Bioactive Nutrients as Dietary Supplements and Therapeutic Agents

Bioactive Nutrients as Dietary Supplements and Therapeutic Agents:

An Introduction to Nutraceuticals

Ву

Asma Saeed and Saeed Iqbal Zafar

Cambridge Scholars Publishing

Bioactive Nutrients as Dietary Supplements and Therapeutic Agents: An Introduction to Nutraceuticals

By Asma Saeed and Saeed Iqbal Zafar

This book first published 2024

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2024 by Asma Saeed and Saeed Iqbal Zafar

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-8616-2 ISBN (13): 978-1-5275-8616-1

TABLE OF CONTENTS

List of Tablesxvii
List of Figuresxx
Forewordxxiii
Preface xxv
Keywordsxviii
Acknowledgements and Dedicationxxix
Chapter 1 1
Concepts to Define and Describe Nutraceuticals
Conceptual principals
Concept of food through the evolutionary ladder5
Ordinary food
Conventional food
Infant formulas
Superfood
Functional food
Food with health claims
Dietary supplement
Enteral and parenteral clinical nutrition foods
Medical food
Nutraceuticals
Complementary medicines
Bioactive substances
Biologically active food supplements
Why nutraceuticals to substitute pharmaceuticals
Categories of nutraceuticals
Nutrients 13
Herbals 13
Dietary supplements 14
Traditional and non-traditional nutraceuticals 14
Traditional and non-daditional nadacouncais

Dietary fibers	15
Prebiotics	16
Probiotics	17
Essential (Polyunsaturated fibers; PUFA) fatty acids	17
Antioxidants	
Phenolics	
Flavonoids-anthocyanins	20
Orphan drug act and the growth of nutraceuticals industry	21
Carnitine, a two-in-one: a pharmaceutical and a nutraceutical	
References	30
Chapter 2	44
Worldwide Legislation on Nutraceuticals	
Background to nutraceutical legislation	44
Australia and New Zealand	46
Brazil	49
Canada	50
European Union	
India	
Japan	
Malaysia	
Pakistan	
Peoples Republic of China	
Russia	
Singapore	
United States	
References	71
Chapter 3	76
Vitamins as Bioactive Molecules	7.7
Vitamins; A general background	
Vitamin A	
Chemical nature	
Permitted health benefits claims	
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
auoniemenis	λX

Vitamin B ₁ ; Thiamine	88
Chemical nature	88
Permitted health benefits claims	89
Physiological role	90
Recommended daily allowance	90
Deficiency symptoms	90
Toxicity symptoms	91
Natural plant and animal sources	91
Supplements	92
Vitamin B ₂ ; Riboflavin	92
Chemical nature	
Permitted health benefits claims	
Physiological role	92
Recommended daily allowance	93
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	94
Vitamin B ₃ ; Niacin	
Chemical nature	
Permitted health benefits claims	
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Vitamin B ₅ ; Pantothenic acid	
Chemical nature	
Permitted health benefits claims	
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Vitamin B ₆ ; Pyridixine	
Chemical nature	
Permitted health benefits claims	
Physiological role	
Recommended daily allowance	101

Deficiency symptoms	101
Toxicity symptoms	102
Natural plant and animal sources	102
Supplements	102
Vitamin B ₇ ; Biotin	
Chemical nature	102
Permitted health benefits claims	102
Physiological role	102
Recommended daily allowance	103
Deficiency symptoms	103
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Vitamin B ₉ ; Folic acid	
Chemical nature	
Permitted health benefits claims	104
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Vitamin B ₁₂ ; Cyanocobalamin	
Chemical nature	
Permitted health benefits claims	
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Vitamin C; Ascorbic acid	
Chemical nature	
Permitted health benefits claims.	
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Supplements	111

	Vitamin D	l	11
	Chemical nature		
	Permitted health benefits claims	1	12
	Physiological role	1	12
	Recommended daily allowance	1	13
	Deficiency symptoms	1	13
	Toxicity symptoms	1	14
	Natural plant and animal sources		
	Supplements	1	14
	Vitamin E	1	15
	Chemical nature	1	15
	Permitted health benefits claims		
	Physiological role		
	Recommended daily allowance		
	Deficiency symptoms		
	Toxicity symptoms	1	16
	Natural plant and animal sources		
	Supplements		
	Vitamin K		
	Chemical nature		
	Permitted health benefits claims		
	Physiological role		
	Recommended daily allowance	1	18
	Deficiency symptoms		
	Toxicity symptoms		
	Natural plant and animal sources		
	Supplements		
	Choline		
	Physiological functioning	1	21
	Choline deficiency symptoms		
	Sources of choline		
	Choline toxicity symptoms		
	Supplements		
	References	1	27
	apter 4	1	45
Es	sential Minerals as Dietary Macronutrients and Micronutrients		
	Calcium		
	Health benefits and disease risk reduction claims		
	Physiological role		
	Recommended daily allowance	1.	53

Deficiency symptoms	
Toxicity symptoms	. 154
Natural plant and animal sources	. 155
Supplements	. 155
Magnesium	
Health benefits and disease risk reduction claims	
Physiological role	. 156
Recommended daily allowance	
Deficiency symptoms	. 157
Toxicity symptoms	
Natural plant and animal sources	
Supplements	. 158
Phosphorous	. 159
Health benefits and disease risk reduction claims	
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Potassium	
Health benefits and disease risk reduction claims	
Physiological role	. 162
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	. 164
Sodium	. 165
Health benefits and disease risk reduction claims	
Physiological role	. 166
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Chromium	
Health benefits and disease risk reduction claims	. 170
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	

Natural plant and animal sources	172
Supplements	172
Copper	
Health benefits and disease risk reduction claims	173
Physiological role	174
Recommended daily allowance	
Deficiency symptoms	176
Toxicity symptoms	
Natural plant and animal sources	
Supplements	177
Fluoride	
Health benefits and disease risk reduction claims	177
Physiological role	178
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Iodine	181
Health benefits and disease risk reduction claims	181
Physiological role	181
Recommended daily allowance	183
Deficiency symptoms	183
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Iron	185
Health benefits and disease risk reduction claims	185
Physiological role	185
Recommended daily allowance	186
Deficiency symptoms	187
Toxicity symptoms	187
Natural plant and animal sources	
Supplements	188
Manganese	
Health benefits and disease risk reduction claims	189
Physiological role	189
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	

Supplements	192
Molybdenum	192
Health benefits and disease risk reduction claims	
Physiological role	
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
Selenium	
Health benefits and disease risk reduction claims	195
Physiological role	196
Recommended daily allowance	
Deficiency symptoms	
Toxicity symptoms	
Natural plant and animal sources	
Supplements	199
Zinc	
Health benefits and disease risk reduction claims	199
Physiological role	200
Recommended daily allowance	201
Deficiency symptoms	201
Toxicity symptoms	
Natural plant and animal sources	
Supplements	
References	203
	22.0
Chapter 5	236
Functional Foods, Nutraceuticals, and Dietary Supplements:	
Dietary Fiber with Health Claims	22.6
Dietary fiber in the food	
Definitions and the physiological role of dietary fiber	
Types of dietary fibers	
Viscous dietary fiber	
Functional dietary fiber	
Health benefits of dietary fiber	
Immunity and inflammation	
Gastrointestinal functions	
Cardiovascular disease	
Glycemic control and diabetes type-2	
Management of obesity and body weight	248

Bioactive Nutrients as Dietary Supplements and Therapeutic Agents:	xiii
An Introduction to Nutraceuticals	

Fibers available in the market as dietary supplements	. 249
Inulins and fructooligosaccharides	. 249
Chitosan (= Quitosane)	. 251
Vegetable gum fiber supplements	
β-Glucans	
Pectins	
Psyllium husk	
Wheat/resistant dextrin	
Methylcellulose	. 257
Calcium polycarbophil	
Polydextrose	
References	. 260
Chapter 6	. 271
Prebiotics, Probiotics, and Synbiotics as Nutraceuticals	
Intestinal microbiota	
Gut environment for the microbiota life	
Stomach	
Small intestine	
Large intestine	
Conditions imposing change in the microbiota profile in the gut	
environment	. 277
Role of gut microbiota in maintaining human health	
Protective	
Structural and histological	
Metabolic	
Dysbiosis	
"biotics": different manifestations	
Antibiotics	
Prebiotics	
Probiotics	
Synbiotics	
Prebiotics	
Fermentable fibers as prebiotics	
The nature and production of prebiotics	
Health benefits of prebiotics	
Colonic microbiota and fermentation of prebiotics	
Physiologic effects of short-chain fatty acids	
Probiotics	
Probiotic microbes, and food products	
Probiotics in health and disease	. 297
Mechanism of probiotic action	. 301

Synbiotics	306
References	310
Chapter 7	330
Essential Fatty Acids, Vegetable Oils, and Bioactive Phytochem	iicals
Essential fatty acids	
Linoleic acid	
Linolenic acid	335
Gamma (γ)-linolenic acid	335
Alpha (α)-linolenic acid	
Docosahexaenoic acid	
Eicosapentaenoic acid	
Arachidonic acid	
Vegetable oils with health benefits	340
Olive oil	
Corn oil	
Sunflower oil	
Canola oil	
"Bad fats"	
Trans fats (technically correct nomenclature: fatty acids)	
Triglycerdides	
Saturated fats	
Cholesterol	
Phytosterols and phytostanols	
Phospholipids – phosphatidylcholine	
Phosphatidylserine	
References	
Chapter 8	391
Bioactive Phytochemicals in Fruits and Vegetables	
Carotenoids; fruit and vegetable pigments	392
Lutein and zeaxanthin in drak green leafy vegetables	
Lycopene and tomatoes	
Resveratrol from grapes and small berries	
Organosulphur compounds in vegetables	
Organosulphur compounds of garlic	
Isothiocyanates of cruciferous vegetables	417
Indole-3-carbinol and 3,3'-diindolylmetane of cruciferous	
vegetables	
Curcumin in turmeric	
Soy protein and isoflavones (phytoestrogens)	429

Lignans 435 Flavonoids 438 Anthocyanins 447 Ellagic acid 455
Ellagic acid
G I II I I I I I I I I I I I I I I I I
Green tea; epigallactocatechin-3-gallate (EGCG)
References
Chapter 9
Fruits and Vegetables: "Nature's Multinutraceutical Capsules"
How fruits and vegetables impact on health
Dietary phytochemicals and cardiovascular disease 534
Dietary phytochemicals and cancer
Role of dietary fiber in several diseases
Consumption of fruits and vegetables reduces the risk of mortality
and lowers the risk of multimorbidity
Lower risk of mortality as associated with the consumption
of fruits and vegetables542
Lower risk of multimorbidity as associated with the consumption
of fruits and vegetables543
Campaigns on health benefits of fruits and vegetables
Australia: "Go for 2&5"
Canada: "Eating well with Canada's food guide"
European Union
United Kingdom: "Five a Day Eatwell Plate"
United States: "ChooseyPlate"
WHO-FAO: Fruit and vegetable promotion initiative
Fruits and vegetables in the prevention of disease
Cardiovascular disease
Stroke
Hypertension; high blood pressure
Diabetes mellitus type 2
Bone health, osteoporosis, and osteoarthritis
Rheumatoid arthritis
Eye diseases: cataracts, glaucoma, and macular degeneration 578
Bowel health and diverticulitis
Chronic obstructive pulmonary disease
Asthma
Neurodegenerative diseases
Cancer

Strength of fruit and vegetable linked reduction of chronic disease	s. 590
Coronary heart disease	590
Hypertension	
Stroke	
Cancer	591
Type 2 diabetes mellitus	591
Osteoporosis	591
Chronic obstructive pulmonary disease (COPD)	
Asthma	591
Rheumatoid arthritis	591
Eye diseases	591
Obesity	591
Chronic inflammatory bowel diseases (CIBD)	592
Dementia	592
Nuts: rich sources of "good" fats and bioactive nutrients	592
Walnuts	598
References	600
Chapter 10	636
Proposed Extended Definition of Nutraceuticals	
Extended definition of nutraceuticals	638

LIST OF TABLES

Table 2.1. Comparative summary of the legal status of nutraceuticals in different countries. 67
Table 3.1. Vitamins with their health benefits claims and disease reduction claims in different countries 79
Table 3.2. Natural sources known to be rich in vitamins
Table 3.3. Recommended dietary allowance (RDAs) of different vitamins by age-group stages 86
Table 4.1. Recommended dietary allowance (RDAs) of different minerals by age-group stages 146
Table 4.2. Natural sources known to be rich in minerals
Table 4.3. Minerals with health benefits claims and disease-reduction claims as permitted in different countries
Table 5.1. Classification of fiber as food ingredients 237
Table 5.2. Some natural sources of soluble and insoluble dietary fibers 240
Table 5.3. Dietary fiber with their health benefits claims and disease-reduction claims as permitted in different countries
Table 6.1. Prebiotic fiber content, their natural sources, and the amount required to meet the recommended daily need of prebiotics
Table 6.2. Natural sources, branded products, and chemical nature of some fermentable fibers
Table 6.3. Some probiotic food products 296

xviii List of Tables

Table 6.4. Some probiotic microorganisms, their branded names, and commercial producers. 299
Table 6.5. Some clinical applications of probiotic bacteria 302
Table 6.6. Some prebiotic-probiotic combinations in synbiotic relationships
Table 7.1. Essential fatty acids, vegetable oils, and lipids-related bioactive compounds with their health benefits claims and disease-reduction claims as permitted in different countries
Table 7.2. Comparative fatty acids profile of vegetable oils most used as dietary constituents (percent by weight of total fat)
Table 8.1. Phytochemicals and natural resources rich in phytochemicals with their health benefits claims and disease-reduction claims as permitted in different countries. 392
Table 8.2. Various diseases against which curcumin may have therapeutic effects 426
Table 8.3. Physiological functions performed in the human body by different constituents of soybeans 430
Table 8.4. Approval status of health claims for soy protein in different Countries 434
Table 8.5. Classification of flavonoids into their major sub-classes, principal dietary flavonoids, and their rich sources
Table 9.1. Phytochemicals present in fruits and vegetables with their functions in promoting health and preventing disease
Table 9.2. Types of dietary fiber, their sources, and beneficial effects on health 540
Table 9.3. Average nutrient energy, and saturated, monounsaturated, polyunsaturated, linoleic and α -linolenic fatty acid contents of different kinds of nuts (g per 100 g fresh weight of nuts unless noted otherwise) 595

Bioactive Nutrients as Dietary Supplements and Therapeutic Agents:	xix	
An Introduction to Nutraceuticals		

Table 9.4. Average nutrient content of protein, fiber, folate, polyphenols,
calcium, magnesium, and potassium in different kinds of nuts per 100 g
fresh weight of nuts)596

LIST OF FIGURES

Figure 1.1. (a) The concept of nutraceuticals; (b-f) some nutraceutical bioactive molecules and their natural sources
Figure 1.2. Structure of L-carnitine and acetyl-L-carnitine
Figure 3.1. Structure of retinol, retinal, retinoic acid and β -carotene 84
Figure 3.2. Structure of vitamin B ₁ or thiamine and thiamine pyrophosphate
Figure 3.3. Structure of vitamin B ₂ or riboflavin
Figure 3.4. Structure of nicotinamide adenine dinucleotide (NAD) and vitamin B ₃ or niacin
Figure 3.5. Structure of vitamin B ₅ or pantothenic acid and coenzyme A
Figure 3.6. Structure of pyridoxal 5'-phosphate and vitamin B ₆ or pyridoxine
Figure 3.7. Structure of vitamin B ₇ or biotin
Figure 3.8. Structure of vitamin B ₉ or folic acid
Figure 3.9. Structure of vitamin B ₁₂ or cyanocobalamin
Figure 3.10. Structure of vitamin C or ascorbic acid
Figure 3.11. Structure of vitamin D ₂ or ergocalciferol and vitamin D ₃ or cholecalciferol
Figure. 3.12. Structure of vitamin E; α-tocopherol and vitamin E; γ-tocopherol
Figure 3.13. Comparative structural forms of vitamins K1 and K2 (MK-4 and MK-7)

xxi

Figure 3.14. Structure of (a) Choline; (b) Acetylcholine and (c) Lecithin	122
Figure 5.1. Structure of inulin and fructooligosaccharide	250
Figure 5.2. Structure of chitosan (classified as a biopolymer)	252
Figure 5.3. Structure of β-Glucan	254
Figure 5.4. Structure of pectin	255
Figure 5.5. Structure of dextrin	257
Figure 5.6. Structure of methylcellulose	258
Figure 5.7. Structure of calcium polycarbophil	258
Figure 5.8. Structure of polydextrose	259
Figure 7.1. Structure of linoleic acid and oleic acid	334
Figure 7.2. Structure of docosachexaenoic acid, eicosapentaenoic alpha-linolenic acid and gamma-linolenic acid	
Figure 7.3. Structure of arachidonic acid	339
Figure 7.4. General structural formula of vegetable oils	341
Figure 7.5. Structure of cholesterol	352
Figure 7.6. Structure of cholesterol and phytosterol: pampesterol.	357
Figure 7.7. Structure of phosphatidylcholine	361
Figure 7.8. Structure of phosphatidylserine	364
Figure 8.1. Structure of β-carotene (C ₄₀ H ₅₆)	394
Figure 8.2. Structure of β-cryptoxanthin (C ₄₀ H ₅₆ O ₂)	395
Figure 8.3. Structure of lycopene (C ₄₀ H ₅₆)	404
Figure 8.4. Structure of resveratrol (C ₁₄ H ₁₂ O ₃)	410
Figure 8.5. Structure of alliin, allicin and ajoene	414

Figure 8.6. Structure of phenyl isothiocyanate and sulphoraphane 41	18
Figure 8.7. Structure of indole-3-carbinol (C ₉ H ₉ NO)	21
Figure 8.8. Structure of curcumin (C ₂₁ H ₂₀ O ₆)	24
Figure 8.9. Mammalian lignans (1) enterodiol, and (2) enterolactone 43	37
Figure 8.10. Structure of flavons, flavonols, flavonones, flavanols, isoflavones, and anthocyanidins	39
Figure 8.11. Structure of delphinidin, malvidin, cyanidin-3-glucoside and Pelargonidin	47
Figure 8.12. Structure of ellagic acid ($C_{14}H_6O_8$) and gallic acid ($C_7H_6O_5$)	56
Figure 8.13. Structure of ellagitannin (phyllanthin) of <i>Phyllanthus amarus</i> 45	58
Figure 8.14. Structure of epigallocatechin gallate (C ₂₂ H ₁₈ O ₁₁)46	61

FOREWORD

As many as 24 centuries hence, the Greek physician Hippocrates, regarded as the father of modern medicine, commenced telling his patients circa 400 BC to "let food be thy medicine and medicine thy food". This concept, only three decades ago, was given a scientific term by DeFelice in 1989 as "*Nutraceuticals*", having been partly derived from two words **nutr**ition and pharmaceutical with a prefix and a suffix, respectively, borrowed from each. The term has since found a place in English language and scientific dictionaries, such as the Oxford Dictionary as "another term for functional food" noting the year 1990 as its origin, and in Merriam-Webster Dictionary as "a specially treated food, vitamin, mineral, herb, etc., that you eat or drink to improve your health". In substance, nutraceuticals refer to such natural materials and sources that as bioactive nutrients function as dietary supplements and therapeutic agents.

Since its emergence as a new term, interest of researchers in nutraceuticals has continued unabated as evident from the huge pile-up of research literature and review articles on new nutraceutical substances and resources, their health benefits, and result of epidemiological studies, and clinical trials. As a result, an array of popular products, such as probiotics, dietary fibers and prebiotic, herbal and non-herbal extracts, vitamins and minerals, phytochemicals, fruits and vegetables ingredients, and bioactive phyto-lipids have remained the focus of considerable research. Indeed, nutraceuticals and functional foods have gained considerable merit in terms of human health and global business. The worldwide demand of nutraceuticals has touched US \$ 205 billion during 2017 with the projected annual growth rate of 6.4%. Likewise, the global market in probiotics, as subsector of nutraceuticals, has reached to US \$ 40 billion during 2018. An important factor in the market growth of nutraceuticals is the upward trend of aging population. Anti-aging and age-defying properties, perceived gentleness, and health promoting effects are major key drivers of the phenomenal growth in nutraceutical industry, and their popularity.

An increase in the global healthcare costs are also expected to attract more attention on preventive and prophylactic healthcare, self-diagnosis, and self-medication. Furthermore, here is a tendency in human beings to place more trust on natural products, evident from the fact that over 74% of Americans believe that "natural" means healthier. An increasing interest

xxiv Foreword

in nutraceuticals also stems as consumers learn more about epidemiological studies indicating a specific diet, such as Mediterranean diet, or certain dietary components, such as polyphenols, are associated with lower risk of certain diseases. Another, factor for the market upsurge of dietary supplements containing vitamins and minerals is greater awareness of their essential needs, following the post-1997 charting of their dietary reference intake allowance in different age groups by the US Academy of Sciences. Information disseminated through the social media are also leading to a greater use of health foods, and nutraceuticals.

Despite rich cultural uses, unbroken ethnomedicinal knowledge of herbs and plants, as well as an availability of a large variety of medicinal and dietary herbs, the contribution of the Pakistani industry towards international nutraceutical market is not more than 1% and thus there is huge potential yet to be untapped in terms of development of evidence-based food and beverages, pharmaceuticals and nutrition products for the global market.

Within the foregoing context, it needs to be emphasized that while much scientific literature is available, there is a serious dearth of general knowledge literature on nutraceuticals from which a common man may benefit and which is easily accessible to the common people. The presented book is an excellent effort to fill this void. The book sufficiently covers the whole spectrum of nutraceutical-related topics in easy-to-understand language, but without losing the scholarly finesse. It is hoped that this introductory book will provide a genesis to more comprehensive books on subject.

In brief, the book entitled, "Bioactive Nutrients as Dietary Supplements and Therapeutic Agents: An Introduction to Nutraceuticals", by Dr. Seed Iqbal Zafar and Dr. Asma Seed is certainly a welcome addition in world's literature on nutraceuticals. I am confident that the book will receive a wide appreciation both from novice, as well as professionals.

Prof. Dr. M. Iqbal Choudhary
Mustafa (PBUH) Laureate, H. I., S. I., T. I.
Coordinator General COMSTECH /
Director ICCBS / Distinguished National Professor
UNESCO CHAIR on Medicinal and Bio-Organic Natural Product
Chemistry

PREFACE

Nutraceutical, during recent decades, has emerged as a new term in scientific literature. The term has a fascinating background. Though it has no etymologically referable base relevant to a standard etymon, its genesis is traceable to two words routinely used in our daily lives: nutrient (Latin – *nūtrīre*, to nourish) and pharmaceutic (Greek – *pharmakeutikos*, *pharmakon*, a drug). Within the multidimensional scope of these two words, a nutraceutical is defined as food or part of a food that not only provides health benefits as a "nutrient" but also acts as a "pharmaceutical" substance in the prevention and treatment of disease. The term was coined by Stephen DeFelice in 1989. Forerunning the first use of the term was DeFelice's obsession with a wonder substance called L-carnitine on which he had already spent his lifetime investigating the wide range of its pharmacological activities, including decades of research and development work followed by clinical trials. He regarded L-carnitine not only as a pharmaceutical preparation but also a substance that belonged to a new category of bioactive nutrients, thus preferring it to term as a nutraceutical.

What was labeled as a nutraceutical in 1989, L-carnitine commenced its journey to this term in 1964 when DeFelice initiated clinical trials on it as a pharmaceutical product possibly having antihyperthyroid activity, which it showed by making the subjects euthyroid within a week, further associated with markedly reduced pulse rate. Over the years, L-carnitine has been shown to have pharmacological activities in several kinds of cardiovascular disorders that include myocardial ischemia and apparently non-ischemic conditions. As a nutraceutical, L-carnitine is an essential ingredient of a variety of dietary supplements consumed worldwide for weight management, energy foods for sportsmen, alleviation of cardiovascular conditions, for making-up carnitine losses during the renal hemodialysis procedure, as an essential external nutrient for infants since they are unable to biosynthesize it in their bodies at their early stage in life, and in carnitine deficiency cases falling within such categories as primary systemic, secondary and myopathic carnitine deficiencies resulting in muscle weakness and fatigue, plasma lipid abnormalities and refractory anemia. The United States Food and Drug Administration (US FDA) has approved the use of L-carnitine in the prevention and treatment of its deficiency syndromes. US FDA has further approved L-carnitine as

xxvi Preface

an orphan drug for the rare disease condition of fatal carnitine deficiency in children. US FDA, however, has not todate extended the nutraceutical status to L-carnitine, as it has yet to recognize the term nutraceutical within a specific legal regulatory framework. Insufficiency of L-carnitine has been claimed to be an important factor in aging. Included in other likely health-related benefits associated with this miracle substance are in the treatment of Alzheimer's dementia, depression in the elderly, HIV infection, peripheral neuropathies, ischemia and perfusion of the brain, chronic diabetic neuropathy, and cognitive impairment associated with various conditions. A greater brief on the role of L-carnitine as a nutraceutical is given in the relevant section in the first chapter of the text that is also devoted to the concepts to define and describe nutraceuticals. A rather longish foregoing note on the origin of the term and the underlying story behind the definition of nutraceuticals was considered necessary for building-up the preface to the present book.

It is significant to note that nutraceuticals are yet to receive a universally recognized legal regulatory statute. Different countries refer to substances that may be typically included under the term nutraceutical differently as regards their legal status for marketing and general public access are concerned, such as: complementary medicines (Australia); bioactive substances (Brazil); nutraceutical (Canada, Japan); dietary supplements (China, New Zealand); food supplements (European Union); health supplements, functional foods and special dietetic products (India); neither defined nor recognized (Malaysia); health supplements (Pakistan); biologically active food supplements (Russia); and no legal definition (Singapore, United States). In consideration of the diversity of opinions and treatment as to their legal regulatory status in different countries, a full chapter is devoted to worldwide legislation on nutraceuticals.

Never mind the lack of a universally recognized legal regulatory statute, the market stakes in the nutraceuticals trade are huge; Bourne Partners – a US-based company of investment professionals and healthcare executives – in their 2013 sector report on nutraceuticals industry noted that the global market of nutraceuticals was US \$ 142 billion, which was projected to reach US \$ 250 billion in 2018. As such, the trade in nutraceutical-like products has assumed a new dimension wherein usage of the term nutraceuticals has become synonymous with dietary supplements, functional foods, dietary fibers, probiotics, prebiotics, bioactive substances, biologically active food supplements, and their ingredients. This trend also reflects the multifaceted nature of nutraceuticals. In consideration thereof, separate chapters in the present book are devoted to vitamins as bioactive molecules, essential minerals as dietary macro- and micronutrients, dietary

fibers with health claims as constituents of functional foods, nutraceuticals and dietary supplements, prebiotics and probiotics as nutraceuticals, bioactive phytolipids, and a wide variety of both phenolic and non-phenolic phytochemicals. A chapter is devoted to the nutraceutical potential that fruits and vegetables are endowed with as the "Nature's multinutraceutical capsules". A final chapter proposes to extend the current definition of nutraceuticals to also include fruits and vegetables as an idea for debate and discussion among experts for giving it a proper language and adoption.

The authors concede forthright that as a new book on the hitherto unexplored frontiers that nutraceuticals may have the potential but may not have received the due consolidated consideration, there may be many aspects of omissions, commissions, and even errors, which are regretted. All suggestions to remove these for improving the present text will be gratefully accepted and incorporated in any subsequent edition.

As with most books, the text in this monographic work is also not based on the original work of the authors but is rather a compilation of facts, data and opinions reported in research papers or reviews already published in literature. Efforts of all these researchers, reviewers, editors, and correspondents in their respective publications are duly listed under the heading "References" at the end of each chapter. All these authors are. accordingly, acknowledged as de facto contributors to the present book on introduction to nutraceuticals. Nevertheless, special mention in this acknowledgement is further due to several publications, which have been extensively relied upon, most specifically of the Linus Pauling Institute Micronutrient Information Centre of the Oregon State University, Corvallis, USA; the legal status publication on nutraceuticals by Malla et al., Canadian Agricultural Innovation and Regulation Network of the University of Saskatchewan, Saskatoon, Canada; dietary reference intake publications of the National Academy of Sciences, Washington DC, USA; and the national nutrient database for standard reference of the National Data Laboratory, USDA-ARS, Beltsville, USA.

Conflict of interest. The authors declare no conflict of interest as related with the publication titled, "Introduction to Nutraceuticals: Bioactive Nutrients as Dietary Supplements and Therapeutic Agents".

Saeed Iqbal Zafar Asma Saeed January, 2023

KEYWORDS

Nutraceutical, nutraceutical legislation, antioxidant, bioactive nutrient, bioactive phytochemical, bioactive substance, dietary fiber, dietary supplement, essential fatty acids, essential minerals, flavonoid-anthocyanin, functional food, L-carnitine, phenolics, phytolipid, prebiotic, probiotic, therapeutic agent, traditional and non-traditional nutraceutical, vitamin, vitamin supplement

ACKNOWLEDGEMENTS AND DEDICATION

The senior author (Saeed Igbal Zafar) acknowledges that the manuscript draft was written by him during his association with the School of Biological Sciences, University of the Punjab, Lahore, Pakistan in various capacities including member of its board of governors, HEC (Higher Education Commission) eminent professor, HEC research project principal investigator, and trainer scientist. He further acknowledges that he first became aware of the term "Nutraceuticals" from Dr. Asma Saeed, a researcher principally in the domain of environmental biotechnology. who on a fringe interest had earlier published her findings on the biosynthetic pathways of anthocyanins in Saskatoon berries acclaimed to have nutraceutical attributes in the Canadian J Plant Sci 86: 193-197, 2006 and the *J Agric Food Chem* **55**: 10414-24, 2007, and later having also researched on biosynthetic pathways of anthocyanins in small tropical fruits (Syzygium cumini, vern. jaman; mulberry; and Grewia asiatica vern. falsa- all known to have therapeutic attributes in the traditional Eastern herbal system of medicines) in a Pakistan Science Foundation funded project. In consideration of her interest in phenolics, anthocyanins and flavonoids as relevant with the concept of nutraceuticals, the senior author requested her to join in as a collaborating author, particularly by making inputs in chapters 1 and 3-4, on bioactive phytochemicals in chapters 7-8. and wherever else she could make useful contributions. Her acceptance of associating as the second author is thankfully acknowledged. The senior author is further deeply indebted to Dr. Javed Iqbal, Professor and Director, School of Biological Sciences, University of the Punjab, Lahore, Pakistan, for making available the infrastructure facilities and the enabling financial support to conduct the present effort of writing on "Nutraceuticals". The authors also extend sincere gratefulness to Dr. Adil Hussain, Senior Research Officer, FBRC, Pakistan Council of Scientific and Industrial Research (PCSIR), Laboratories Complex Lahore Pakistan, for his help in arranging the references at the end of each chapter.

It is indeed relevant to note that the mention of any brand name of a particular product or of the manufacturing company in the text is only intended as an illustrative example, which is neither to the exclusion of other products available in the market nor as the recommended product and the manufacturing company.

The senior author takes this opportunity to dedicating his present writing effort to Eram, his wife, the soul and spirit in motivating him to write the present book on "Nutraceuticals" primarily to educate the general public on the potential aspects of a natural alternative in a prophylactic approach to avoid pharmaceutical preparations as much as possible.

Dr. Saeed Iqbal Zafar