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PREFACE 
 
 
 
Vibrational spectroscopy, which includes infrared absorption (IR) and 

Raman scattering, is a powerful physical method for the study of chemical 
compounds – solid, liquid, and gaseous. In this, IR spectroscopy is to a 
greater extent an analytical method, and Raman spectroscopy is a research 
method. 

The book is addressed, first of all, to students and scientists whose 
interests lie in the field of research of chemical, mineralogical, biological 
systems. This requires from a specialist both professional knowledge in 
each of the named areas and a deep understanding of the processes occurring 
in the medium during the scattering or absorption of electromagnetic 
radiation. For this reason, in the book, in addition to general information 
from the field of solid-state physics, much attention is paid to the description 
of those physical phenomena that have long been worked out in detail and 
are considered as if they do not require additional explanations. These 
include the concepts of a harmonic oscillator, vibration symmetry, 
anharmonicity, etc. These phenomena, however, underlie vibrational 
spectroscopy, are implicitly present in every vibrational spectrum, and their 
clear understanding is necessary at any level of work with vibrational 
spectra. The presentation is conducted at an extremely simple level that 
provides an understanding of the essence of the phenomenon, sometimes at 
the expense of a rigorous theoretical description. A small exception is only 
the first two chapters, where the theory of light scattering and the theory of 
vibrations are presented. But here, too, a general outline of the theory is 
given and many details are omitted. This is done in part to prevent the reader 
from wanting to close the book on the second page. 

The text contains a large number of Raman spectra of compounds – 
organic and inorganic. All of them were obtained in the course of the 
author’s work. 

The author will be grateful for the comments and feedback sent to the 
address: kolesov@niic.nsc.ru 

 
 



CHAPTER 1 

RAMAN SCATTERING:  
BASIC CONCEPTS AND BRIEF THEORETICAL 

DESCRIPTION 
 
 
 

1.1. Elastic and inelastic light scattering 

Vibrational spectroscopy is actually the only physical method 
representing information on the pair potential of interactions between 
atoms. This information is embedded in the vibrational frequencies of the 
system. The vibrational spectrum of a compound can be obtained by 
infrared absorption spectroscopy or Raman scattering1. These experiments 
are characterized by different selection rules and therefore perfectly 
complement each other. 

Let us briefly consider the processes yielding to the occurrence of 
both effects. Let there be a polar two-atomic molecule and an 
electromagnetic wave E = E0cos(ωLt) with the variable frequency ωL. 

The electric field of the incident radiation interacts with the charged 
atoms of the molecule. When the radiation energy is small enough and is 
comparable to the energy of the fundamental mechanical vibrations of the 
molecule, a quantum of light is absorbed, and a quantum of vibration 
arises in the system (Fig. 1.1). More complex examples than diatomic 
molecules, such as systems of vibrating atoms, usually have a set of 
different fundamental vibrations, and in this case one can observe an 
infrared absorption spectrum consisting of several absorption bands. 

When the energy of the incident radiation is high and approaches the 
energy of the allowed optical dipole transition between different electronic 
states of a molecule or crystal, we observe an absorption spectrum in the 
UV and visible regions. 

 
 

1 Raman scattering was discovered almost simultaneously by C.V. Raman and K.S. 
Krishnan [1] in India and G.S. Landsberg and L.I. Mandelstam [2] in Russia in 
1928. 
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Fig. 1.1. The emergence of an absorption spectrum on vibrations (a) and electronic 
transitions (b) 

 
And what happens when the energy of the electromagnetic wave is 

greater than the energy of atomic vibrations and less than the energy of the 
dipole electronic transition? In this case, the electronic subsystem is able 
to respond to changes in the electric field, while the atomic one is not. 
Under the action of an external field, the electron cloud of the molecule is 
displaced, forming a dipole oscillating with the frequency of the incident 
radiation. This process can be described as absorption of the incident wave 
energy by an electron and its transition to a state that is often called virtual 
for convenience, i.e. not a stationary state of this system2. 

It follows from the Heisenberg uncertainty relation ∆Е∆t ≈ ħ that the 
lifetime of an electron in a virtual state is very small, on the order of half 
of the oscillation period of the electric field of the incident wave, i.e. 10-15 
- 10-16 s, after which the electron is forced to leave it, emitting a quantum 
of light with the same energy as the energy of the incident wave, 
producing Rayleigh scattering (Fig. 1.2, a).  

However, even in that short time that the electron is in a virtual state, 
due to the electron-vibrational (electron-phonon in the crystal) interaction 
in the system, a quantum of mechanical vibrations can arise, after which 
the electron returns to its initial state with the emission of a quantum of 
light with an energy lower than the energy of an incident photon on the 
energy of the emitted vibration. This process is depicted in Fig. 1.2, b. In 
this case, in the spectrum of scattered light, we will observe the main (i.e., 
upshifted Rayleigh) line ωL and one more accompanying line with a lower 
frequency that differs from frequency ωL to the frequency of the emitted 
quantum of the mechanical vibration. 

 
2 As will be shown below, neither the classical nor the quantum mechanical 
description of the process of Raman scattering require the presence of a virtual 
state. However, its inclusion simplifies the diagram of the scattering process and 
makes it extremely clear. 
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Fig. 1.2. Diagram of the appearance of elastic Rayleigh (a) and inelastic Raman (b) 
scattering. The emitted mechanical vibration (phonon) is marked in green ħω 

 
This is spontaneous Raman scattering, or, more precisely, Stokes 

Raman scattering. Why Stokes? The fact is that the scattering process can 
be characterized not only by the generation of a vibrational quantum, but 
also by the elimination of a vibrational quantum already existing in the 
system (Fig. 1.3). In this case, the spectrum contains a line with energy 
higher than the energy of an incident photon on the energy of the 
eliminated vibration. 

 
 

Fig. 1.3. Anti-Stokes Raman scattering 

 
 
 
 
 

 
The main difference between IR absorption and Raman scattering is 

that the incident radiation interacts with the vibrating atoms in the first 
case and with their electronic subsystem in the second. 

1.2. Elementary theory of Raman scattering  

To elucidate the reasons for the appearance of inelastic Raman 
scattering on vibrations, it is necessary to consider the question of the 
interaction of radiation with an atomic system. The electric field of an 
incident electromagnetic wave 
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E = E0 cos(ωLt)   (1.1) 

yields to the appearance in the atomic system of an induced dipole 
moment 

P = αE.     (1.2) 

If the polarizability3 α is a time-independent constant, α = α0, we get 

P = α0E0cos(ωLt).   (1.3) 

In other words, a dipole moment, vibrating harmonically with the same 
frequency ωL arises. Such a dipole moment (Hertzian dipole) emits 
radiation, and the radiation energy in all directions of space per unit of 
time is  

𝑊𝑊𝑆𝑆 = 2
3𝑐𝑐3

�𝑑𝑑
2𝑃𝑃
𝑑𝑑𝑡𝑡2

�
2

= 2ω𝐿𝐿
4

3𝑐𝑐3
|α0|2𝐸𝐸02𝑐𝑐𝑐𝑐𝑐𝑐2ω𝐿𝐿𝑡𝑡   (1.4) 

The dipole radiation creates coherent scattered light with constant 
frequency and phase. Time averaging gives 

𝑊𝑊𝑆𝑆 = 2ω𝐿𝐿
4

3𝑐𝑐3
|α0|2𝐸𝐸02𝑐𝑐𝑐𝑐𝑐𝑐2ω𝐿𝐿𝑡𝑡 = ω𝐿𝐿

4

3𝑐𝑐3
|𝛼𝛼0|2𝐸𝐸02.    (1.5) 

This is the so-called Rayleigh scattering. If the scattering particles are 
ordered in the system, like atoms in a crystal, then the scattered light 
interferes in a single direction, coinciding with the direction of the incident 
beam in the crystal, and we observe the light passing through the crystal. 
Rayleigh scattering in all directions occurs precisely because of the 
violation of the ordered distribution of the scattering particles. For 
example, fluctuations in the density of a gas in the atmosphere are 
responsible for the sunlight scattering, and the blue color of the sky is 

 
3 The term "polarizability" is used for atoms and molecules. To describe the 
response in solids and liquids, it is preferred to use the concept of "polarization", 
which is the sum of the induced dipole moments from all the particles that make up 
the medium. In this case, the polarization is P = χE, where χ is the dielectric (or 
simply electrical) susceptibility. The latter value is related to the molecular 
polarizability α by a simple relationship: χ = Nα (N is the number of particles per 
unit volume). For this reason, one can find in the literature a description of the 
theory of the Raman effect using the dielectric susceptibility; however, neither the 
essence of the effect nor the basic relations change in this case. 
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explained by the fourth power of the frequency in the expression for the 
scattering energy. 

We must consider, however, what happens when the polarizability of 
the system (molecule, crystal) changes over time during the vibration. 
(The polarizability is a tensor quantity and is usually determined by the 
second-rank tensor. For more details, see Chapter 6.) Indeed, for a 
hypothetical square molecule (Fig. 1.4, a) the αxx and αyy components of 
the polarizability tensor along the x and y directions are respectively equal 
to each other. It is intuitively clear, however, that they become different 
when the molecule changes its shape during vibration (Fig. 1.4, b). 
 

 

 

 

 

Fig. 
1.4. 

Polarizability of a hypothetical square molecule during rest (a) and vibration (b) 

Vibrations of the system are not random, but are determined by a set of so-
called normal vibrations ωi with the corresponding normal coordinates ξi 
(definition of normal vibrations and coordinates will be given in Ch. 2). 
Expanding the components of the polarizability tensor in a Taylor series in 
normal coordinates, we obtain: 

αρσ = (αρσ)0 + ��
𝜕𝜕αρσ

𝜕𝜕ξ𝑘𝑘
�
0𝑘𝑘

ξ𝑘𝑘 +
1
2
��

𝜕𝜕2αρσ

𝜕𝜕ξ𝑘𝑘𝜕𝜕ξ𝑙𝑙
�
0
ξ𝑘𝑘ξ𝑙𝑙 … . ,

𝑘𝑘,𝑙𝑙

    (1.6) 

where ξk and ξl… are the normal coordinates of vibrational modes with ωk, 
ωl, etc. frequencies, and ρ, σ = x, y, z. The subscript 0 in the derivative 
indicates that its value is determined at the equilibrium position. In the 
harmonic approximation, neglecting terms with a degree ξ higher than 1, 
one can write 

(αρσ)𝑘𝑘 = (αϱσ)0 + (αϱσ
′ )𝑘𝑘𝜉𝜉𝑘𝑘 ,                  (1.7) 

αyy 

αxx 

a b 

αxx 

αyy 
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where 

�𝛼𝛼𝜚𝜚𝜚𝜚′ �𝑘𝑘 = �𝜕𝜕αϱσ

𝜕𝜕𝜉𝜉𝑘𝑘
�
0

             (1.8) 

is the derivative of the polarizability with respect to the normal coordinate. 
Since relations (1.7) and (1.8) hold for all components of the polarizability 
tensor and the polarizability derivative, we rewrite (1.7) in a simpler form: 

α𝑘𝑘 = α0 + α𝑘𝑘′ 𝜉𝜉𝑘𝑘 .        (1.9) 

Assuming a simple harmonic motion of atoms during vibrations, the 
dependence of ξk on time can be expressed as  

ξk = ξk0 cos(ωkt + δk)      (1.10) 

(ξk0 is the amplitude of the normal coordinate, and δ is the phase of 
vibration). Now we can rewrite expression (1.2) for the dipole moment in 
the form: 

𝑷𝑷 = α𝑬𝑬 = α0𝑬𝑬0 cos(𝜔𝜔𝐿𝐿𝑡𝑡) + 𝛼𝛼𝑘𝑘′ 𝜉𝜉𝑘𝑘0 cos(ω𝑘𝑘𝑡𝑡 + δ𝑘𝑘)𝑬𝑬0 cos(ω𝐿𝐿𝑡𝑡).   (1.11) 

Using the well-known trigonometric relation for products of cosines, we 
get: 

𝑷𝑷 = α0𝑬𝑬0 cos(ω𝐿𝐿𝑡𝑡) +
1
2
𝛼𝛼𝑘𝑘′ 𝜉𝜉𝑘𝑘0 𝑬𝑬0cos[(ω𝐿𝐿 − ω𝑘𝑘)𝑡𝑡 ± δ𝑘𝑘] + 

+ 1
2
𝛼𝛼𝑘𝑘′ 𝜉𝜉𝑘𝑘0 𝑬𝑬0cos[(ω𝐿𝐿 + ω𝑘𝑘)𝑡𝑡 ± δ𝑘𝑘].       (1.12) 

It can be seen that, in addition to the first term, which is responsible 
for coherent Rayleigh scattering, two additional terms appear in 
expression (1.12) that describe the incoherent (phase δ is random for each 
vibration) Raman scattering with frequencies ωL − ωk (Stokes part) and ωL 
+ ωk (anti-Stokes part). As before, the Raman scattering intensity is 

𝑊𝑊𝑆𝑆 = 𝐴𝐴(ω𝐿𝐿 − ω𝑘𝑘)4|𝛼𝛼𝑘𝑘′ |2𝑬𝑬02    (Stokes scattering) (1.13) 

and 

𝑊𝑊𝑆𝑆 = 𝐴𝐴(ω𝐿𝐿 + ω𝑘𝑘)4|𝛼𝛼𝑘𝑘′ |2𝑬𝑬02    (anti-Stokes scattering)  (1.14) 
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where A is constant. In both cases, the scattering intensity is proportional 
to the square of the amplitude of the electric field of the incident light, the 
square of the amplitude of the derivative of the polarizability of the 
system, and the fourth power of the frequency of the scattered radiation. 

In conclusion, it should be noted that the simplified scheme proposed 
here is not a scattering theory in the full sense, and the results obtained are 
devoid of many important details. The only important result obtained 
above is the appearance of two scattering components, Stokes and anti-
Stokes. However, the physics of the process of Raman scattering is much 
richer and it is necessary, therefore, to go to the next, higher level of the 
theoretical description of this phenomenon. 

1.3. Semi-classic and quantum-mechanical approaches4 

The dipole moment P induced in the system (atom, molecule, crystal) 
by the electric field 𝑬𝑬𝐿𝐿 = 𝒆𝒆𝐿𝐿σ𝑬𝑬𝐿𝐿 (𝒆𝒆𝐿𝐿σ − the unit vector of polarization of the 
incident electromagnetic wave) is 

𝑷𝑷 = α𝒆𝒆𝐿𝐿𝜎𝜎𝐸𝐸𝐿𝐿.               (1.15) 

Let us rewrite expression (1.4) for the energy emitted by an 
oscillating electric dipole P per unit time in the form: 

𝑑𝑑𝑑𝑑𝑆𝑆
𝑑𝑑Ω

= ω𝐿𝐿
4

(4𝜋𝜋)2ε0𝑐𝑐3
�𝑒𝑒𝑆𝑆
𝜌𝜌 ∙ 𝑷𝑷�2 = ω𝐿𝐿

4

(4𝜋𝜋)2ε0𝑐𝑐3
�𝒆𝒆𝑆𝑆
𝜌𝜌 ∙ 𝜶𝜶 ⋅ 𝒆𝒆𝐿𝐿𝜎𝜎�

2𝐸𝐸𝐿𝐿2,          (1.16) 

where dΩ is the element spatial angle, ε0 is the dielectric constant of the 
medium, 𝒆𝒆𝑆𝑆

𝜌𝜌 is the unit vector of polarization of the scattered radiation, and 
ρ, σ = x, y, z. 

The scattering process is usually characterized by the differential 
cross section dσ/dΩ, which can be obtained by dividing (1.16) by the 
energy 𝑊𝑊𝐿𝐿 = 𝜀𝜀0𝑐𝑐𝐸𝐸𝐿𝐿2, falling per unit area per unit time: 

𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= ω𝐿𝐿
4

(4𝜋𝜋𝜀𝜀0)2𝑐𝑐4
�𝒆𝒆𝑆𝑆
𝜌𝜌 ∙ 𝜶𝜶 ⋅ 𝒆𝒆𝐿𝐿𝜎𝜎�

2
      (1.17) 

In the last expression, the unknown quantity is the polarizability of the 
system. To find it, it is usually assumed that the scattering medium 
consists of a set of N electron oscillators per unit volume. Each oscillator 
can be represented as an electron of mass m and charge e, bonded to the 

 
4 It is stated in accordance with [3]. 
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nucleus, and this bonding is characterized by a force constant f. The 
equation of motion for such a harmonic oscillator is written in the usual 
way: 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ ω𝑟𝑟
2𝑥𝑥 = 0,       (1.18) 

where ω𝑟𝑟
2 = 𝑓𝑓/𝑚𝑚 is the vibrational frequency of the oscillator (in quantum 

mechanics, ωr is interpreted as the frequency at which an atom absorbs a 
quantum of light, i.e., the frequency of an electronic transition). For an 
oscillator in an external field EL, we introduce the force F = eEL/m into 
expression (1.18): 

 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ ω𝑟𝑟
2𝑥𝑥 = 𝐹𝐹.     (1.19) 

In addition, a real physical system is characterized by a finite lifetime 
(damping of the oscillator), which adds one more term to the equation of 
motion (1.19): 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝛾𝛾𝑟𝑟
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ ω𝑟𝑟
2𝑥𝑥 = 𝐹𝐹.           (1.20) 

The solution of the equation (1.20) for an electronic oscillator with a 
fundamental frequency ωr and a damping coefficient γr, being in the 
electric field of an incident wave of frequency ωL, is as follows: 

𝑥𝑥 =
( 𝑒𝑒𝑚𝑚)𝐸𝐸𝐿𝐿

ω𝑟𝑟2−ω𝐿𝐿
2−𝑖𝑖ω𝐿𝐿𝛾𝛾𝑟𝑟

.          (1.21) 

Since P = αE = ex, we get: 

α = 𝑒𝑒2/𝑚𝑚
ω𝑟𝑟2−ω𝐿𝐿

2−𝑖𝑖ω𝐿𝐿𝛾𝛾𝑟𝑟
.       (1.22) 

Substituting (1.22) into (1.17), we obtain an expression for the scattering 
cross section: 

𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= 𝑟𝑟𝑒𝑒2ω𝐿𝐿
4

�ω𝑟𝑟
2−ω𝐿𝐿

2�
2
+ω𝐿𝐿

2𝛾𝛾𝑟𝑟2
�𝑒𝑒𝐿𝐿𝜎𝜎 ∙ 𝑒𝑒𝑆𝑆

𝜌𝜌�2,               (1.23) 

where re = e2/4πε0mc2 is the classical radius of the electron. Far from 
resonance, i.e. for ωL << ωr, expression (1.23) can be rewritten as: 
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𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= 𝑟𝑟𝑒𝑒2
ω𝐿𝐿
4

ω𝑟𝑟
4 �𝑒𝑒𝐿𝐿𝜎𝜎 ∙ 𝑒𝑒𝑆𝑆

𝜌𝜌�2.                    (1.24) 

Formula (1.24) describes elastic scattering of an isotropic medium. As 
before, in order to obtain inelastic scattering, it is necessary to consider 
how the polarizability of the system changes during vibration. Each 
vibrational mode ωj is characterized by the displacement of N atoms in the 
molecule dependent on time as ехр(±iωjt). The displacements of the k-
atom in the molecule (k = 1,2, ..., N) qk

(j) can be expressed in terms of the 
normal coordinates ξ as will be done in Chapter 2, Eq. (2.40), but only in 
complex form:  

𝑞𝑞𝑘𝑘
(𝑗𝑗)�±ω𝑗𝑗𝑡𝑡� = 𝒆𝒆𝑘𝑘ξ𝑒𝑒−𝑖𝑖ω𝑗𝑗𝑡𝑡 + 𝒆𝒆𝑘𝑘∗ ξ∗𝑒𝑒𝑖𝑖ω𝑗𝑗𝑡𝑡 ,               (1.25) 

where ek is the unit vector of displacement of the k-atom. From here, 
decomposing polarizability in a series in the normal coordinate ξ, we 
obtain a relation similar to (1.6): 
 

𝛂𝛂(ω𝐿𝐿, ξ) = 𝛂𝛂(ω𝐿𝐿) + 𝜕𝜕𝛂𝛂
𝜕𝜕ξ
ξ𝑒𝑒−𝑖𝑖ω𝑗𝑗𝑡𝑡 + 𝜕𝜕𝛂𝛂

𝜕𝜕ξ∗
ξ∗𝑒𝑒𝑖𝑖ω𝑗𝑗𝑡𝑡 + 1

2
𝜕𝜕2𝛂𝛂
𝜕𝜕ξ2

ξ2𝑒𝑒−2𝑖𝑖ω𝑗𝑗𝑡𝑡 +
1
2
𝜕𝜕2𝛂𝛂
𝜕𝜕ξ∗2

ξ∗2𝑒𝑒2𝑖𝑖ω𝑗𝑗𝑡𝑡 + ⋯        (1.26) 

Substituting (1.26) into (1.17) and restricting ourselves to the linear terms 
of expansion (1.26), we obtain scattering without changing the frequency 
ωL (Rayleigh) and with frequency ωL ± ωj (Stokes and anti-Stokes 
scattering). For the last two, the differential cross-section is written as: 
 

𝑑𝑑𝜎𝜎𝑆𝑆
𝑑𝑑Ω

=
�ω𝐿𝐿−ω𝑗𝑗�

4

(4𝜋𝜋ε0)2𝑐𝑐4
�𝒆𝒆𝑆𝑆 ∙

𝜕𝜕𝛂𝛂
𝜕𝜕ξ
⋅ 𝒆𝒆𝐿𝐿�

2
〈ξξ∗〉    (Stokes scattering),    (1.27) 

𝑑𝑑𝜎𝜎𝐴𝐴𝐴𝐴
𝑑𝑑Ω

=
�ω𝐿𝐿+ω𝑗𝑗�

4

(4𝜋𝜋ε0)2𝑐𝑐4
�𝒆𝒆𝑆𝑆 ∙

𝜕𝜕𝛂𝛂
𝜕𝜕ξ
⋅ 𝒆𝒆𝐿𝐿�

2
〈ξ∗ξ〉   (anti-Stokes scattering).   (1.28) 

 
The factors 〈ξξ* 〉 and 〈ξ*ξ〉, where the brackets denote averaging over the 
ground state of a molecule, are derived in quantum mechanics by replacing 
the displacements ξ and ξ* with the corresponding operators ξ and ξ †, 
called the creation and annihilation operators. Omitting rather complicated 
quantum-mechanical calculations (see, for example, Ref. [4]), we present 
the final result of the calculation of the Stokes and anti-Stokes factors: 
 

〈ξξ†〉 = ℏ
2ω𝑗𝑗

(𝑛𝑛 + 1)     Stokes component,   (1.29) 
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〈𝜉𝜉†ξ〉 = ℏ
2ω𝑗𝑗

𝑛𝑛     anti-Stokes component,   (1.30) 

 
where n determines the statistical (Maxwell-Boltzmann) population of the 
vibrational state 

𝑛𝑛 = 1
𝑒𝑒𝑒𝑒𝑒𝑒�ℏω𝑗𝑗/𝑘𝑘𝑘𝑘)−1�

.      (1.31) 

Substituting the last expressions in (1.27) and (1.28), we obtain: 

𝑑𝑑σ𝑆𝑆
𝑑𝑑Ω

=
ℏ�ω𝐿𝐿−ω𝑗𝑗�

4

2𝜔𝜔𝑗𝑗(4𝜋𝜋ε0)2𝑐𝑐4
�𝒆𝒆𝑆𝑆 ∙

𝜕𝜕𝛂𝛂
𝜕𝜕ξ
⋅ 𝒆𝒆𝐿𝐿�

2
(𝑛𝑛 + 1)   (Stokes scattering),    (1.32) 

𝑑𝑑σ𝐴𝐴𝐴𝐴
𝑑𝑑Ω

=
ℏ�ω𝐿𝐿+ω𝑗𝑗�

4

2𝜔𝜔𝑗𝑗(4𝜋𝜋ε0)2𝑐𝑐4
�𝒆𝒆𝑆𝑆 ∙

𝜕𝜕𝛂𝛂
𝜕𝜕ξ
⋅ 𝒆𝒆𝐿𝐿�

2
𝑛𝑛    (anti-Stokes scattering)  (1.33) 

The fact that the anti-Stokes scattering is proportional to the number of 
phonons with a given energy follows from the definition of the anti-Stokes 
process: in order for a scattering act to occur with absorption of a phonon, 
this phonon must be presented in the system. But the fact that the Stokes 
scattering’s intensity consists of two components, one of which is also 
proportional to the number of phonons in the system with exactly the same 
frequency as the scattered phonon, seems unexpected at first glance. 
Strange as it may seem, the well-known experiment with two identical 
pendulums fixed on one thread helps to understand this complex 
phenomenon. If an oscillation is excited in one of the pendulums, then due 
to the connection between them, this oscillation will be completely 
transferred to the second pendulum for some time, while the oscillations of 
the first will cease. Then the process starts in the opposite direction. Such 
transfer of energy from one oscillator to another and back becomes 
possible due to the identity of their fundamental vibrational frequencies. 
Now, returning to the process of light scattering by a vibration, it is easy to 
understand that the emitting of a phonon ω during scattering becomes 
much more probable if the system already has a vibration with the same 
frequency, which, as it were, “shakes” the system and, due to the 
kinematic interaction between phonons, helps the occurring of another 
such vibration. In the process of scattering, there is no need to transfer 
energy from one oscillator to another, since in this case the energy is taken 
from the photon. The temperature-independent part of the Stokes 
scattering arises due to the existence of zero-point vibrations, which 
provide the necessary perturbations of the system. The proportionality of 
the number of excitations to the number of the same excitations already 
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presented in the system is characteristic of all particles with integer spin, 
i.e. bosons. From this point of view, Stokes Raman scattering is 
completely analogous to the well-known phenomenon of the spontaneous 
and stimulated emission of light. Indeed, if an atom passes into an excited 
electronic state, which is usually stationary, i.e. allowed, then the lifetime 
of this state is, nevertheless, finite, and the electron returns to the ground 
state with the emission of a quantum of light either under the action of 
zero-point oscillations of the electromagnetic field (spontaneous emission) 
or a quantum of an external field with the same energy (stimulated 
emission). 

From expressions (1.32) and (1.33) we find for the ratio of the 
intensities of anti-Stokes IA and Stokes IS scattering 

𝐼𝐼𝐴𝐴
𝐼𝐼𝑆𝑆

=
�ω𝐿𝐿+ω𝑗𝑗�

4

�ω𝐿𝐿−ω𝑗𝑗�
4 𝑒𝑒𝑒𝑒𝑒𝑒 �−

ℏω𝑗𝑗

𝑘𝑘𝑘𝑘
�.        (1.34) 

Eq. (1.34) makes it possible to estimate the real temperature in the 
scattering volume of the sample (far from resonance). And since this 
volume is very often represented simply by a local point on the surface of 
a crystal or powder, the proposed method for temperature measuring is 
actually the only one in this case. 

Returning to relations (1.27) and (1.28), it is necessary to note that 
their meaning is the same as that of relations (1.13) and (1.14). But, 
receiving both, we did not consider the dependence of the polarizability of 
the system (1.22) on the frequency of the incident radiation. In expression 
(1.22), the polarizability is represented by the scalar quantity. To preserve 
its tensor character, we need to multiply polarizability (1.22) by the unit 
tensor of the force of the electron oscillator fe as follows: 

𝛂𝛂 = �𝑒𝑒2/𝑚𝑚�𝒇𝒇𝑒𝑒
ω𝑟𝑟
2−ω𝐿𝐿

2−𝑖𝑖ω𝐿𝐿γ
+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.     (1.35) 

Now the derivative of the polarizability with respect to the normal 
coordinate in (1.27) and (1.28) will consist of two contributions: 

𝑑𝑑𝛂𝛂
𝑑𝑑ξ

= −
2ω𝑟𝑟�

𝑒𝑒2
𝑚𝑚�𝒇𝒇𝑒𝑒

�ω𝑟𝑟
2−ω𝐿𝐿

2−𝑖𝑖ω𝐿𝐿γ�
2
𝑑𝑑ω𝑟𝑟
𝑑𝑑ξ

+
�𝑒𝑒
2
𝑚𝑚�

ω𝑟𝑟
2−ω𝐿𝐿

2−𝑖𝑖ω𝐿𝐿γ
𝑑𝑑𝒇𝒇𝑒𝑒
𝑑𝑑ξ

.     (1.36) 

The first term on the right-hand side of (1.36) expresses the dependence of 
the frequency of the electronic oscillator (energy of electronic transition) 
ωr on the shift of atoms during vibration and is determined by the electron-
phonon interaction. The second term represents the dependence of the 
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oscillator strength (the intensity of the electronic transition) on the 
displacement of atoms. The analysis of both terms is not an easy task, and 
therefore we restrict ourselves here to only stating the fact that a resonance 
factor appears in the expression for the scattering cross section, which, 
after some simplifications, may look like 

𝑑𝑑σ
𝑑𝑑Ω

∝ 1

�ω𝐿𝐿
2−ω𝑟𝑟2�

2
+ω𝐿𝐿

2γ2
.         (1.37) 

1.4. Quantum mechanical description 

In the quantum mechanical description, the induced electric dipole of the 
classical theory is replaced by the dipole moment (p)fi of the transition 
from the initial state i to the final state f. But, as can be seen in Fig. 1.2, in 
the process of Raman scattering, both states, initial and final, are the 
ground electronic state of the system (i.e., (p)fi = 0) with the only 
difference that the state f is vibrationally excited. At the same time, the 
frequency of the incident electromagnetic wave ωL is much higher than ωif 
= Eif /ħ, where Eif is the difference between the energies of the initial and 
final states. Therefore, to calculate the dipole moment of electronic 
transition in quantum mechanics, an intermediate state r is used, which is a 
real (stationary) excited electronic state of the system. In this case, the 
energy Er of the excited state can be any, but it is usually assumed that ωL 
is less than ωr = Er/ħ. The term "less" means in this case that the laser 
excitation frequency ωL is spaced from the resonance frequency ωr by 
many frequencies of the system ωif. Under this condition, the absorption 
coefficient of the system (i.e., the probability of transition from the ground 
state to the excited electronic state) practically does not depend on the 
vibration of the system. At this the vibration itself can be considered as its 
static deformation, and the molecule can be characterized at each moment 
of time by the definite polarizability. The quantum mechanical scattering 
scheme and the designation of states are shown in Fig. 1.5.  
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 ⟨𝑟𝑟|𝑝𝑝𝜎𝜎�|𝑖𝑖⟩ 

 
z

 

Ei 
Ef 

Er 
 

Fig. 1.5. Designation of states used in 
quantum mechanical calculation 

 

 

 

Following this scheme, the dipole moment of the transition (p(1))fi from the 
initial state to the final state in the framework of approximation theory – 
when only the terms linear in the field E are taken into account in the 
intermediate expansions (as indicated by the superscript in the designation 
of the dipole moment) – should be proportional to both the matrix element 
of the transition from the initial state i to the intermediate state r and the 
matrix element of the transition from the state r to the final state f. G. 
Placek [5] showed that the ρ-component of (p(1))fi can be written as  

�𝒑𝒑ϱ
(1)�

𝑓𝑓𝑓𝑓
=

1
2ℏ

� �
〈𝑓𝑓�𝑝̂𝑝ρ�𝑟𝑟〉〈𝑟𝑟|𝑝̂𝑝σ|𝑖𝑖〉
ω𝑟𝑟𝑟𝑟 − ω𝐿𝐿 − 𝑖𝑖Γ𝑟𝑟

+
〈𝑓𝑓|𝑝̂𝑝σ|𝑟𝑟〉〈𝑟𝑟�𝑝̂𝑝ϱ�𝑖𝑖〉
ω𝑟𝑟𝑟𝑟 + ω𝐿𝐿 + 𝑖𝑖Γ𝑟𝑟

� 𝐸𝐸�𝜎𝜎0𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖ω𝑆𝑆𝑡𝑡)
𝑟𝑟≠𝑖𝑖,𝑓𝑓

 

 + complex conjugated,   (1.38) 

where the summation is carried out over all formally possible intermediate 
states r (for simplicity, the entire sum can be replaced by just one state). In 
this expression 𝑝̂𝑝 is the operator of the dipole moment (operator of 
electronic coordinate), and Гr is the half-width of the state r of the system, 
ωs = ωL − ωfi. 

The numerator of expression (1.38) contains the matrix elements of 
transitions between states and, thus, describes the probabilities of system 
excitation and interaction with a phonon. The denominator ωri ± (ωL + iГr) 
is the resonance factor presented above. 

Let us introduce a general expression for the ρσ-components of the 
polarizability (αρσ)fi: 

�𝛂𝛂σϱ�𝑓𝑓𝑓𝑓 = 1
ℏ
∑ �

〈𝑓𝑓�𝑝𝑝�ρ�𝑟𝑟〉〈𝑟𝑟|𝑝𝑝�σ|𝑖𝑖〉

ω𝑟𝑟𝑟𝑟−ω𝐿𝐿−𝑖𝑖Γ𝑟𝑟
+

〈𝑓𝑓|𝑝𝑝�σ|𝑟𝑟〉〈𝑟𝑟�𝑝𝑝�ϱ�𝑖𝑖〉

ω𝑟𝑟𝑟𝑟+ω𝐿𝐿+𝑖𝑖Γ𝑟𝑟
� .𝑟𝑟≠𝑖𝑖,𝑓𝑓     (1.39) 

Far from resonance (ωL
 <<ωri), the term iΓr can be neglected, therefore 
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�𝛂𝛂σϱ�𝑓𝑓𝑓𝑓 = 1
ℏ
∑ �

〈𝑓𝑓�𝑝𝑝�ρ�𝑟𝑟〉〈𝑟𝑟|𝑝𝑝�σ|𝑖𝑖〉

ω𝑟𝑟𝑟𝑟−ω𝐿𝐿
+

〈𝑓𝑓|𝑝𝑝�σ|𝑟𝑟〉〈𝑟𝑟�𝑝𝑝�ϱ�𝑖𝑖〉

ω𝑟𝑟𝑟𝑟+ω𝐿𝐿
� .𝑟𝑟≠𝑖𝑖,𝑓𝑓    (1.40) 

The first term in brackets is usually significantly larger than the second 
due to the resonant denominator, so the second term is often neglected for 
simplicity. Now it is necessary to substitute expression (1.40) for the 
polarizability into the series expansion (1.26) and, confining ourselves, as 
before, to the harmonic approximation, obtain the intensity of Raman 
scattering using relations (1.32) and (1.33). However, the transition from 
theoretical expressions to numerical values of intensities for molecules and 
crystals is still a difficult task. 

The analysis presented here differs from the simplified classical 
scheme (§ 1.2) by the appearance of a resonance factor, which very often 
makes the dependence of the scattering intensity on the wavelength of the 
exciting radiation much stronger than the fourth power of the frequency in 
expressions (1.13) and (1.14). When the energy of the laser line 
approaches the energy of the electronic transition, the scattering intensity 
can increase hundreds and thousands of times (see Chapter 8). In addition, 
the scattering intensity turned out to depend on the thermal population of 
the vibrational state, which primarily affects the ratio of the intensities of 
the Stokes and anti-Stokes scatterings. 



CHAPTER 2 

VIBRATIONS OF MOLECULES 
 
 
 

2.1. Harmonic oscillator in classical mechanics 

The harmonic oscillator is an approximation that is used in physics to 
describe the free vibrations of various systems – mechanical, electrical, 
and electromagnetic. The approximation is that the restoring force acting 
on the system when it deviates from the equilibrium position is assumed to 
be linearly dependent on the magnitude of the deviation, i.e. F = −f⋅x, 
where f is the proportionality coefficient (rigidity of spring, force constant 
of chemical bond). And although the last condition is satisfied only for 
small deviations in mechanical systems and weak fields in electromagnetic 
oscillations, the theory of a harmonic oscillator is fundamental in 
vibrational processes. 

 

 

Fig. 2.1. Potential energy of a one-dimensional 
harmonic oscillator 

 

 

 

 

We will consider a one-dimensional harmonic oscillator, in which, by 
definition, the potential energy U(x) of one particle of mass m 
quadratically changes with the coordinate x (Fig. 2.1) according to the law 

  𝑈𝑈(𝑥𝑥) = 1
2
𝑓𝑓𝑥𝑥2 ,    (2.1) 

U(
x)

  →

   −x
max

            0                   x
max
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and the kinetic energy takes the form 

𝑇𝑇(𝑥𝑥) = 1
2
𝑚𝑚 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
2

= 1
2
𝑚𝑚𝑥̇𝑥2 = 𝑝𝑝2

2𝑚𝑚
 .  (2.2) 

Let us write the equation of motion of a harmonic oscillator: 

𝑚𝑚𝑥̈𝑥 =  −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝑓𝑓𝑓𝑓,               𝑥̈𝑥 + 𝑓𝑓
𝑚𝑚
𝑥𝑥 =  𝑥̈𝑥 + ω2𝑥𝑥 = 0, (2.3) 

where ω = �𝑓𝑓
𝑚𝑚

. Solution (2.3) is either of the following two: 

𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 sin(ω𝑡𝑡 + φ),        𝑥𝑥 = 𝑥𝑥1 cosω𝑡𝑡 + 𝑥𝑥2 sinω𝑡𝑡,  (2.4)   

where the arbitrary constants xmax, φ, x1, and x2 are related as         

   𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑥𝑥12 + 𝑥𝑥22,        tgφ = −𝑥𝑥2
𝑥𝑥1

.    (2.5) 

(Equalities (2.5) follow from the trigonometric equation sin (ω𝑡𝑡 +
φ) = sin ω𝑡𝑡 ·  cos φ+ cos ω𝑡𝑡 · sin ϕ . ) This solution describes harmonic 
oscillations with the frequency ω, amplitude xmax and initial phase φ. 
Angular frequency ω refers to spectroscopic frequency ν and period of 
vibrations T as  

ω = 2πν = 2π
𝑇𝑇

= �𝑓𝑓
𝑚𝑚

.       (2.6) 

For definiteness, we choose one of two solutions for the harmonic 
oscillator (2.4), namely 

𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 sin(𝜔𝜔𝜔𝜔 + 𝜑𝜑).       (2.7) 

𝑝𝑝 = 𝑚𝑚𝑥̇𝑥 = 𝑚𝑚ω𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 cos(ω𝑡𝑡 + φ) = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 cos(ω𝑡𝑡 + φ).        (2.7a) 

From (2.1) and (2.2) we have 

𝑈𝑈(𝑥𝑥) = 1
2
𝑓𝑓𝑥𝑥2 = 1

2
𝑚𝑚ω2𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚2 sin2(ω𝑡𝑡 + φ),      (2.8) 

𝑇𝑇(𝑥𝑥) = 1
2
𝑚𝑚𝑥̇𝑥2 = 1

2
𝑚𝑚ω2𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚2 cos2(ω𝑡𝑡 + φ).      (2.9) 
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The total energy, equal to the sum of the potential and kinetic 
energies, remains constant during oscillation: 

𝐸𝐸 = 𝑇𝑇 + 𝑈𝑈 = 1
2
𝑚𝑚ω2𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚2 cos2(ω𝑡𝑡 + φ) + 1

2
𝑚𝑚𝜔𝜔2𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚2 sin2(ω𝑡𝑡 +

φ) == 1
2
𝑚𝑚ω2𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚.

2       (2.10) 

The potential energy U becomes equal to the total E at x = ± xmax, 
therefore, the kinetic energy should vanish at these points, which are 
turning points for the classical oscillator. For x = 0, i.e. in the equilibrium 
position, the potential energy vanishes, and the kinetic energy reaches its 
maximum value. The probability of detecting an oscillating particle in a 
state with a coordinate x is maximum at the turning points x = ± xmax, 
where the velocity of the atoms becomes equal to zero, and is minimum at 
the equilibrium position. The mean values of the coordinate and 
momentum are equal to zero because 

𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
1

2𝜋𝜋
� sin(ω𝑡𝑡 + φ)𝑑𝑑φ = 0
2𝜋𝜋

0
 

      𝑝𝑝 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
1
2𝜋𝜋 ∫ cos(ω𝑡𝑡 + φ)𝑑𝑑φ = 0 .2𝜋𝜋

0      (2.11) 

However, the mean values of the squares of the coordinate and 
momentum are nonzero: 

         𝑥𝑥2 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚2 1
2𝜋𝜋 ∫ sin2(𝜔𝜔𝜔𝜔 + 𝜑𝜑)𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

2

2
2𝜋𝜋
0  

𝑝𝑝2 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚2 1
2𝜋𝜋 ∫ cos2(𝜔𝜔𝜔𝜔 + 𝜑𝜑)𝑑𝑑𝑑𝑑 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

2

2
2𝜋𝜋
0 .  (2.12) 

Hence, the standard deviations are: 

𝛿𝛿𝛿𝛿 = �𝑥𝑥2 − (𝑥𝑥)2 =
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
√2

 

      𝛿𝛿𝛿𝛿 = �𝑝𝑝2 − (𝑝𝑝)2 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
√2

         (2.13) 
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2.2. Quantum mechanical harmonic oscillator 

The solution to the problem of a quantum harmonic oscillator is 
directly related to the appearance of quantum mechanics. This 
phenomenon itself is much more complex than that of a classical 
oscillator. For this reason, we will first obtain a formal solution, as it is 
usually presented in textbooks on quantum mechanics, and then we will 
try to clarify the main features inherent in a quantum oscillator. 

For the quantum mechanical solution of the harmonic oscillator 
problem, it is necessary to find the eigenvalues and eigenfunctions of the 
energy operator 𝐻𝐻�. Introducing the generalized momentum 𝑝𝑝 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑞̇𝑞
= 𝑚𝑚𝑞̇𝑞   

(q − coordinate) and taking into account expressions (2.1) and (2.2) for the 
kinetic and potential energies of the oscillator, we write the Hamilton 
function 

𝐻𝐻� = 1
2𝑚𝑚
𝑝̂𝑝2 + 1

2
𝑓𝑓𝑞𝑞2 = − ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑞𝑞2
+ 1

2
𝑓𝑓𝑞𝑞2. (2.14) 

Replacing the classical momentum p with the momentum operator 
 𝑝̂𝑝 = ℏ

𝑖𝑖
𝑑𝑑
𝑑𝑑𝑑𝑑

 (i.e., replacing the momentum with a mathematical operation 
that, acting on the function, reveals the determination of the momentum of 
the system), we obtain for the energy operator of the harmonic oscillator 

𝐻𝐻� = 1
2𝑚𝑚
𝑝̂𝑝2 + 1

2
𝑓𝑓𝑞𝑞2 = − ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑞𝑞2
+ 1

2
𝑓𝑓𝑞𝑞2. (2.15) 

The solution of an eigenvalue problem for the Schrödinger operator 
(stationary Schrödinger equation) 

𝐻𝐻�ψ𝑛𝑛(𝑞𝑞) = �− ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑞𝑞2
+ 1

2
𝑓𝑓𝑞𝑞2�ψ𝑛𝑛(𝑞𝑞) = 𝐸𝐸𝑛𝑛ψ𝑛𝑛(𝑞𝑞)   

 (2.16) 

determines the energy spectrum 

𝐸𝐸𝑛𝑛 = ℏω�𝑛𝑛 + 1
2
�   (2.17) 

(where ω = �𝑓𝑓
𝑚𝑚

, as in the classical oscillator, and n is the vibrational 

quantum number taking integer values n = 0, 1, 2, ...) and the 
eigenfunctions 
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ψ𝑛𝑛(𝑞𝑞) = 1
𝑁𝑁𝑛𝑛
𝐻𝐻𝑛𝑛(β𝑞𝑞)𝑒𝑒−

β2𝑞𝑞2
2 = 1

𝑁𝑁𝑛𝑛
𝐻𝐻𝑛𝑛(ξ)𝑒𝑒−

ξ2
2 ;    (2.18) 

here Nn is the normalization factor, β = 1
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚(0)

,  ξ = βq. The functions 

H(ξ) are Hermite polynomials of degree n (n = 0, 1, 2 ...), written as 

H0(ξ) = 1     
H1(ξ) = 2ξ 

          H2(ξ) = 4ξ2 + 2       (2.19) 
H3(ξ) = 8ξ3 − 12ξ 
H4(ξ) = 16ξ4 − 48ξ2 + 12. 

Wave functions (2.18) and their squares, which determine the 
probability distribution of coordinate values, are shown in Fig. 2.2. It can 
be seen that the functions ψ0 and ψ2 are even with respect to the change in 
the sign of the coordinate, and the functions ψ1 and ψ3 are odd. The 
distribution probability is maximal at the center (i.e., in the classical 
equilibrium position) for the function ψ0 and shifts towards the turning points 
for the remaining functions. Unlike the classical oscillator, the probability 
outside the classical movement is not zero, but falls off exponentially, and, in 
addition, it can have several maxima within the oscillator.  

 

 

 

 

 

 

 

 

 

Fig. 2.2. Wave functions of a harmonic oscillator. The divisions of the abscissa 
scale are in units of ξ 

Potential and 
wave functions 
of a harmonic 

oscillator 

The limits of the 
classic movement 
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The probability of a transition between states n and n′ under the 
action of an electromagnetic field in the main order is determined by the 
dipole approximation. In this case, the disturbance potential can be 
considered in the form φ = d⋅E, where d is the dipole moment equal to eq, 
and E is the amplitude of the electromagnetic field. Thus, in this case, the 
perturbation energy can be considered a linear function of q; accordingly, 
the transition probability will be determined by the square of the matrix 
element of the q coordinate between the states |n> and |n′> 

〈𝑛𝑛|𝑞𝑞|𝑛𝑛′〉 = ∫ψ𝑛𝑛𝑞𝑞ψ𝑛𝑛′𝑑𝑑𝑑𝑑.   (2.20) 

Using the wave functions (2.18) and (2.19), we find that, for example, 
the probability of the 0→1 transition will be proportional to the integral of 
an even function q2 and therefore finite, and the probability of the 0→2 
transition is proportional to the integral of the odd function q3 and is equal 
to zero, since the integration is carried out in symmetric limits. These 
observations constitute a special case of the general selection rule, 
according to which only transitions between neighboring quantum states 
are allowed, i.e. with a change in the quantum number n by one 

∆n = ±1.    (2.21) 

The proof of the selection rules (2.21) is based on the fact that 
radiative transitions with high accuracy can be considered as dipole, in 
which the angular momentum of the photon is equal to ћ. Consequently, 
the angular momentum of the oscillation during the emission or absorption 
of a quantum of light can change only by one, which satisfies condition 
(2.21). 

The average values of the coordinate and momentum of stationary 
states of a harmonic quantum oscillator are determined by the integrals 

〈ψ𝑛𝑛|𝑞𝑞|ψ𝑛𝑛〉 = 0  

              〈ψ𝑛𝑛|𝑝𝑝|ψ𝑛𝑛〉 = 0        (2.22) 

and are equal to zero, since the integration is carried out within symmetric 
limits. 

In a quantum oscillator, the instantaneous values of the coordinate 
and momentum of a particle are not determined (these physical quantities 
are not observable); instead, the mean values of the squares of the 
coordinate and momentum are usually found. We can, however, express 
the amplitude of a quantum oscillator in terms of the observed parameters. 


