Organic Pollution in the Marine Environment of Tunisia

The book cover includes:

- The photo of the Bizerte lagoon, in which there are different shades of blue. I mean that the Bizerte lagoon is so beautiful and should be protected from pollution and ought to be kept beautiful. I took this photo during the sampling campaigns.
- The blue on the right side of the cover presents the marine environment.
- The red color on the book cover indicates the danger that comes to the marine environment.
- The orange color in the title of the book reveals the threat caused by organic compounds such as pesticides in the aquatic environment.
- The green color in the back of the photo shows the green chemistry that should be adopted to minimize the risk of the emission of pesticides into the aquatic environment.

Organic Pollution in the Marine Environment of Tunisia

Ву

Mouna Necibi and Nadia Mzoughi

Cambridge Scholars Publishing

Organic Pollution in the Marine Environment of Tunisia

By Mouna Necibi and Nadia Mzoughi

This book first published 2022

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2022 by Mouna Necibi and Nadia Mzoughi

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-8449-6 ISBN (13): 978-1-5275-8449-5

TABLE OF CONTENTS

Acknowledgments	ix
List of Tables	X
List of Figures	. xii
Abbreviations List	xiv
Introduction	1
Chapter IOrganic Pollution in Tunisia	4
I. Pesticides in Tunisia	4
I.1 Agricultural activities	
I.2 Regulations	
II. The Pesticides	
II.1 The organochlorine pesticides (OCPs)	
II.1.1 The Aldrin, dieldrin and endrin	
II.1.2 The DDT, the DDE and the DDD	
II.1.3 The lindane, heptachlor and Hexachlorobenzene	
II.1.4 Risks of OCPs	
II.1.4. 1 Input mechanisms of OCPs in the marine	
environment	. 20
II.1.4.2 Effect of organochlorine pesticides	
on human health	. 21
II.2. The PCBs	. 22
II.2.1. Input mechanisms of PCBs in the marine environment.	. 23
II.2.2. PCBs degradation	. 25
II.2.3. The health effects of PCBs	. 25
III. Synthetic musk (MS)	
III.1 Overview of synthetic musk	
III.2 Input mechanisms of synthetic musks	
in the marine environment	. 28
III.3 Musk in the environment	. 31
III.4 The musk extraction methods	. 32

Chapter II	35
Analytical methods for the determination of organic pollutants	
n The Bizerte Lagoon	
I. Presentation of the study area: the Bizerte lagoon	35
I.1 Characteristic of the lagoon of Bizerte	35
I.2 Exploitation of natural resources	37
I.3 Human activities around the Bizerte lagoon	37
II. The different extraction techniques	
II.1 Soxhlet extraction	42
II.2 QuEChERS extraction method	43
II.3 Liquid-liquid extraction (LLE)	45
III Analysis method	
III.1 The gas chromatography	46
III.2 Injectors	47
III.2.1 injector split (with division)	47
III.2.2 Splitless injector (without division)	
III.2.3 The spray-programmed temperature injector (PTV).	
III.3. Detectors	50
III.3.1 Detector Electron Capture (ECD)	50
III.3.2 The mass spectrometry (MS)	
IV Quality assurance of the analyses	
IV.1 Qualitative analysis	
IV.2 Quantitative analysis	
IV.3 Quality assurance	
IV.3.1 Detection and quantification limits	56
IV.3.2 Accuracy	
IV.3.3 Precision	57
IV.3.4 Selectivity	
IV.3.5 Recovery rate	
Chapter III	59
Distributions of organochlorine pesticides and polychlorinated	
piphenyl in surface water from Bizerte Lagoon, Tunisia	
I. Introduction	
II. Sampling and conservation protocol of surface water	61
III. Analysis of OCPs and PCBs in the surface water	
of the Bizerte lagoon	
III.1 Internal Standard Solution Preparation	
III.2 Surface water sample extraction	
III.2.1 Concentration	
III.2.2 Purification and separation	64

Organic Pollution in the Marine Environment of Tunisia	vii

τ	7	i	i

III.3 GC-ECD analysis	65
IV.1. Concentration of PCBs	66
IV.2. Concentrations of OCPs	
IV.2.1. Concentration of HCB, heptachlor, and lindane	69
IV.2.2. Concentration of aldrin, dieldrin and endrin	
IV.2.3. Concentration of DDTs	
IV.3. Principal compound analysis	
V. Conclusion	74
Chapter IV	75
Distribution of organochlorine pesticides in suspended particulate matter and sediment from the Bizerte Lagoon, Tunisia	
I. Introduction	75
II. Sample collection	
III. Analysis of organochlorine pesticides in SPM and surface	
sediments samples collected from the Bizerte lagoon	79
III.1 Extraction with the Soxhlet extractor	
III.2 Analysis by GC-ECD	
IV. Residual levels of OCPs in SPM and sediment	
IV.1. Residual levels of OCPs in SPM	
IV.2 Residual levels of OCPs in sediment	
IV.3 The OCPs distribution and partitioning	
between SPM and sediment	83
IV.4 Correlation and Principal component analysis	
IV.5 Comparison with studies from the words	
IV.6 Risk and health effects of OCPs	
V. Conclusion	
Chapter V	94
Distribution of organochlorine pesticides in sediment cores) 1
from the Bizerte Lagoon (Tunisia)	
I. Introduction	94
II. Experimental	
II.1. Sample collection	
II.2. Analytical procedures	
III. Results and discussions	
III.1. Variations in OCPs concentrations in the core profiles	
III.2. Levels of lindane, heptachlor and HCB in different	>0
sediment core layers	100
III.3. Levels of aldrin, dieldrin and endrin in the different	100
sediment core layers	101
III.4. Distribution of $\sum DDT$ in sediment cores	
=	

III.5. Correlation and principal component analysis	107
IV. Health and environmental risks of OCPs	
V. Conclusion	
Chapter VI	115
determination of synthetic musks in sediments of the lagoon of b	izerte:
extraction with QUECHERS and analysis by GC-MS	
I. Introduction	
II. Materials and methods	118
II.1. Sampling	118
II.2. Analysis of synthetic musk in the surface sediments	
of the Bizerte lagoon	119
II.3. Extraction of synthetic musk by QuEChERS	119
II.4 Analysis by GC-PTV-MS	120
III. Results and discussion	122
III.1. Validation of the extract method	
III.2. Application of the QuEChERS method	129
IV. Conclusion	
Conclusion	134
References	137

ACKNOWLEDGMENTS

To HOURIA NECIBI my soul mate and mother To all my family, professors, coworkers, students, and friends

Mouna

LIST OF TABLES

Table 1.1 Number of active substances and commercial formulations for	
each type of pesticide imported into Tunisia	. 5
Table 1.2 Presentation of pesticides in different matrices from Tunisia	
Table 1.3 Locations, matrices, analytical methods, and concentrations of	
PCBs and OCPs in different locations from the world	
Table 1.4 Physicochemical characteristics of aldrin, the dieldrin	
and endrin	14
Table 1.5 Physicochemical characteristics of pp' DDT, pp' DDE and	
pp' DDD	17
Table 1.6 Physicochemical characteristics of HCB, the heptachlor and	
the lindane	19
Table 1.7 The physicochemical properties of PCBs for each group of	
isomers	
Table 1.8 Physicochemical characteristics of SMs.	
Table 1.9 Physicochemical characteristics of SMs	
Table 1.10 Concentrations of synthetics musks in different environmenta	1
matrices	_
Table 1.11 Extraction methods of synthetics musk from sediments	
Table 2-1 Urban concentration in the Bizerte region	
Table 2- 2 Distribution of industrial establishments by sector of activity in	
the Bizerte lagoon	
Table 2-3 Distribution of industrial establishments	
Table 3-1 Description of samples collected from Bizerte Lagoon	62
Table 3-2 The GC-ECD operating conditions for the analysis of OCPs	
and PCBs in surface water	
Table 3-3 Detection limits and concentrations of OCPs and PCBs (ng L ⁻¹	
in surface water collected from Bizerte Lagoon	
Table 3-4 Concentration limits of OCPs in the water matrix (ng L ⁻¹)	
Table 4.1 Description of samples collected from the Bizerte Lagoon	/8
Table 4.2 The procedure condition of GC-ECD for analysing OCPs in	on
the SPM and surface sediments collected from the Bizerte Lagoon	
Table 4.3 Analytical performance of OCPs extraction in sediments by the	
soxhlet extractor	
from the Bizerte Lagoon	04

Table 4.5 Correlation matrices of OCPs levels in the Bizerte lagoon
sediments
Table 4.6 Correlation matrices of OCPs levels in the
Bizerte lagoon SPM
Table 4.7 Concentration limits of OCPs in SPM and sediment matrices
(ng g ⁻¹)92
Table 5-1 Description of sampling sites of sediment cores from the
Bizerte Lagoon
Table 5-2 Levels of OCPs (ng g ⁻¹), ΣDDT (ng g ⁻¹) and TOC (%) in
sediment cores from the Bizerte Lagoon (Mean; expressed in
nanograms per gram dry weight \pm SD; expressed in %; n = 3) 99
Table 5-3 Concentrations of OCPs (ng g ⁻¹) in the sediment core 1 (Mean;
expressed in nanograms per gram dry weight ± SD; expressed in %; n
= 3)
Table 5-4 Concentrations of OCPs (ng g ⁻¹) in sediment core 2 (Mean;
expressed in nanograms per gram dry weight ± SD; expressed in %; n
= 3)
Table 5-5 Correlation matrix of OCPs levels in SC1 of the
Bizerte lagoon
Table 5-6 Correlation matrix of OCPs levels in SC2 of the
Bizerte lagoon
Table 5-7 Comparison of OCPs concentrations in sediment cores with E-
RL, E-RM, TEL, PEL, TEC and PEC values (nanograms per gram dry
weight)
Table 5-8 The OCPs levels (ng g ⁻¹) in sediment cores previously reported
from different aquatic ecosystems
Table 6-1 Operative conditions of GC-MS for the analysis of SMs in
surface sediment collected from the Bizerte lagoon
Table 6-2 Analytical performances for the IC and ICQ calibrations:
determination coefficients (R ²), relative standard deviation (RSD,
n=5), method detection limits (MDL), detection limits (LOD), and
quantification limits (LOQ) in ng g ⁻¹
Table 6-3 Mean (±standard deviation), apparent (APR), and absolute
(ABR) recoveries of target compounds from SRM 1944 (%) and S2
sediment (%) $(n = 3)$
Table 6-4 Concentrations (ng g ⁻¹) and TOC (%) of SMs in surface
sediment of the Bizerte Lagoon
Table 6-5 The two main synthetic musk compounds (HHTN and AHTN)
concentrations (ng g -1) detected in surface sediments previously
reported for different aquatic ecosystems

LIST OF FIGURES

Fig. 1-1. Evolution of imports of pesticides in Tunisia between 1999 and	ĺ
2006	
Fig. 1-2: Synthesis of aldrin and dieldrin	
Fig.1-3. Chemicals structure of the polychlorinated biphenyls	
Fig. 2-1. The Bizerte lagoon	
Fig. 2-2. Industrial and urban activities around the Bizerte lagoon	
Fig. 2-3. Presentation of the extraction steps	
Fig. 2-4. Diagram of the Soxhlet extractor	
Fig. 2-5. The different extraction steps by QuEChERS	44
Fig. 2-6. Liquid-liquid extraction	46
Fig. 2-7. The gas chromatography	47
Fig. 2-8. Diagram of a split-splitless injector	49
Fig. 2- 9. Diagram of the spray programmed temperature injector	
Fig. 2- 10. The electron capture detector	51
Fig. 2-11. A simplified representation of an ion trap	54
Fig. 3-1. Study areas with sampling locations and different types of	
industrial areas (A, B, C and D) in the Bizerte Lagoon	61
Fig. 3-2. Surface water collection from the Bizerte lagoon	62
Fig. 3-3. Liquid-liquid extraction steps for the extraction of OCP and	
PCB surface water samples	64
Fig. 3-4. Sample fractioning procedures	65
Fig. 3-5. PCBs (a) and OCPs (b) distribution in surface water samples	
collected from Bizerte Lagoon	70
Fig. 3-6. Individual PCBs (a) and OCPs (b) concentrations in surface	
water samples collected from Bizerte Lagoon	70
Fig. 3-7. Principal Component Analysis for individual OCPs (a) and	
PCBs (b) in the Bizerte Lagoon	73
Fig.4-1. Study areas with sampling stations and different types of	
industrial areas (A, B, C and D) in the Bizerte Lagoon	77
Fig.4-2. Sampling of surface sediment from the Bizerte lagoon	78
Fig.4-3. Sampling of SPM from the Bizerte lagoon	79
Fig.4-4. Extraction of sediment and SPM with the Soxhlet extractor	
Fig.4-5. Principal component analysis for individual OCPs in sediment	
collected from the Bizerte Lagoon	89

Fig.4-6. Principal component analysis for individual OCPs in SPM
collected from the Bizerte Lagoon90
Fig. 5-1. Industrial areas and sampling site locations of the sediment cores
collected from Bizerte Lagoon96
Fig. 5-2. Sediment cores sampling
Fig. 5-3. Sediment cores sub-sampling
Fig. 5-4. Average compositions of OCPs compounds in sediment cores 99
Fig. 5-5. Vertical depth profiles of DDTs
Fig. 5-6. Down-core variation of (DDE+DDD)/ΣDDT and (DDE/DDD) in
sediment cores
Fig. 5-7. Principal component analysis for individual OCPs in SC1 (a) and
SC2 (b) collected from the Bizerte Lagoon
Fig. 6-1. Natural musks
Fig. 6-2. Synthetic musks
Fig. 6-3. QuEChERS extraction
Fig. 6-4. Study areas with sampling locations and different types of
industrial areas (A, B, C and D) in the Bizerte Lagoon 118
Fig. 6-5. QuEChERS extraction steps of sediment
Fig. 6-6. GC-MS chromatograms of ICQ (a) spiked Bizerte sediment (b)
and spiked SRM 1944 (c) at 50 ng g ⁻¹ (1: ADBI, 2: AHMI, 3: ATII, 4:
MXD15, 5: HHCB, 6: AHTN, 7: MX, 8: MM, 9: MK)

ABBREVIATIONS LIST

ACN : Acetonitrile

ACP : Principal component analysis

ADBI : Celestolid
AHMI : Phantolide
AHTN : Tonalide
ATII : Traseolid

API : Industry Promotion Agency
ASE : Accelerated Solvent Extraction

GIC : Gas chromatography

CRM : Certified Reference Material

DCM : Dicloromethane

DDD
 Dichlorodiphenyldichloroethane
 DDE
 Dichlorodiphenyldichloroethylene
 DDT
 Dichlorodiphenyltrichloroethane

DGPA : Directorate General of Fisheries and Aquaculture

DPMI: Cashmeran

ECD : Electron capture detector ELL : Liquid liquid extraction

ES : Soxhlet extractor

PAH : polycyclic aromatic hydrocarbons

HCB: Hexachlorobenzene

HHCB : GalaxolidHex: Hexane

IAEA : International Atomic Energy Agency

IC : Internal calibration

ICQ : Internal calibration with QuEChERS

IUPAC : International Union of Pure and Applied Chemistry

K ow : Octanol / water partition coefficient

LOD : Limit of detection
LOQ : Limit of quantification

MAE : Microwave assisted extraction

MM : Musk mosken

MK : Musk keton

MX : Musk xylem

MS : Synthetic musk

MX D15 : Musk xylen deuterated WHO : World Health Organization

P : Pressure

PCB : Polychlorinated biphenyls
PES : Suspended particles

UNEP : United Nations Environment ProgramPNEC : Concentration that does not pose a danger

POP : Persistent Organic Pollutants
OCP : Organochlorine pesticides
PSU : Practical unit of salinity

PTC : value at which the concentration of the pollutant is

considered toxic

QUECHERS: Quick, Easy, Cheap, Effective, Rugged and Safe.

RSD : Relative standard deviation

S : Solubility

SDSE : Simultaneous solvent extraction and distillation

SPME : Micro solid phase extraction
 SPE : Solid phase extraction
 SRM : Standard Reference Material

TEC : value below which the concentration of a pollutant is

considered non-toxic

TOC : total organic carbon

INTRODUCTION

Aquatic ecosystems are important reservoirs of pollutants, some of which are toxic, and their discharge into the environment may pose a threat to their balance and to human health. The pollution sources of water are diversified and affect so many countries, including Tunisia. There are industrial, agricultural, domestic, and natural sources of pollution, which can be direct or indirect, individual or diffuse. The main types of pollutants that reach the aquatic environment are either organic compounds, such as polycyclic aromatic hydrocarbons, pesticides, medicines, dioxins, chlorophenols, phthalates, or inorganic compounds, which include metal, nitrogen, and, phosphorus compounds.

A large proportion of compounds of human or natural origin tend to accumulate in sediments and, in some cases, to concentrate in aquatic food in the aquatic environment. They are introduced into water courses in particulate, dissolved, and colloidal forms by industrial, urban, and agricultural activities, as well as by atmospheric transport. polychlorinated biphenyls (PCBs) and the organochlorine pesticides (OCPs), which are found in concentrations of traces in water, are examples of toxic substances that are hydrophobic, and tend to accumulate in the sediment phase. Despite the prohibition of the use of some of these pollutants in North America and Europe for over 40 years and in Tunisia since 1980, they continue to pose problems because of their persistence in the environment. Sediments can therefore represent an important source of contaminants for the communities of organisms that reside there. Measures regulatory (prohibition or restriction of use of some chemical compounds) are also applied in order to protect humans and their environment. The Tunisian government has reacted against degradation of aquatic environments by signing, in particular, the protocol of the Stockholm convention on persistent organic pollutants. PCBs, aldrin, chlordane, dieldrin, endrin, heptachlor, hexachlorobenzene (HCB), and toxaphene are all prohibited under this protocol.

The Bizerte lagoon is the second largest lagoon in Tunisia. This lagoon has experienced a fleet of fishing and aquaculture related to the presence of three sectors. The human population around the lagoon is estimated

2 Introduction

at 163,000 inhabitants (2004 census), with a significant percentage in the city of Bizerte. The other main cities are in the region of Menzel Bourguiba, Menzel Abderrahmen and Menzel Jemil. This lagoon is one of the most economically important areas in Tunisia. It is heavily influenced by anthropogenic factors such as oil refineries, ceramics, metallurgy, ship building and air output. The organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) and are well known for their chronic toxicity, their persistence, and their bioaccumulation.

Contamination with organochlorine pesticides and polychlorinated biphenyl compounds has spread worldwide and continues to be detected in a wide range of environmental media, including water, sediment, suspended particulate matter, and fish. Small sediment particles have a very large capacity of absorption and accumulation of pesticide. Pesticides released into the aquatic environment through various mechanisms are easily adsorbed on the particles and then incorporated into sediments. Thus, the concentration of organochlorine pesticides and polychlorinated biphenyls in surface sediments provide information about recent contamination, while concentrations of OCPs and PCBs in sediment cores can provides information on the contamination in the last decades. Gas chromatography is the technology used for the analysis of these organic pollutants.

The emerging contaminants are natural and synthetic chemicals, which are not commonly monitored in the environment. These contaminants are likely interred to the environment and cause negative effects to human health and the environment. Among these pollutants, synthetic musks (SM) have recently been identified as a new type of emerging marine contaminant. These compounds have become indispensable in our modern society and are used in a wide range of purposes as additives in perfumes, lotions, sunscreens, deodorants, antiseptics, and laundry detergents. Today, Tonalide (AHTN) and Galaxolide (HHCB) are the two main products widely used in cosmetics and cleaning. Because of their octanolwater coefficient (log K $_{ow} \ge 5$) and lipophilic character, the SM are easily absorbed by suspended particles and, optionally, are deposited and accumulated in the sediments. The assessment of the impact of human activities on the marine environment requires analysis of sediment samples, which represent the ultimate sink for hydrophobic pollutants. The presence of SMs in coastal and marine environments has previously been reported in different environmental matrices such as water, mussels, fish, sludge, and sediments. Anastassiades has developed a OuEChERS procedure to extract pesticides from fruits and vegetables. The method replaces many complex analytical steps commonly used in traditional methods, and provides high quality with a low time of analysis (10 min extraction time), a small amount of solvent, minimum of glassware, little work, and low cost sample analysis.

The first chapter of this book was a literature review of the three studied families of organic contaminants: organochlorine pesticides, synthetic musks, and polychlorinated biphenyls. This chapter presents the physicochemical properties and the sources of interception in the environment. It also revealed the presence and development of these compounds in the various environmental compartments.

The second chapter is the presentation of the Bizerte lagoon; it focuses on the presentation of the Bizerte lagoon and the industrial areas. Different matrices were studied in this work; the water, the suspended particulate matter (SPM), sediments, and sediment cores. The samples were collected from stations spread over the lagoon. The sampling, collection, preservation, and storage techniques for each type of matrix have been presented in this chapter. The sediment samples (surface and core) were lyophilized and homogenized before being stored for subsequent analysis. This chapter covers all the theoretical and experimental methods, used for the extraction of various types of organic pollutants. The origin of each method, the advantages and disadvantages, as well as the different detection, injection, and analysis methods were presented. In this chapter, the different analytical protocols used for the analysis of the different samples collected from the Bizerte lagoon have been detailed.

Chapter III focuses on the contamination of surface water by PCBs and OCPs in the Bizerte lagoon. We were first interested in the analysis, distribution, and evaluation of the possible sources of these compounds. The results were then compared with those in the literature. Chapter VI focuses on assessing the level of contamination of suspended particulate matter and surface sediments by the OCPs. This chapter also studied their impact on the aquatic ecosystem of the Bizerte lagoon. Chapter V investigates the vertical distribution of OCPs in the different layers of the sediment cores. This chapter presents the vertical distribution of these compounds and provides useful information for the ecological restoration in the lagoon. Chapter VI focuses on the validation of a new method for the analysis of synthetic musk by the QuEChERS extractor. In this chapter, we also studied the application of this method to assess the state of contamination of the surface sediments of the lagoon by these contaminants.

CHAPTER I

ORGANIC POLLUTION IN TUNISIA

I. Pesticides in Tunisia


I.1 Agricultural activities

Tunisia is an agricultural country, and its agricultural land is estimated at 4 316 million hectares. The agriculture intensification has resulted in the development of "intensive" cropping systems, based on the use of pesticides and the search for high yields. The number of products marketed is 725 and more, corresponding to 330 active substances (Table 1.1). Data from the National Statistics Institute (INS 2008) shows that the average annual imports of pesticides between 1999 and 2006 amounted to 3.750 tons per year (Figure 1.1). These quantities are nearly 5 kg/ha used mainly in agriculture (95%) for a treated area of 761.000 ha/year. The quantity of pesticides used in France amounts to 110.000 tons per year for a cultivated area of 295.000 km ² (3.7 kg / ha). According to the General Directorate of Fisheries and Aquaculture, the use of these quantities is divided between cereals 63%, arboriculture 16% and market gardening 21% (Kane 2008).

Table 1.1 Number of active substances and commercial formulations for
each type of pesticide imported into Tunisia (PAN Africa 2006).

Pesticides	Active substances	Commercial formulations
Fungicides	143	312
Insecticides	102	259
Herbicides	76	135
Rat poison	9	19
Total	330	725

In addition to the annual imports of pesticides, obsolete stocks (1.200 tons) present a real threat to human health and the environment. The situation has worsened because the country does not have adequate destruction facilities of hazardous waste, and suffers from a lack of training in the proper storage and use of pesticides.

Fig. 1-1. Evolution of imports of pesticides in Tunisia between 1999 and 2006 (PAN Africa 2006).

6 Chapter I

I.2 Regulations

Tunisia is not a producer of pesticide products, either for agricultural use, or for public health and hygiene needs. These products are exclusively imported from abroad. The import and use of the 9 pesticides; persistent organic pollutants (POPs) are prohibited.¹

Tunisia signed the Stockholm Convention on 23 May 2001 and parliament ratified it on 9 Mars 2004. As a part of this convention, Tunisia is obliged to prohibit any production and use of POPs and take the necessary steps to remove and eliminate the POPs that are already in the country (in storage areas and in the natural environment). The current problem is essentially related to, emissions of contaminated products (dioxins, furans) and the management of waste from these substances.

The most important section of legislation covering waste management in Tunisia is Law No. 96-41 of 10 June 1996 relating to waste and the control of its management and disposal. This important law, which represents a major achievement in terms of environmental protection in Tunisia, has been consolidated by implementing texts (decrees) dealing with the management of some categories of hazardous waste (kane 2008, APEK 2005).

As a result, decree n°2000-2339 issued on October 5, 2000, and established the national list of hazardous waste, specifically mentions obsolete pesticides. Whatever their nature, waste contaminated by PCBs, dioxins and furans is considered being hazardous waste, the management and disposal of which must meet very specific requirements and specifications set out in the law on waste (kane 2008, APEK 2005).

Although the OCPs and PCBs have never been produced in Tunisia and their import and use are prohibited, these compounds continue to exist in different matrices of the marine environment: sediment, biota, and even breast milk. Table 1.2 summarizes the pesticide compounds, their levels, and their analytical methods.

¹ ♦ 1980 for the dieldrin and heptachlor.

ullet 1984 for the DDT (dichlorodiphenyltrichloroethane), the aldrin, chlordane, the endrin, and toxaphene.

[♦] The Mirex has never been approved or authorized in Tunisia. Since 1980, Tunisia has banned the use of any organochlorine product, as well as the approval of these products (kane 2008, APEK 2005).

Table 1.2 Presentation of pesticides in different matrices from Tunisia.²

Location	Matrices	Analytical methods	Concentration of pesticides	References
Northern Tunisia	Breast milk	LLE- GC-ECD	∑ 3 DDT : 0.058–31.325 (ng g -1) HCB : 0.003–3.127 (ng g -1) Dieldrin : ND – 0.529 (ng g -1)	(Ennaceur 2007, 325–329)
Bizerte Lagoon	Fish	ES- GC – ECD	\sum 12 PCB : 164–642 (ng g ⁻¹) \sum 7 OCPs : 52.9–265 (ng g ⁻¹)	(Ben Ameur 2013, 2372–2380)
Tunisia	Butter	ES- GC -MS	\sum 8 PCB : 11.81 (ng g ⁻¹) \sum 6 DDT: 7.8 (ng g ⁻¹) \sum 3 HCH: 6.41 (ng g ⁻¹) HCB : 2.340 (ng g ⁻¹)	(Kalantzi 2001, 1013- 1018)
Tunisia	Breast milk	LLE- GC – ECD	\sum 8 PCB : 1- 154 (ng g ⁻¹) \sum 3 DDT : 8-7060 (ng g ⁻¹) HCB : 1-727 (ng g ⁻¹) Dieldrin : 1-713 (ng g ⁻¹)	(Ennaceur 2008, 86–93)

² Levels of OCPs and PCB in fish and sediment are presented with more details in the research of Barhoumi et al 2013 and Ben Ameur et al. 2013.

			V 3 DDT : 125 8 4574 8	
			(ng g ⁻¹)	
			HCB: 24.1–1470.2	(B. H. H. S. S. S.)
Bizerte City	Breast milk	LLE-GC-ECD	$(\log g^{-1})$	(Bell flassifie, 2012, 309– 377)
'			Dieldrin: $ND - 62 (ng g^{-1})$	(//c
			Σ 8 PCBs : 16.4-1360.2	
			(ng g -1)	
			$\Sigma 10 \text{ PCBs} : 0.8 \text{ to } 14.6$	
Bizerte	Codimont	בים יים מיי	(ng g -1)	(Barhoumi 2013, 6290-
Lagoon	mailleac	ASE- GC - ECD	$\Sigma 4 \text{ OCPs} : 1.1 \text{ to } 14.0$	6302)
			(ng g -1)	

II The pesticides

a) Definitions

Pesticides or plant protection products are defined as substances whose chemical properties contribute to the protection of crops and harvested products from fungus attacks of pests, insects, and mites of rural rodents or even destroying weeds or "weeds".

They reveal from Directive 91/414 / EC (EC 1997). These are compounds containing one or more mineral or organic, synthetic, or natural chemical substances. The formulations are generally composed of one or more active substances and one or more adjuvants. The active substance exerts a general or specific action on harmful organisms or on plants; it is this which gives the product the desired effect.

The adjuvant meanwhile, is a substance free of biological activity considered sufficient in practice, but able of changing the physical properties, chemical or biological products. It enhances the efficiency, safety of the product and its ease of use (Couteux 2006).

b) Classification

• First system

The first classification system is based on the target to be checked. There are mainly three main families of activities, which are herbicides, fungicides, and insecticides.

✓ Herbicides: represent the most widely used pesticides in the world, all crops combined. They are intended to eliminate plants that compete with plants to be protected by slowing their growth. Herbicides have different modes of action on plants; they can disrupt the regulation of hormones, "auxins" (the main hormone acting on the increase in cell size), of photosynthesis, or else inhibit cell division, of the synthesis of lipids, of cellulose or of amino acids.

✓ Fungicides: allow them to fight the proliferation of plant diseases caused by fungi or bacteria. They can act differently on plants, either by inhibiting the respiratory system or cell division, or by disrupting the biosynthesis of sterols, amino acids, proteins or the metabolism of carbohydrates.

10 Chapter I

✓ Insecticides: are used to protect plants against insects. They intervene by eliminating them or preventing their reproduction, different types exist: neurotoxicants, growth regulators, and those acting on respiration cellular.

In addition to these three main families mentioned above, others can be cited as examples: acaricides, against mites; nematicides, against the group of nematode worms; rodenticides, against rodents; maupicides, against moles; molluscicides, against slugs and snails or corvicides, and corvifuges, respectively against crows and other crop pest birds.

Second system

The second classification system takes into account the chemical nature of the active substance mainly is compound of plant health products. Given the variety of physicochemical properties of pesticides available on the market, there are a very large number of chemical families. The oldest and the main chemical groups are organochlorines, organophosphates, carbamates, triazines and substituted ureas. This second classification system does not allow a compound to be defined systematically. Some pesticides can, in fact, be composed of several chemical functionalities. They can then be classified into one or more chemical families.

II. 1 Organochlorine pesticides (OCPs)

The organochlorine pesticides (OCPs) include various groups of chemicals, which have the tendency to share some structural characteristics. They have an aliphatic radical or an aromatic ring structure, which is strongly substituted with chlorine atoms (Shen 2005, 742-768). Table 1.3 shows the concentrations of PCBs and OCPs in different matrices as well as the analytical methods used.

Table 1.3 Locations, matrices, analytical methods and concentrations of PCBs and OCPs in different locations from the world.

Location	Matrice	Analytical method	Concentration	References
Nakdong river (Korea)	Sludge	ES- GC-MS	22 OCPs: 5.45-31.2 μg kg ⁻¹ 14 PCBs: ND -13 156 ng kg ⁻¹	(Ju 2009, 441–447)
Pangani river (Tanzania)	Surface sediment	ES- GC-MS	8 OCPs: 245–10.230 pg g ⁻¹ 28 PCBs: 357–11.000 pg g ⁻¹	(Kihampa 2013, 186– 197)
Egypte	Drink water	LLE- GC –ECD	11 PCBs : ND – 11.21 μg L ⁻¹	(Eissa 2013, 694-700)
Fatima do Sul City (Brazil)	Underground water	SPME- GC - ECD	18 OCPs : 0.761- 615 ngL ⁻¹	(Junior 2007, 1833– 1841)
Eastern Cape (South Africa)	Sea water	TLE - GC	15 OCPs : ND - 450 ng L -1	(Awofolu 2003, 323-330)
	Surface sediment	ES- GC	15 OCPs : ND- 184 10 ³ ng kg ⁻¹	
Northwest Atlantic Coast	Seal	ASE-GC – ECD	10 PCBs: 5.7-151 μg g ⁻¹ DDT: 1.4-57.5 μg g ⁻¹ Dieldrin: 3-1060 ng g ⁻¹	(Shaw 2005, 1069–1084)
Chaohu Lake	Water	SPE- GC- ECD	1.6–1.678 6 ng L ⁻¹	(Liu, 2013,2033–
(Chine)	Suspended particulate matter	SE- GC-ECD	18.6–1.046 8 ng g ⁻¹	2045)
	Surface sediment	SE- GC- ECD	0.9–36.9 ng g ⁻¹	
Lebanon	Mineral water	SPE- GC-MS	67 pesticides: 1.7 – 31.8 ng L ⁻¹	(Kouzayha 2013, 503–509)
Mexique	Mineral water	TLE- GC-EC D	7 PCBs : 0.035-0.039 mg L ⁻¹	(Salinas 2010, 372–376)

Río Xanaes river	Water milfoil	ES- GC –ECD	ES- GC – ECD OCPs 11: ND- 4.5 ng L ⁻¹	(Schreiber 2013, 466–
		SPE - GC- ECD	SPE - GC- ECD OCPs 11 : ND- 5 μg kg ⁻¹	473)
United states	Drink water	SPE- GC-ECD	PCBs 209 : <9.3-186.6 ng L -1.	(Palmer 2011, 487–
				499)
	Air	ES- GC –MS	ES- GC -MS $\Sigma 7 \text{ PCBs} : 31-57 \text{ pg m}^{-3}$	(Castro-Jiménez 2008,
Thau (France)	Surface sediment	ASE- GC –MS	ASE- GC $-MS$ $\Sigma 7 \text{ PCBs} : 2.5-33 \text{ ng g}^{-1}$	123-135)
	Mussel	ASE- GC – MS	ASE- GC – MS Σ 7 PCBs : 10–39 ng g ⁻¹	
Venice lagoon	Air	ES- GC-MS	Σ 60 PCBs: 44- 600 pg m $^{-3}$	(Manodori 2006,449–
				458)

Accordingly, most of these compounds are poorly soluble and semi-volatile. In May 2001, the Stockholm convention on POP which was adopted by the United Nations Program for Environment (UNEP) highlighted the need to control the global contamination produced by toxic chemical compounds in the environment.³ Several studies have shown the presence of OCPs and PCBs in the various components of the marine ecosystem: surface water, suspended particulate matter, and sediments. It has been proven in different studies the presence of these persistent organic pollutants in the plant and even in living tissue with concentrations more or less important (Satphathy 2008, 1062-71).

II.1.1 The aldrin, the dieldrin and endrin

The aldrin was synthesized for the first time by J. Hyman and Co. Denver, in 1948. Aldrin is an insecticide which can undergo oxidation to form dieldrin. Both insecticides have been commonly used for termite control in cotton and corn since the 1950s (EC 1997, 13-14).

Due to its harmful effects, the use of dieldrin is limited controlling termites, insects and pests. It was included to POPs in 1995 because of its many characteristics such as hydrophobicity, bio-molecularity and persistence in the environment. It is less phytotoxic, but increased exposure can cause cancer and it can act as a neurotoxicant in humans. Figure 1.2 shows the synthesis of aldrin and dieldrin.

³ It has an agreement that promotes regulations on the production and use of OCPs such as Aldrin, dieldrin, endrin, heptachlor, chlordane, hexachlorobenzene, mirex, toxaphene, PCBs, and DDT around the world. While most developed countries have already banned or limited the production and use of these compounds, some developing countries still use OCPs in agriculture (Gao 2008, 1097–1103).

Chapter I

Table 1.4 Physicochemical characteristics of aldrin, the dieldrin and endrin (Shen 2005, 742-768, Zitko 2002, 47-90).

Commercial name	Aldrin	Dieldrin	Endrin
Biological properties	Termiticide	Insecticide, Termiticide	Insecticide
Name according to IUPAC	1,2,3,4,10,10- Hexachloro 1,4,4a, 5,8,8a-hexahydro-1,4: 5,8-dimethanonaphthalene.	3,4,5,6,9,9-Hexachloro-1a, 2,2a, 3,6,6a, 7,7a-octahydro-2,7: 3,6-dimetanonapth [2,3-b] oxirene.	3,4,5,6,9,9, -Hexachloro- 1a, 2,2a, 3,6,6a, 7,7a- octahydro-2,7: 3,6- dimethanonaphth [2,3-b] oxirene.
Chemical formula	C 12 H 8 CI 6	C 12 H 8 Cl 6 O	C 12 H 8 Cl 6 O
Chemical structure			
Half-life	<0.4 days (air); 1.1-3.4 years (water and soil)	1.1-4.2 days (air); up to 5 years in the ground	1.3-4.2 days (air); (1.1-3.4 years in water and 12 years in soil)
LD50 (mg Kg ⁻¹)	39	46	18
Molecular Mass (g mol ⁻¹)	364.92	380.91	380.92
Case No	309-00-2	60-57-1	72-20-8