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INTRODUCTION 
 
 
 
In many problems of nuclear physics at low energies and nuclear 

astrophysics, knowledge of the scattering elastic phase shifts, which can be 
determined from the differential cross sections of the scattering of various 
nuclear particles, is necessary [1]. Such phase shifts are used, in particular, 
for the construction of intercluster interaction potentials, for example, in the 
potential cluster model (PCM) of light nuclei [2]. The procedure of phase 
shift analysis consists of the decomposition of the total scattering amplitude 
in a row by partial waves or amplitudes and the analysis of the parameters 
that appear at the same time, which are termed scattering phase shifts. Such 
phase shifts allow us to obtain data about the nature of strong interactions, 
the structure of resonance states, and the general structure of an atomic 
nucleus [1]. 

Two-body processes with the formation of resonances in nuclear physics 
at low energies can also be investigated by means of phase shift analysis. To 
solve this problem, it is necessary to consider in detail the energetic behavior 
of the resonance partial scattering amplitude [1,3]. As a result, phase shift 
analysis plays a large role in the investigation of nuclear resonances in 
scattering processes and the determination of their quantum numbers. 
Research into scattering processes by means of phase shift analysis can help 
clarify many important aspects of the interactions of nuclear particles, because 
such analysis is based only on the most general laws of conservation and 
displays close connections to the experimental data [1,3]. 

The problem of determining or extracting the nuclear phase shifts from 
cross sections of elastic scattering in the mathematical plane is reduced to a 
multiple parameter variation problem. In other words, using the experimental 
scattering cross sections of nuclear particles and the mathematical expressions 
obtained in the quantum mechanics, which describe these cross sections 
according to some L parameters, the nuclear scattering phase shifts can be 
known. Consequently, a multiple parameter variation problem arises in 
finding these parameters for the set interval of values while taking into 
account the generalized Levinson theorem [4]. In different nuclear systems, 
depending on the energy of the colliding particles, the number of elastic 
scattering phase shifts can change from 1–3 to 10–20 [5]. 

This book is directly based on the results of about twenty scientific 
articles published over the last five to seven years in Russia, Europe, the 
USA, and the CIS countries. It consists of three chapters. The first chapter 
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is devoted to a description of the general mathematical methods for 
calculating some nuclear characteristics. The general criteria and methods 
of creation of the intercluster potentials in a continuous and discrete 
spectrum, which are used further for the consideration of some nuclei in the 
three-body model (described in the third chapter), are defined. 

The second chapter presents methods and results of the phase shift 
analysis of elastic scattering of the following nuclear particles at low and 
astrophysical energies: 4He4He, n3He, p6Li, p12C, n12C, p13C, p14C, n16O, 
p16O, and 4He12C. These results have been used to construct the potential 
cluster model (PCM) of pair intercluster interaction potentials in a 
continuous spectrum. Here, the various experimental measurements, 
methods of calculating differential cross sections, computer programs, and 
results of the phase shift analysis of elastic scattering of the stated particles, 
are all considered. For the first system, 4He4He, only the main expressions 
for the phase shift analysis, the computer program, and versions of the 
control account are given at 25–29 MeV. For other systems, the 
approximate energy range 1–2.5 MeV is considered. In an elastic 4He12C 
scattering, a phase shift analysis was undertaken in the range 1.5–6.5 MeV. 
The areas of phase shift analysis given here are defined by the existence of 
experimental data on differential cross sections for angular distributions or 
excitation functions. 

The results obtained for the three-body single-channel models of some 
light nuclear nuclei, namely, 7Li, 9Be, and 11B, are given in Chapter Three. 
They allow one to check the adequacy of the construction of pair intercluster 
potentials on the basis of the elastic scattering phase shifts and 
characteristics of the bound states of light atomic nuclei. These results allow 
us to determine the applicability of the obtained potentials to three-body 
problems. The checked potentials are thus used for the calculation of some 
primary characteristics of thermonuclear processes in the preliminary 
nucleosynthesis of the universe and some solar cycles [2]. 

We note that the second and, particularly, the third chapters of this book 
almost completely coincide with the results given in the corresponding 
chapters of other books by the author, including Preliminary 
Nucleosynthesis of the Universe (2014, Lambert Academy Publ. GmbH & 
Co. KG: Saarbrucken, Germany, 668 pages) [2]. This material is found in 
this book (Phase Shift Analysis in Nuclear Astrophysics) primarily in order 
to reduce the size of book [2] and allow the future possibility of its 
enlargement and the addition of new material on thermonuclear reactions in 
the next edition. At the same time, the present book can also be extended by 
the inclusion of new results on phase shift analysis and the three-body 
model. 



I 

METHODS OF SOLVING  
THE SCHRÖDINGER EQUATION 

 
 
 

Introduction 

The set of problems of theoretical nuclear physics, especially in the field 
of light atomic nuclei and low energies, requires the ability to solve the 
Schrödinger equation or the coupled system of equations of this type. A 
wave function, which describes a quantum state of some system of nuclear 
particles and, in principle, contains all the information about such state is a 
result of the solution. 

There are many varied mathematical methods for the solution of 
differential equations or their second-order systems, of which one is the 
Schrödinger equation. Quite abstract methods of solving such equations, 
which are rather difficult to apply in the solution of a concrete equation, like 
the Schrödinger equation type, are usually given in the mathematical 
literature. The problem usually arises in the choice of the optimum 
mathematical and numerical method applicable to the consideration of 
certain problems based on the solutions of the Schrödinger equation. 

This chapter is devoted to the solution of these problems and describes 
some mathematical methods that are directly applicable to locating the wave 
functions from the Schrödinger equation of scattering problems of nuclear 
particles and their bound states. The numerical methods applicable to the 
problems of a continuous and discrete spectrum of states, which allow us to 
obtain end results with almost complete accuracy, are considered. On the 
basis of these methods, the possibility of writing computer programs in the 
BASIC computer language using the Borland Turbo Basic Compiler and the 
Fortran-90 language is considered, which can assist in solving all problems 
of nuclear physics considered here. 

Many problems of nuclear physics can be considered using only the 
central part of the nuclear forces [6,7]. In this case, we are dealing with only 
one Schrödinger equation or system of unrelated equations (taking into 
account the spin-orbital interaction) and the mathematical problem is solved 
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rather simply. The account of tensor components of nuclear forces leads us 
to the system of bound Schrödinger equations [8,9], the solution of which 
is slightly more difficult, but quite feasible by many methods, including 
those described in [10]. 

We provide the mathematical and numerical methods used for the 
solution of Schrödinger equations for the central potentials at positive and 
negative eigenvalues in this chapter. We also consider their application to 
the analysis of the scattering quantum problem and bound-state energies of 
nuclear particles. In other words, the methods of investigating nuclear 
scattering phase shifts and the calculation of bound-state energies of light 
nuclei within the modified potential two-cluster model (MPCM) [2] are 
given. 

1.1 The general methods of solving  
the Schrödinger equation 

Here the general formulation of the problem for the solution of the 
Schrödinger equation with positive continuous and negative discrete 
eigenvalues is considered. Entry and boundary conditions for solving this 
problem are determined in relation to a description of the physical processes 
and states in nuclear physics and nuclear astrophysics. 

1.1.1 The central real potentials 

The Schrödinger equation for the central forces of interaction between 
two nuclear particles without spin-orbital and tensor potentials has the 
following form [1,6,7,11] 

 
2

c coul 2
( 1)''( ) ( ) ( ) ( ) 0L L

u r k V r V r u r
r

       
 ,         (1.1.1) 

 
where r is the scalar relative distance between particles in fm (1 fermi = 10-15 
m); u is the solution of the equation, i.e. wave function (WF); u'' is its second 
derivative; Vcoul(r) = 2µ/ħ2 Z1Z2/r is the Coulomb potential reduced to the 
dimension of fm-2; ħ is the Plank constant = 1.055 10-34 J s (Joule-second); 
Z1 and Z2 are the charges of particles in terms of their elementary charge (1 
e.c. – elementary charge = 1.60 10-19 C – Coulomb); the constant ħ2/m0 = 
41.4686 MeV fm2 (1 MeV – megaelectronvolt = 1.60 10-13 Joule); m0 is the 
atomic mass unit (1 amu – atomic mass unit = 1.66 10-27 kg.); Vcf = 
L(L+1)/r2 is the centrifugal potential, which depends on the value of the 
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orbital moment of the relative movement of the L particles; k2 = 2µE/ħ2 is 
the wave number of the relative motion in fm2; E is the energy of particles 

in MeV; 1 2

1 2

m m

m m
 


is the reduced mass of two particles in amu; Vc(r) is the 

central part of the nuclear potential, equal to 2µ/ħ2 Vn(r); Vn(r) is the radial 
dependence of the potential, which is often accepted in the form V0 exp(-

r2) or V0 exp(-r); V0 is the potential depth in MeV; 1 2
2

Z Z

k





 = 0.0344476 

Z1Z2/k is the Coulomb parameter; the Coulomb potential can be presented 
in the form 
 
Vcoul(r) = 2k/r = Ac/r. 
 

If the spin-orbital interaction is taken into account, then the central 
potential has the form [1,6,7] 
 
Vc(r) = 2µ/ħ2 [Vn(r) + Vsl(r)], 
 
Vsl(r) = (SL) V0sl F(r), 
 
where F(r) is the functional dependence of the potential on the relative 
distance between particles, which can also be accepted in the form of the 
Gaussian function exp(-r2) or exponent exp(-r). 

The (SL) value is called the spin-orbital operator and its values can be 
found from the well-known expression [6,7] 

 
(SL) u(r) = 1/2 [J(J + 1) - L(L + 1) - S(S + 1)] u(r), 
 
where J is the total moment of the system; L is the orbital moment; and S is 
the spin of the system of particles. Taking into account the spin-orbital 
interaction, the Schrödinger equation is split into a system of uncoupled 
equations, each of which allows the finding of the WF for the concrete total 
moment. 

Sometimes, the Coulomb Rc radius is entered into the potential of 
interaction; then the Coulomb part of the potential takes a slightly different 
form 
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1 2

2 2

1 2 2

2( )
3 2

c

coul

c c
c

Z Z
r R

r
V r

r
Z Z R r R

R


         


.          (1.1.2) 

 
Equation (1.1.1) forms the Cauchy problem with initial conditions that 

lie outside physical reasoning The first initial condition demands equality 
to zero of the WF at u(0) = 0. As the WF reflects the probability of some 
processes or states of the quantum particles, this condition means that two 
particles cannot completely merge and occupy the same volume. The 
second statement of the Cauchy problem involves the determination of the 
value of the first derivative of this function. However, for reasons of 
physical limitation, it is impossible to determine the value of this derivative; 
therefore it is taken to equal some constant, which determines the amplitude 
of the wave function. In numerical calculation, u'(0) = 0.1–1 is usually 
accepted. The real amplitude of the function, which is used for numerous 
physical calculations, is defined from the asymptotic conditions imposed on 
this function at long distances of rR, when the nuclear potential is almost 
equal to zero. 

The asymptotics of the wave function at long distances, when 
Vc(rR)0, offer the solution of equation (1.1.1) without nuclear 
potential, and can be presented as follows 
 
uL(rR) FL(kr) + tg(L)GL(kr),    1.
 
or 
 
uL(rR)cos(L)FL(kr) + sin(L)GL(kr), 

where FL and GL are the scattering Coulomb functions [12,13]. These are 
partial solutions of equation (1.1.1) without the nuclear part of the potential, 
i.e. when Vc = 0. 

Interlacing the numerical solution u(r) of equation (1.1.1) at long 
distances (R at about 10–20 fm) with these asymptotics, it is possible to find 
the real amplitude of the function and the scattering phase shift L for each 
L at the given energy of the interacting particles. The scattering phase shifts 
in the concrete system of the nuclear particles can be determined from phase 
shift analysis of the experimental data in terms of their elastic scattering 
(Chapter 2). Furthermore, variation of the parameters of nuclear potential in 
the previously determined form in equation (1.1.1) is carried out and those 
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parameters that allow us to describe the results of the phase shift analysis 
are determined. Thus, the problem of the description of scattering processes 
of nuclear particles consists of the search for the parameters of the nuclear 
potential that can describe the results of phase shift analysis and the 
experimental data for the scattering cross sections. 

We consider the procedure of interlacing the wave functions with 
asymptotics in more detail. At r = R, it is possible to write down two 
equalities for the WF along with their derivatives [14] 

 
NuL(R)  FL(kR) + tg(L)GL(kR)
 
Nu'L(R)  F'L(kR) + tg(L)G'L(kR)
 
where N is a normalizing multiplier. It is possible to consider similar 
expressions, not for the function and derivative, but only for the function in 
two different points 
 
NuL(R1) FL(kR1) + tg(L)GL(kR1)   

    (1.1.4) 
NuL(R2) FL(kR2) + tg(L)GL(kR2) 
 
We enter the notations 

 
F1= FL(kR1),  F2= FL(kR2), 
G1= GL(kR1),               G2= GL(kR2), 
u1= uL(R1),  u2= uL(R2), 
 
and find the value N, for example, from the first equation 
 
N = [F1+tg(L)G1]/u1. 

 
Substituting this expression into the second equation, we obtain 

 
tg(L) = (u1F2 - u2F1)/(u2G1 - u1G2) = AL.                         (1.1.5) 
 
then 

L = arctg(AL). 
 

Normalization of the function, for the purposes of investigating phase 
shifts, is of no importance. However, if we need the normalized WF, i.e. the 
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total scattering function is also required, then it is better to consider the 
second equation from (1.1.3), written down in the form of (1.1.4) and having 
performed similar operations to those given above. If the scattering phase 
shift results in the same expression, then we write the normalization in the 
form 
 
N = [cos(L)F1+sin(L)G1]/u1, 
 
or 
 
N = [cos(L)F2+sin(L)G2]/u2. 

 
In so doing, we can completely define the behavior of the wave function, 

its amplitude and phase shift, in all ranges of solutions for equation (1.1.1), 
from zero to some large value of R, which define the WF asymptotics. 

1.1.2 The central complex potentials 

If the inelastic channel of scattering or reactions is open in nuclear 
processes, then it is necessary to use the complex potential of interaction, 
taking into account the decrease in the stream of particles from the elastic 
channel [6]. Now, the potential takes a form 

 
Vc = Vr(r) + iVm(r),                           (1.1.6) 
 
where Vr(r) is the real part of the potential and Vm(r) is its imaginary part. 
The wave function also becomes complex and can be written in the form 
 
u(r) = x(r) + iy(r).             (1.1.7) 
 

Then, the Schrödinger equation (1.1.1) can be rewritten in the form of a 
coupled equation system as 
 
x''(r) + [k2 - Vr(r) - Vcoul(r) - L(L+1)/r2]x(r) = -Vmy(r), 

(1.1.8) 
y''(r) + [k2 - Vr(r) - Vcoul(r) - L(L+1)/r2]y(r) = Vmx(r), 
 
with initial conditions in the form 
 
x(r=0) = 0,  x'(r=0) = const, 
y(r=0) = 0,  y'(r=0) = const. 
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In the numerical calculations, the value of the constant (const.) for the 
derivatives of the wave functions is set at the level 0.1–1. The asymptotics 
of wave functions are represented as follows [6] 

 
u(r) = H+(r) + SH-(r) = [F(r) + iG(r)] + S[F(r) - iG(r)],                       (1.1.9)  
 
where H+ is the Hankel function; F and G are the Coulomb functions; and S 
is the scattering matrix, which has the form 
 
S = e2i = S1 + iS2 = cos(2) + isin(2). 
 

In taking into account the inelastic processes, the phase shifts of the 
elastic scattering become complex and are represented as follows 

 
 =  + i 
 
where and are the real and imaginary parts of the phase shift. Then, the 
scattering matrix can be rewritten in the form 
 
S = e2i= e-2e2i = e2i = (S1+iS2) = [cos(2)+isin(2)],       (1.1.10) 
 
where  = e-2is the inelasticity parameter. For the determination of the 
scattering phase shifts and the parameter of inelasticity, we can write out 
the boundary conditions for the functions in two points in the form of a 
logarithmic derivative 
 

-
1 1 1

-
2 2 2

  
  

u H SH

u H SH









,            (1.1.11) 

 
from which it is easy to find 
 

2 1 1 2

1 2 2 1

 - 
 - 

u H u H
S

u H u H

 

  . 

 
Substituting the expressions for the Hankel functions given above 

(1.1.9), and splitting the real and imaginary parts, we obtain 
 

  DC i
S K iM

A iB


  


,            (1.1.12) 
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where 
 

2 2
AC BD

K
A B





, 2 2

AD BC
M

A B





,                        (1.1.13) 

 
and 
 
A = b - a,  B = - c - d, 
 
C = a + b,  D = c - d, 
 
a = x2F1 - x1F2, b = y1G2 - y2G1, 
 
c = y2F1 - y1F2, d = x1G2 - x2G1. 
 

Thus, all elements of the S matrix are expressed through the Coulomb 
functions and the solutions of the initial Schrödinger equation (1.1.8) with 
the given nuclear potential. 

Comparing the real and imaginary parts of expressions (1.1.10) and 
(1.1.12), we obtain 

 
S1 = cos(2) = K/, 

(1.1.14)
S2 = sin(2) = M/, 

and 
 
S2 = (S1 + S2)2 =   

      (1.1.15) 
S2 K2 + M2, 
 
from which we find 

 K2 + M2, 
 
giving the inelasticity parameter. Knowing these values, we can obtain 
 

2

1

tg(
1

S
A

S
 


,             (1.1.16) 
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then 
 

 = arctg(A).             (1.1.17) 
 

It is easy enough to check that when Vm = 0 and equation (1.1.8) become 
independent, then  = 1 and the results for the phase shifts (1.1.5) and 
(1.1.16) coincide. 

For the determination of the normalization of the WF, we use 
expressions (1.1.9) and (1.1.7) 

 
N(x+iy) = H+(r) + SH-(r) = [F(r) + iG(r)] + (S1 + iS2) [F(r) - iG(r)], 
 
from which we find 

 

2 2 2 2  Ax By Bx Ay
N i

x y x y

 
 

 
, 

 
where 
 
A = (1 + S1)F(r) + S2G(r), B = (1 - S1)G(r) + S2F(r). 
 

Generally, normalization of a complex WF can be written down in the 
form of a complex value as follows 
 
Nu(r) = (N1 + iN2)(x + iy) = N1x - N2y +i[N1y + N2x] = v + iw. 
 

Here, v and w are already normalized total wave functions of the 
scattering. Equating the real and imaginary parts, we have 

 

1 2 2  Ax By
N

x y





,  2 2 2

Bx Ay
N

x y





, 

 
which are general expressions for determining the normalization of WF 
scattering in the case of complex potentials [15]. 

1.2 The numerical methods of solving  
the Schrödinger equation 

For the numerical solution of the Schrödinger equation, it is possible to 
use the finite-difference method (FDM) [7], presenting the function and its 
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derivative in the form of the central differences and using the Runge-Kutta 
method (RKM) [16] or the Numerov method (NM) [17], which allows us to 
obtain a higher accuracy solution for the initial equation. 

1.2.1 The central real potentials 

We can write the Schrödinger equation for the central nuclear forces 
(1.1.1) in the form of [6] 

 
u''(r) + [k2 - V(r)]u(r) = 0.             (1.2.1) 
 

To solve it, we can use the finite-difference method, for which the 
second derivative can be presented as follows [7] 

 
u''(r) = [u(r + h) - 2u(r) + u(r - h)]/h2 = [u(ri + 1) - 2u(ri) + u(ri-1)]/h2, (1.2.2) 
 
where h is a step of the finite-difference grid, for the determination of which 
the whole interval of h values, from zero to some value of R, are divided 
into N parts 
 
h = R/N. 
 

Here, R is the top limit at which the interlacing of the numerical solution 
of equation (1.2.1) with asymptotics is carried out. Then 
 
ri = hi, ui = u(ri), 
 
where i changes from 0 to N (r0 = 0 and rN = R). Now, expression (1.2.2) 
can be rewritten in the form 
 
u'' = [ui+1 - 2ui + ui-1]/h2, 
 
and the whole equation is rewritten as 
 
[ui+1 - 2ui + ui-1]/h2 + [k2 - V(ri)]ui = 0, 
 
which we find with an order of accuracy O(h2) equal to h2, i.e. the method 
is in proportion to a square of a step [7] 
 

2 2 2 2
i 1 i i i 12 ( ) ( )u h V r h k u u O h        .                        (1.2.3) 
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Here, i = 1, 2 …. N - 1. The function at r = 0 has to be equal to zero and 
in the first step it can be accepted as equal to some constant, which defines 
only a function of normalization without affecting its behavior at various 
values of r. From here, the WF on the following step of u2 can be found and 
this process repeats until i does not become equal to N - 1. Such a procedure 
allows us to find the whole array of WF values at all points from zero to R. 
Furthermore, we carry out its interlacing in two points, for example, at rN = 
R and rN-5 = R - 5h, as described in paragraph 1.1.1. The second point is 
defined experimentally in each case and depends on the energy of the 
particles, but at small energies it usually recedes by 3–5 steps [18]. 

Below, we give an example of the program written in Fortran-90 to 
realize the method described. The following designations are set. 

 
U – the array of the WF with a dimension of N, 
H – the look-up of the WF, 
N – the number of steps, 
A0 – the V0 depth of the central part of the potential in fm-2, 
R0 – the width of the central part of the potential in fm-2, 
L – the orbital moment, 
RC – the Coulomb radius Rc in fm, 
AK – the Coulomb coefficient Ac in the description of equation (1.1.1), 
SK – the wave number of k2 in fm-2. 

 
SUBROUTINE FUN(U,H,N,A0,R0,L,RC,AK,SK) 
IMPLICIT REAL(8) (A-Z) 
INTEGER N,L,K 
DIMENSION U(0:N) 
! INITIAL VALUES 
U(0)=0.0D0; U(1)=0.1D0; RR=1.0D0/RC 
LL=L*(L+1); BB=AK/(2.0D0*RCU); HK=H*H; SHS=SK*HK-2.0D0  
! CALCULATION THE VALUES OF THE Vc(R) POTENTIAL 
DO K=1,N-1 
X=K*H; XX=X*X 
V=A0*DEXP(-R0*XX)+LL/XX 
IF (X>RC) THEN 
V=V+AK/X 
ELSE 
V=V+(3.0D0-(X*RR)**2)*BB 
ENDIF 
! CALCULATION THE VALUES OF THE WAVE FUNCTION 
Q=V*HK-SHS 
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U(K+1)=Q*U(K)-U(K-1) 
ENDDO  
END 
 

The WF u(r) is the calculation result at the given L for the Schrödinger 
equation (1.2.1) in the range of values from 0 to R. 

1.2.2 The central complex potentials 

If there is a system of equations (1.1.8) for the complex potential [18] 
 
x''(r) + [ k2 - Vr(r) - Vcoul(r) - L(L+1)/r2 ]x(r) = - Vmy(r), 

 (1.2.4) 
y''(r) + [ k2 - Vr(r) - Vcoul(r) - L(L+1)/r2 ]y(r) = Vmx(r), 
 
then, using the same representation of a derivative in the finite-difference 
form 
 
u'' = [ui+1 - 2ui + ui-1]/h2, 
 
for functions x and y we obtain 
 
xi+1 = [ 2 - Aih2 ]xi - xi-1 - h2Vm(ri)yi, 

 (1.2.5) 
yi+1 = [2 - Aih2 ]yi - yi-1 + h2Vm(ri)xi, 
 
where 
 
Ai = k2 - Vr(ri) - Vcoul(ri) - L(L+1)/ri

2. 
 

In addition, setting the values of functions in the two first points 
 
x0 = 0, x1 = const., y0 = 0, y1 = const., 
 
it is possible to find the values of functions in all other points [18], as well 
as for expression (1.2.3). The interlacing procedure of the numerical 
function with its own asymptotics in the case of complex potentials is 
described in paragraph 1.1.2. 
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1.2.3 The Runge-Kutta method for central real potentials 

Here, we consider the other method of solving such equations. This is 
the fourth-order Runge-Kutta method per step h [16,19,20,21,22]. The 
standard method of the solution of one differential equation of the first order 
is 

 
y' = f(x,y),                            (1.2.6) 
 
with the initial condition 
 
y(x0) = y0, 
 
which consists of the presentation of the solution on an interval from 0 to 
some value of R in the form 
 
yn+1 = yn + yn,               (1.2.7) 
 
where n can change from 0 to N (R = xN = hN); h is a step in the solution; 
and yn is obtained from the expression 
 
yn = 1/6(k1 + 2k2 + 2k3 + k4),                          (1.2.8) 
 
where 
 
k1 = hf(xn,yn),  k2 = hf(xn+h/2, yn+k1/2), 
k3 = hf(xn+h/2, yn+k2/2), k4 = hf(xn+h, yn+k3). 

 
In the case of a system of two differential equations of the first order [16-

22], we have 
 
y' = f(x,y,z),  
                                                                                                             (1.2.9) 
z' = g(x,y,z), 
 
with initial conditions 
 
y(x0) = y0, z(x0) = z0. 
 
The solutions are found from the expressions 
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yn+1= yn + yn,                (1.2.10) 
zn+1= zn + zn, 
 
where 
 
yn = 1/6(k1 + 2k2 + 2k3 + k4),  (1.2.11) 
zn = 1/6(m1 + 2m2 + 2m3 + m4), 
 
and 
 
k1 = hf(xn,yn,zn),   m1 = hg(xn,yn,zn), 
k2 = hf(xn+h/2, yn+k1/2, zn+m1/2), m2 = hg(xn+h/2, yn+k1/2, zn+m1/2), 
k3 = hf(xn+h/2, yn+k2/2, zn+m2/2), m3 = hg(xn+h/2, yn+k2/2, zn+m2/2), 
k4 = hf(xn+h, yn+k3, zn+m3),               m4 = hg(xn+h, yn+k3, zn+m3). 

 
In the case of one differential equation of the second order of the form 

(1.2.1) 
 

y'' = g(x,y,y'),            (1.2.12) 
 
with initial conditions 
 
y(0) = y0, y'(0) = y'0, 
 
we substitute 
 
z = y', 
 
then we obtain a system of the form 
 
y' = z, 

       (1.2.13) 
z' = g(x,y,z), 
 
with initial conditions 
 
y(0) = y0, z(0) = z0. 
 
The solution of which f(x,y,z) = z can be presented as follows 
 
yn = hzn + 1/6h(m1 + m2 + m3),            (1.2.14) 
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zn = 1/6(m1 + 2m2 + 2m3 + m4), 
 
and 
 
k1 = hzn,  m1 = hg(xn,yn,zn), 
k2 = h(zn+m1/2), m2 = hg(xn+h/2, yn+k1/2, zn+m1/2), 
k3 = h(zn+m2/2), m3 = hg(xn+h/2, yn+k2/2, zn+m2/2), 
k4 = h(zn+m3), m4 = hg(xn+h, yn+k3, zn+m3). 

 
The error of the Runge-Kutta method is in the order of O(h4), which is 

higher than for the previous case of the FDM. 
Below we present an example of the program in Fortran-90 to realize 

the method described. The following designations are set. 
 

U – the array of the WF with a dimension of N, 
H – the look-up of the WF, 
N – the number of steps, 
A0 – the V0 depth of the central part of the potential in fm-2, 
R0 – the  width of the central part of potential in fm-2, 
L – the orbital moment, 
RC – the Coulomb radius Rc in fm, 
AK – the Coulomb coefficient Ac in the description of equation (1.1.1), 
SK – the wave number k2 in fm-2. 

 
SUBROUTINE FUNRK(U,H,N,A0,R0,L,RC,AK,SK) 
IMPLICIT REAL(8) (A-Z) 
INTEGER I,N,L 
DIMENSION U(0:N) 
! THE SOLUTION OF THE SCHRÖDINGER EQUATION BY RUNGE-
KUTT METHOD IN ALL AREA OF VARIABLES 
VA1=0.0D0;! VA1 - the value of function in zero 
PA1=1.0D-1;! PA1 - Value of a derivative in zero 
DO I=0,N-1 
X=H*I+1.0D-15 
CALL RRUN(VB1,PB1,VA1,PA1,H,X,L,SK,A0,R0) 
VA1=VB1; PA1=PB1; U(I+1)=VA1  
ENDDO 
END  
SUBROUTINE RRUN(VB1,PB1,VA1,PA1,H,X,L,SK,A0,R0) 
IMPLICIT REAL(8) (A-Z) 
INTEGER L 
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! THE SOLUTION OF THE SCHRÖDINGER EQUATION BY THE 
RUNGE-KUTT METHOD BY ONE STEP 
X0=X; Y1=VA1  
CALL FA(X0,Y1,FK1,L,SK,A0,R0)  
FK1=FK1*H; FM1=H*PA1 
X0=X+H/2.0D0; Y2=VA1+FM1/2.0D0  
CALL FA(X0,Y2,FK2,L,SK,A0,R0,A1,R1)  
FK2=FK2*H; FM2=H*(PA1+FK1/2.0D0); Y3=VA1+FM2/2.0D0  
CALL FA(X0,Y3,FK3,L,SK,A0,R0,A1,R1) 
FK3=FK3*H; FM3=H*(PA1+FK2/2.0D0); X0=X+H; Y4=VA1+FM3 
CALL FA(X0,Y4,FK4,L,SK,A0,R0,A1,R1)  
FK4=FK4*H; FM4=H*(PA1+FK3) 
PB1=PA1+(FK1+2.0D0*FK2+2.0D0*FK3+FK4)/6.0D0 
VB1=VA1+(FM1+2.0D0*FM2+2.0D0*FM3+FM4)/6.0D0  
END  
 
SUBROUTINE FA(X,Y,FF,L,SK,A0,R0) 
IMPLICIT REAL(8) (A-Z) 
INTEGER L,L1 
! CALCULATION F (X,Y) FUNCTION IN THE RUNGE–KUTT METHOD 
VC=A0*DEXP(-R0*X*X)+A1*DEXP(-R1*X*X) 
IF (X>RC) GOTO 1 
VK=(3.0D0-(X/RC)**2)*AK/(2.0D0*RCU)  
GOTO 2 
1 VK=AK/X 
2 FF=-(SK-VK-VC-L*(L+1)/(X*X))*Y  
END 
 

The result of the calculation is the wave function u(r) at a given L, which 
is the solution of the Schrödinger equation (1.2.1) in the range of values 
from 0 to R. 

1.2.4 The calculation of wave functions  
by Numerov’s method 

We still have the Schrödinger equation in the general form 
 

0)()()(''  ruraru , 
 
where 
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2
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where V0 is the potential depth parameter in MeV and  is the parameter of 
its width in fm-2. 

In Numerov’s method [17], the WF at a given energy can be found from 
the expression 
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
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        
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
. 

 
Using this method, we can find the WF with a convergence rate of O(h4) 

[17] more easily than with the Runge-Kutta method having a convergence 
of O(h4). Here, 

 
un-1 = u(rn-1),  rn-1 = (n-1)h,  h = R/N, 
 
where R is the upper limit of integration of the equation; N is the number of 
steps of integration; and h is the value of a step, n = 1, … N - 1 and 
 
u(0) = 0, u(1) = const.  
 

We present an example of the program written in Fortran-90 to realize 
the method described. The following designations are set. 

 
U – the array of the WF with a dimension of N, 
H – the look-up of the WF, 
N – the number of steps, 
A0 – the V0 depth of the central part of the potential in fm-2, 
R0 – the  width of the central part of potential in fm-2, 
L – the orbital moment, 
RC – the Coulomb radius Rc in fm, 
AK – the Coulomb coefficient Ac in the description of equation (1.1.1), 
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SK – the wave number of k2 in fm-2. 
 
SUBROUTINE FUN(U,H,N,A0,R0,L,RC,AK,SK) 
IMPLICIT REAL(8) (A-Z) 
INTEGER N,L,I 
DIMENSION U(0:N),V(0:N) 
! INITIAL VALUES 
U(0)=0.0D0; U(1)=0.1D0; Q0=0.0D0; RR=1/RC; HK=H*H; SHS=SK*HK 
LL=L*(L+1); BB=AK/(2.0D0*RC); AA=1.0D0/12.0D0; 
DD=5.0D0/6.0D0 
! CALCULATION OF VALUES FOR THE Vc(r) POTENTIAL 
DO I=1,N-1,2 
X=I*H; XX=X*X; XP=(I+1)*H; XXP=XP*XP 
V(I)=A0*DEXP(-R0*XX) +LL/XX 
V(I+1)=A0*DEXP(-R0*XXP)+LL/XXP 
IF (X>RC) THEN 
V(I)=V(I)+AK/X  
V(I+1)=V(I+1)+AK/XP 
ELSE 
V(I)=V(I)+(3.0D0-(X*RR)**2)*BB  
V(I+1)=V(I+1)+(3.0D0-(XP*RR)**2)*BB 
ENDIF 
ENDDO 
! CALCULATION OF VALUES FOR THE WAVE FUNCTION 
DO I=1,N-1,1 
Q1=SHS-V(I)*HK; Q2=SHS-V(I+1)*HK; B=(1.0D0+AA*Q2) 
U(I+1)=((2.0D0-DD*Q1)*U(I)-(1.0D0+AA*Q0)*U(I-1))/B; Q0=Q1 
ENDDO 
END 
 

The result is the WF u(r) at a given L, which is the solution of the 
Schrödinger equation (1.2.1) in the range of values from 0 to R. 

1.2.5 Methods of calculating the binding energy  
of a two-body system 

Phase shifts can be used for the construction not only of scattering 
potentials, but also of bound states (BS): ground (GS) or excited (ES) states. 
We give two methods for the calculation of the binding energy of a two-body 
nuclear system. Such a situation arises, for example, in the S wave of the 4He2H 
system of 6Li, where the BS potential is constructed by the corresponding 
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phase shift and its parameters are then specified according to the values of the 
binding energy, mean square radius, and asymptotic constant (AC) [23]. 
 
1.2.5.1 The finite-difference method 
 

The first approach is based on the finite-difference method, which is 
described in detail in [7,10]. Here, we briefly present some methods of 
investigating the binding energy and the WF for the bound states and 
scattering processes. The Schrödinger equation [7] for the central potential 
is 

 
u'' + [k2 - V(r)] u = 0, 
 
with this or that boundary condition at k2 < 0 to form the boundary value 
problem of the Sturm-Liouville type with the boundary conditions 
 
u(r = 0) = u0 = 0, 
 
u'(r = R)/u(r = R) = u'N/ uN = f(,L,ZN), 
 
where f is the logarithmic derivative;  is the Coulomb parameter; ZN = 
2krN; n = 1,2,….; N is the number of steps; and rN = R is the upper bound of 
the interval of integration of the equation. At the transition to the second 
derivative to the final difference [24,25,26] 

 
u'' = [un+1 - 2un+un-1]/h2, 
 

which turns into a determined system of linear algebraic equations 
 
un+1 + [h2k2 - h2V(r) - 2]un +un-1 = 0. 
 

The condition of equality to zero of its determinant DN is 
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allowing one to define the eigen binding energy of the system of two 
particles of k0. Here, N is the number of equations; h = R/N is the step of the 
finite-difference grid; R is an interval of the solution of the equation, for 
example, from zero to 30 fm, and 

 
n = 1, N = 2, n = k2h2 - Vnh2 - 2, 
 
N = k2h2 - VNh2 - 2 + 2hf(,L,ZN), ZN = 2krN, 
 
rn = nh, n = 1,2 …..N, 2kk  , 

 

n 2
n n

( k k L
f L k

    
    

 
, 

 
where Vn = V(rn) is the potential of the interaction clusters for point rn. 
Recording of the boundary conditions in the form of a logarithmic 
derivative f(,L,Zn) allows us to consider the Coulomb interaction, i.e. the 
effects, and an asymptotic of the WF of the Whittaker function for the BS. 

This type of logarithmic derivative of the wave function of the bound 
state in the external area can be obtained from the integrated representation 
of the Whittaker function [27] 
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The calculations show that the S value does not exceed 1.05 and its 

influence on the binding energy of the two-body system is negligible. 
The calculation of a determinant of DN is carried out on recurrent 

formulas of the form 
 

D-1 = 0, D0 = 1, (1.2.15) 
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Dn = n Dn-1 - n Dn-2, 
n = 1 … N. 
 

To find the wave functions of bound states, another recurrent process is 
used 

 
u0 = 0, u1 = const.,                                                                             (1.2.16) 
un = -n-1un-1 - un-2, 
n = 2 … N, 
 
where const. is any number—this is usually set in the range 0.01–0.1. 

As such, at the given energy of the system it is possible to find the 
determinant and wave function of the bound state. With the energy leading 
to zero determinants of 
 
DN(k0) = 0, 
 
it considers the eigen energy of system and the wave function at this energy 
presents the eigenfunctions of the problem. 

The last recurrence relation is used also to search for the WF in the case 
of a continuous spectrum of eigenvalues, i.e. at the previously given energy 
(k2 > 0) of particle scattering [10]. The text of the computer program written 
in Fortran-90 is given in [28]. 
 
1.2.5.2 The variation method 
 

The second method for discovering the binding energy is based on 
variation of the decomposition of the wave function on a non-orthogonal 
Gaussian basis (VM). We briefly give a description of this method and the 
computer program written in Fortran-90 is provided in [28]. More detailed 
statements can be found in [10]. Wave functions in the matrix elements for 
the ground and resonance states are presented through decomposition on a 
non-orthogonal Gaussian basis of the form 

 
LL

L i i
i

( )( )  exp(-r
r r C r

r


     , 

 
found by the variation method for the bound states or by the approximation 
of Gaussian functions of the numerical wave functions of resonance levels 
[29]. 
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For the determination of the spectrum of eigen energies and wave 
functions in the standard variation method of decomposition of the WF on 
an orthogonal basis, the matrix problem is solved on the eigenvalues [30] 

 
ij ij i(  - )   0 

i

H EI C  , 

 
where H is a symmetric Hamiltonian matrix; I is a unity matrix; E stands 
for the eigenvalues; and C stands for the eigenvectors of the problem. 

In this case, on the non-orthogonal basis of the Gaussian functions, we 
come to a generalized matrix problem of the form [31] 

 
ij ij i(  - )   0 

i

H EL C  , 

 
where L is the matrix of overlapping integrals, which, on an orthogonal 
basis, is turned into a unity matrix I. 

By using the WF in the form given above, we can easily find the 
expressions for all two-body matrix elements [31] 
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