.** ROPS comments from the Surgeon General's Conference on Agricultural Safety and Health, 1991
- Table 13-1. NIOSH Centers for Agricultural Safety and Health
- **Table 13-2.** Clusters of common axle designs allowing crossovers of rollbar designs based on a design of one model
- **Table 13-3.** Number of ROPS sold by seven dealers by make, Branford County, Pennsylvania, 1999-2000
- **Table 13-4.** Estimated number of tractors on US farms and ROPS prevalence by region, 2004
- **Table 13-5.** Social marketing steps used in the New York demonstration project for ROPS retrofits
- **Table 13-6.** Number of CROPS fitted on tractors by NIOSH in six States as of 2012
- **Table 13-7.** Number of CROPS fitted on tractors by the Kentucky Center in 10 States. 2013-2019
- **Table 13-8.** Replication of the New York Model across the United States
- Table 14-1. Industry and CPSC safety messages to consumers
- **Table 14-2.** Star Ratings for 16 small vehicles evaluated for safe operation
- **Table 15-1.** Exemplar Haddon Matrix of automobile rollover risk factors
- Table 15-2. Five Star Rating for a vehicle's rollover resistance

CAST OF CHARACTERS

Aley, John Arndt, Janes F. Ashford, Nicholas Ayers, Paul D. Baker, L. Dale Barard, John Berry, Thomas A. Bjeninger, J.S. Block, Byron Brasky, E.F.

Browning, Steven R.
Buchele, Wesley F.
Budd, Edward Gowan
Burks, G. Edwin
Cavender, Norman
Chapman, Colin
Claybrook, Joan
Cole, Henry P.

Crosbie, John Clement

Crowley, J.H.
Day, Leslie M.
De Haven, Hugh

Dodge, John and Horace

Donham, Kelley Dreyfuss, Henry Etherton, John R. Ferguson, Harry Ford, Henry Forney, Reuben L. Freeman, Steven A.

Gerberich, Susan Goodwin

Groves, William Grzebieta, Raphael Haddon, William, Jr, Hallman, Eric M. Hankinson, Ralph Hansen, Merlin Hanson, Warren I Hard, David L. Harkin, Tom Harrington, Roy Hartsough, D. Maurice

Hoy, Roger. M.
Jelliff, Gregory R.
Jenkins, Paul
Karson, Jay
Kaiser, Henry J.
Kelsey, Timothy
Khorsandi, Farzaneh
Klauemeyer, Bradley L.
Knapp, Lafayette Whitmore

Kuhns, George C.
Lamouria, Loyde
Lamp, Benjamin J
Lorenzen, Coby
Loringer. Kelly A.
Lower, Tony G.
MacCollum, David
Manby, David
May, John J.
Mazur, Joan M.
McClure, Walter P.

McDonald, Geoffrey Lloyd

McKenzie, Eugene McKibben, E.G. Merchant, James A Millar, J. Donald Miller, Harry Arminius Moberg, Harold A:Son Morrison Charles S. Mosley, Max Murphy, Dennis J. Myers, John R.

Murphy, Dennis J Myers, John R. Myers, Melvin L. Nader, Ralph Noren, Jay

Novello, Antonia C. Oden, Derek S.

Oldfield, Barney Rains, Glen C. Pana-Crvan, Regina Parks, Ralph R. Pratt, Stephanie Purschwitz, Mark A. Rechnitzer, George Robertson, David Robertson, Leon S. Reynolds, Stephen J. Rush, John D. Rollin D. Schnieder Soule, Thomas Severt, John B. Sevart, Kevin B. Shanks, Graham L. Schafbuch, Morgan Skromme, Arnold B. Smith, Neal Snyder, Karl

Sorensen, Julia A. Springfedt, Bergt Stephanson, B.T. Stewart, Jackie Stone, E. Bruce Stratton, Samuel Tempas, W.J. Tinc, Pamela J. Topping, John Tucker, Preston Wardle, Norval Watkins, Sid Westneat, Susan C. Wilkinson, Brian Volpe, John A. Woodward, J.L. Worthington, Wayne Yeh, Rudolph L Yoder, Arron M. Zink, Carlton

PREFACE

I grew up on a farm in the Black Canyon Irrigation District near Caldwell, Idaho in the United States. My father "reclaimed" the land in 1951 from sagebrush to grow crops when I was but seven-years of age. He used a World War II Jeep and a buck rake as his first farm implements. Potatoes were one of his first crops along with alfalfa hay and wheat as a cash crop. The hay was initially used to feed our livestock, which included a couple of milk cows. It was not long until, he invested in a tractor, a Ford 8N, and soon after that, a used Ferguson tractor.

As I grew up, our acreage expanded, and I became part of the labor pool, learning to drive a tractor at 9 years of age. My initial tractor driving was always in low gear as my father loaded hay bales onto a trailer or a "slip" (boards nailed together with a tow line) pulled by the tractor. Harvesting hay, irrigation, and milking cows became part of my sunup to sundown life up through my teenage years.

Safety was an important consideration. My father would instruct me over-and-over, to never put my fingers between the guards on the sickle bar on a side mounted mowing machine (a Ferguson) where the movement of the sickle blades could cut off my fingers. When I was 12-years of age, safety became more personal. I was mowing a field of alfalfa on a farm four miles (6.4 km) from our home, and when finished with the mowing, I raised the mower sickle bar up vertically and bolted it into place for my drive home. I drove onto the gravel road and headed home. I put the tractor gear into travel mode at 12 miles-per-hour (19 kph).

Minutes down the road, the sickle bar crashed down onto the steering wheel, but it missed my head as I looked around the right side of the hood of the tractor since I was small and could better see the road that way. A sickle guard on the mower bar stabbed me in the back. I only realized this later, for I had to contend with an emergency. The tractor was still moving, and I was blocked by the bar from reaching the clutch on the left side of the tractor. The only control that I had was to hold onto the immobilized steering wheel and stand on the two brakes—one for the left rear wheel and the other for the right—on the floor ramp on the right side. I jumped upand-down on those brakes, one for each rear wheel. The tractor veered to the left and off the road and into a ditch, where a front wheel lodged, and

xxii Preface

the tractor motor stalled.

I got off and looked at the wreck. "Boy! My father is going to be mad," I thought. Then, I reached my right hand over my left shoulder to feel a wound. My hand returned wet with blood, which had soaked through the back of the white T-shirt that I was wearing. I walked home, and when I arrived, my mother took control of my care. She drove me to the doctor while my father and a hired man left to look after the tractor. I was pleased that my father was concerned about my well-being and not mad. Eight stitches later, I was home. I keep a scar as evidence of the dangers lurking on the farm. Two of the stitches were internal, and years later I was reminded of that event as plastic thread migrated out through my skin near the scar.

In those days in the 1950s, being careful was the watchword for keeping safe. I now reflect on the dangerous maneuvers that I performed as part of my work as a tractor driver. When crossing a ditch or pulling a heavy load of hay, I found that the front of the tractor could easily rear up. I turned this phenomenon to my advantage, for I could stop the rearing up in mid-air by stomping down on the clutch, then letting the tractor drop to give a boost to move the tractor's rear wheel from the ditch or get the heavy-loaded slip moving. It was only much later that I became aware of the danger of the tractor rearing up.

I graduated from the University of Idaho in 1967 with a degree in agricultural engineering. My career started as a design engineer at the Hyster Company, and then I was commissioned as an Officer in the US Public Health Service where later, I was responsible for the Surgeon General's Conference for Agricultural Safety and Health in 1991. Emerging from that conference was the need to do more about the epidemic of deaths from tractor overturns. This book focuses on overturn hazards and rollover protective structures, its history including rollbars on other vehicles, and struggles for abatement.

I wish to acknowledge my many co-authors in other writings about this issue. Foremost, I wish to thank Henry P. Cole, my colleague at the University of Kentucky with whom I conducted much research and where I was also joined by Susan C. Westneat. Other colleagues in the research included Joan Mazur, Mark A. Purschwitz, and Daniel M. Saman. Research related to tractor use on fish farms involved my colleague from Kentucky State University, Robert M. Durborow, and at the Mississippi State University, Greg A. Ibendahl and Walter B. Stephens.

One of my first publications regarding the tractor overturn hazard was shared with my senior author from the National Institute for Occupational Safety and Health (NIOSH), John R. Etherton. I collaborated with Rene

Pana-Cryan at NIOSH in cost-effectiveness research regarding rollover protection on tractors and also at NIOSH with John R. Myers in a study of tractor rollover protection prevalence on catfish farms. He also shared in the planning and proceedings of the Surgeon General's Conference on Agricultural Safety and Health, which highlighted the problem of tractor overturns and the known solution, the rollover protective structure. We were ioined in that effort by Robert F. Herrick, Steve A. Olenchock, Jack E. Parker, and David L. Hard, all of NIOSH, as well as Katherine Wilson of the Centers for Disease Control and Prevention. I participated with Kelly Donham, David Osterburg, and Carol Lehtola in a meeting at the University of Iowa and the publication of Tractor-Risk Abatement and Control: A Policy Conference. I also thank my recent collaborators Timothy Kelsey of Penn State and Pamela J. Tinc, Julia A. Sorensen, and Paul Jenkins of the New York Center for Agricultural Medicine and Health in the stimulation of ROPS (rollover protective structure) retrofits on older tractors and Farzaneh Khorsandi of the University of California and Paul Avers of the University of Tennessee to bring attention to rollover protection on allterrain vehicles (ATVs). I also want to acknowledge David V. MacCollum (now deceased) of Arizona, a pioneer in rollover protection and his insights about rollbars on off-road vehicles other than farm tractors. In addition, I acknowledge my friend. David Robertson in Australia, for his insights into crush protection related to ATV rollovers.

Each chapter and section of the text begins with a pithy quote (an epigraph) as a thematic introduction to what follows.

PART I

SILENT EPIDEMIC

The hazardous characteristics of certain products are obvious, but their consequences are often ignored.

-Leon S. Robertson, 1998

In this part of the book, I deal with a century-long emerging epidemic of deaths and injuries associated with vehicle overturns, emphasizing the agricultural tractor and other off-road vehicles, but with later chapters devoted to motor sports, small quadricycles, and automobiles. In this part of the book, I describe the common cause of a growing and silent epidemic of vehicle overturn-related deaths and serious injuries up through the 1940s: The US Centers for Disease Control and Prevention defines an epidemic as follows: (CDC 2011)

"an occurrence of more cases of disease, injury, or other health condition than expected in a given area or among a specific group of persons during a particular period. Usually, the cases are presumed to have a common cause or to be related to one another in some way."

When vehicles are a common cause of injury, whether off-road or onroad, and topple over and crush or squeeze the life from thousands of people, an epidemic occurs; at first, a silent epidemic of death, but when recognized, pretexts emerge to keep the status quo and thus stall preventive action (the wicked problem). Early on, a decades-long emphasis on automobile collisions regarding pedestrian and driver behavior and roadway design diverted much attention from vehicle design and overturns until the 2000s.

The first five chapters set the stage to understand the cause of vehicle overturns, associated serious and fatal injuries, and the engineering approach that battles future pretexts for inaction. Chapter 1 reveals the century-long epidemic and the problem of vehicle instability and gives an overview for the book. Chapter 2 explains the problem of blaming the victim and engineers' shift to injury prevention by design starting in the 1910s. Chapter 3 examines the special problem of rear flip-overs of tractors in the 1920s, and Chapter 4 describes the causes of tractor rollovers to the side and

2 Part I

the rise of the farm safety movement into the 1930s and 1940s. Chapter 5 covers the 1940s and early 1950s and the role of falling object protection as a step toward "rollbar" use on large off-road vehicles such as crawler tractors employed in logging and construction. Falling object protections also extend to industrial lift trucks to guard against injury to the machine operators. Part 2 follows these first five chapters and addresses the worldwide evolution of rollbar protection of operators (or drivers) from fatal and serious nonfatal injuries in the event of an off-road vehicle overturn and ending with speed-related race car "summersaults" or "barrel-rolls."

CHAPTER 1

LIFE IN THE BALANCE

On January 27, 2015, Katie, my 19-year-old granddaughter, was a passenger in a Jeep on a US Interstate Highway. The young driver of the Jeep over-corrected when dodging another vehicle and went off the side of the road, and the Jeep tumbled over upside down. The Jeep had a rollbar, and Katie hung down from her seatbelt. She was okay except for some discomfort from the fall as she released her seatbelt, but she and the driver survived the rollover thanks to a rollbar. (See Fig. 1-1)

1.1. Introduction

"He stood on the edge of the cliff, his life in the balance. With his fortune in the balance, John rolled the dice."—An American Idiom (McGraw-Hill, 2000)

Vehicle overturns can be deadly. During the period 1910-2017, automobile crashes killed 3.7 million people in the United States. Research found that overturns caused an estimated one-third of these deaths. (Public Citizen, 2003) In 1971, Deere & Company engineer James F. Arndt claimed that over the previous 50 years, 30,000 tractor operators had been fatally crushed from rollovers. (Arndt 1971) Deere & Company, an acknowledged leader in the development of rollover protection to prevent crush-related injuries from agricultural tractor rollovers, related crush-related injuries in

Fig. 1-1. The Jeep that overturned. Photo by Katherine Brown (author's granddaughter).

1974 to entrapment "between two objects" (e.g., the tractor and the ground) "moving together with force or speed," with an example of a tractor that flipped over backwards and "crushed" a woman to death. It also stated that more than half of tractor-related deaths result from overturns, but chances of survival are improved with a rollover protective structure (ROPS).

4 Chapter 1

(Bittner et al. 1974) Earlier in 1967, R.C. Williams reflected on the history of the tractor and referred to the overturn as a "death trap." (Williams 1987)

While rollover protection as a priority for automobile occupants stalled for nearly a century, in the late 1910s, farmers started to recognize the hazard of tractor overturns, and in the 1920s, engineers studied the cause of overturns. The history of the rollbar emerged initially in the sport, "autopolo," and in 1917 as a protective cab on a race car (described in Chapter 10). Then rollbars took hold as a protective device in its use on crawler tractors in the 1940's as an offshoot of brush guards and falling object protective canopies used in logging. As tractors overtook horses and mules for motive power on farms, an epidemic of death from tractor overturns focused attention from many quarters on rollover prevention and protection in the 1950s. Proof of success of rollbars on tractors came from Sweden, New Zealand, and the highway department in the State of North Dakota. Rollover protection on race cars began in earnest in the 1960s and Formula 1 racing in 1991.

This book is about the fits and starts in a history of the rollbar as protection in the event of a vehicle overturn. Rollbars are part of many vehicles including race cars, construction equipment, tractors, lift trucks, and commercial lawnmowers. Some convertibles have automatically deployable rollbars, and automobiles evolved with crashworthy roofs and protective interiors, but legacy tractors and all-terrain vehicles (ATVs), with few exceptions, lack rollbars denying life to thousands. What follows is a century-long story of a struggle to protect people's lives from vehicle overturns that first emerged with attention to the farm tractor and on logging and earthmoving equipment.

The current chapter describes the underpinnings of vehicle overturn dangers with three vignettes about motorized vehicle overturns and early protective technology on automobiles and tractors, a description of the epidemic of rollover-related deaths, and an explanation of the physics of vehicle overturns. It concludes with an overview of the book.

1.2. Gasoline Buggies

"It (Car No. 5,000,000; 1921) is out in my museum along with the gasoline buggy that I began work on thirty years before and first ran satisfactorily along in the spring of 1893."—Henry Ford, 1923

In the 1800s, steam power took over many tasks previously provided by horsepower. An external fuel source of wood or coal burning for this power heats an enclosed chamber of water to produce steam under pressure to move machines such as traction engines to pull plows. In 1892, John

Froelich built the first mechanically successful gasoline powered tractor. (Williams 1996) This innovation stimulated the rise of the motor car, modern tractor, and airplane that benefited society immensely. Many early innovators kick-started a century that produced rollover protection.

The Horseless Carriage

"A later version of that engine powered his first automobile—essentially a frame fitted with four bicycle wheels (in 1896)."—Anonymous, 2003

On the eve of the Centennial of the United States in 1875, at 12 years of age, Henry Ford saw a road steam engine pulling a coal cart. This etched into his mind a way to remove the drudgery that he experienced of holding a plow pulled behind a horse. Four years later, he became a mechanic working on the same steam-powered vehicles that he had seen earlier. He focused on smaller steam traction engines for the small farmer who could ill afford outsized traction engines. Then his interest shifted to the internal combustion engine that he built along with a two-seat "gasoline buggy." Residents saw the buggy as the first horseless carriage on the streets of Detroit, Michigan, and Ford realized a market for the automobile rather than the tractor as the new century began. (Ford 1923)

Ford built two 80-horsepower race cars in 1903. In a three-mile race, one of his cars beat the competition by a half mile. Immediately, the public saw Ford as a man who could build fast cars. He sold the second car to bicyclist Tim Cooper. The car was painted fire engine red with the number 999 on it after a train with that number that made a record run from Manhattan to Chicago. Ford said, "It was built for speed alone." Cooper aimed to enter it into a 5-mile race, and he enlisted fellow bicyclist, Berna Eli (Barney) Oldfield as the driver. Oldfield never drove a car before and called it "a bedframe on wheels." He was fearless and immediately took the lead and won the race. "The race changed my life," he said. Eight months later he drove Ford's car to break the mile per minute limit (60 mph/97 kph), and soon became known as the speed king. He put the "999" on every car he raced thereafter. (Leerhsen, 2011, p. 55)

Ford formed the Ford Motor Company in 1903, and by 1904, he built the "Model A" runabout. In his first year, he sold 1,708 cars at \$850 each. Eight models followed until he standardized on the "Model T" in 1909 with the help of the Dodge brothers and incorporated the assembly line into his manufacturing process in 1913. (Ford 1923) Early on, Ford dominated the car manufacturing business.

6 Chapter 1

Strength and Safety

"(Edward) Budd's first customers were John and Horace Dodge, who founded Dodge Brothers in 1914. Budd persuaded them to use the all-steel body his engineers had designed, and the Dodge Touring Car was an instant success."—Editors, Auto News, 1996

The Dodge brothers, John and Horace, mechanics by trade, made parts for automobile manufacturers in the early 1900s, manufactured the Oldsmobile automobile, and helped a bankrupted Henry Ford to produce the Model T automobile in 1909. When Ford constructed his own manufacturing plant three years later, they cashed in their 10% share in the Ford enterprise for \$15 million and launched their own automobile company.

In 1914, the Dodge car designs were informed by railroad car designs by engineer Edward Gowan Budd and his development of pressed body steel. The Dodge brothers manufactured cars with all steel bodies that protected the occupant against crushing injuries with a substantial frame and roof. Budd was also a leading developer of arc welding

Fig. 1-2. Dodge Brothers Advertisement, all-steel body, 1926, Courtesy Library of Congress

that replaced riveting. (Editors 1996) In 1919, the brothers promoted in films the car rolling over with the all-steel frame enclosure that could protect its occupants from injury, but in 1920, the Spanish flu killed them both. The Dodge Brothers Company continued safety messaging, as shown in Fig. 1-2. It sold a million cars by 1923; the pressed steel bodies also improved the appearance of saloons, e.g., sedans. (Latham & Agresta 1989, Setright 2002, YouTube) The saloon (sedan) nomenclature came from railroad passenger cars and refers also to passenger cars that seat four people.

The safety messaging continued until the family sold the company to an intermediary and the Chrysler Corporation in 1928. All-steel bodies in all automobiles would not be realized until the 1930s, and the use of a roll-cage on race cars would be deferred until the 1970s.