Multiplicative Euclidean and Non-Euclidean Geometry

Multiplicative Euclidean and Non-Euclidean Geometry

Svetlin G. Georgiev

Cambridge Scholars Publishing

Multiplicative Euclidean and Non-Euclidean Geometry

By Svetlin G. Georgiev

This book first published 2023

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2023 by Svetlin G. Georgiev

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-8997-8 ISBN (13): 978-1-5275-8997-1

Preface

Differential and integral calculus, the most applicable mathematical theory, was created independently by Isaac Newton and Gottfried Wilhelm Leibniz in the second half of the 17th century. Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. In the period from 1967 till 1970 Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. Sometimes, it is called an alternative or non-Newtonian calculus as well. Multiplicative calculus can especially be useful as a mathematical tool for economics and finance.

This book is devoted to the multiplicative Euclidean and non-Euclidean geometry. It summarizes the most recent contributions in this area. The book is intended for senior undergraduate students and beginning graduate students of engineering and science courses. The book contains eight chapters. The chapters in the book are pedagogically organized. Each chapter concludes with a section with practical problems.

Chapter 1 introduces the field \mathbb{R}_{\star} and defines the basic multiplicative arithmetic operations: multiplicative addition, multiplicative subtraction, multiplicative multiplication and multiplicative division and some of their properties are deduced. The basic elementary multiplicative functions are defined and studied. Chapter 2 investigates the multiplicative vector space \mathbb{R}^2_{\star} , the multiplicative inner product space and the multiplicative Euclidean space E^2_{\star} . Multiplicative lines are defined and their equations are deduced. Perpendicular, parallel and intersecting multiplicative lines are introduced. Multiplicative isometries, multiplicative translations, multiplicative rotations and multiplicative glide reflections are investigated. Chapter 3 deals with multiplicative affine transformations, multiplicative affine reflections, multiplicative affine symmetries, multiplicative shears, multiplicative dilatations,

and multiplicative similarities and some of their properties are investigated. Multiplicative segments, multiplicative angles and multiplicative rectilinear figures are defined. Some criteria for existence of multiplicative affine transformations that leave multiplicative lines and multiplicative points fixed are given. A multiplicative barycentric coordinate system is introduced and some of its applications are given. Some criteria for congruence of multiplicative angles and triangles are deduced. Chapter 4 is devoted to cyclic and dihedral subgroups of $O_{\star}(e^2)$ and some of their properties are investigated. Conjugate subgroups, orbits and stabilizers are introduced. In the chapter, regular multiplicative polygons are defined. Chapter 5 introduces multiplicative spheres and multiplicative lines on multiplicative spheres, multiplicative reflections on multiplicative spheres and multiplicative rectilinear figures on multiplicative spheres and some of their properties are deduced. Chapter 6 investigates the projective multiplicative plane P_{+}^{2} and multiplicative perpendicular points, multiplicative lines, multiplicative perpendicular multiplicative lines, multiplicative poles, multiplicative polarities, multiplicative conics, multiplicative tangents, multiplicative secants, and a multiplicative cross product are defined and some of their properties are investigated. Multiplicative analogues of the Desargues and Pappus theorems are proved, as well as, the fundamental theorem of the projective multiplicative geometry is given. Chapter 7 is devoted to the multiplicative distance geometry on P_{\perp}^2 . Multiplicative orthogonal transformations, multiplicative reflections, multiplicative rotations and multiplicative translations are introduced. Chapter 8 deals with the multiplicative hyperbolic plane H_{\star}^2 . Multiplicative lines, multiplicative segments, multiplicative triangles, multiplicative quadrilateral figures, multiplicative circles, multiplicative horocycles and multiplicative equidistant curves are defined and investigated. Multiplicative isometries, multiplicative reflections, multiplicative rotations and multiplicative translations in the multiplicative hyperbolic plane are studied.

This book is addressed to a wide audience of specialists such as mathematicians, physicists, engineers and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines.

Paris, January 2022

Svetlin G. Georgiev

Contents

Pr	reface.	v
1	The Field \mathbb{R}_{\star}	1
	1.1 Definition	1
	1.2 An Order in \mathbb{R}_{\star}	15
	1.3 Multiplicative Absolute Value	19
	1.4 The Power Function	24
	1.5 Multiplicative Trigonometric Functions	30
	1.6 Multiplicative Inverse Functions	37
	1.7 Multiplicative Hyperbolic Functions	42
	1.8 Multiplicative Inverse Hyperbolic Functions	46
	1.9 Multiplicative Matrices	48
	1.10 Advanced Practical Problems	60
2		65
		65
	2.2 The Multiplicative Inner Product Space	71
		80
	2.4 Multiplicative Lines	82
	2.5 Multiplicative Orthonormal Pairs	88
	2.6 Equations of a Multiplicative Line	92
	2.7 Multiplicative Perpendicular Lines	04
	2.8 Multiplicative Parallel Multiplicative Lines	13
	2.9 Multiplicative Reflections	15
	2.10 Multiplicative Congruence and Isometries	19
		19 21
	2.11 Multiplicative Translations	

viii	C(\mathbf{O}	N	T	\mathbf{E}	N	T	S

	2.14 Structure	141
	2.15 Fixed Points and Fixed Multiplicative Lines	146
	2.16 Advanced Practical Problems	148
3	Multiplicative Affine Transformations	153
<u> </u>		153
	3.2 Fixed Multiplicative Lines	
	3.3 The Fundamental Theorem	
	3.4 Multiplicative Affine Reflections	
	3.5 Multiplicative Shears	
	3.6 Multiplicative Dilatations	
	3.7 Multiplicative Similarities	
	3.8 Multiplicative Affine Symmetries	
	3.9 Multiplicative Rays and Angles	
	3.10 Multiplicative Rectilinear Figures	
	3.11 The Multiplicative Centroid	
	3.12 Multiplicative Symmetries	
	3.13 Multiplicative Symmetries	
	3.14 Multiplicative Barycentric Coordinates	100
	3.15 Multiplicative Addition of Multiplicative Angles	
	3.16 Multiplicative Triangles	
	3.17 Multiplicative Symmetries	
	3.18 Congruence of Multiplicative Angles	
	3.19 Congruence Theorems	
	3.20 Multiplicative Angle Sum of Multiplicative Triangles	
	3.21 Advanced Practical Problems	
	5.21 Advanced Flactical Flobletiis	<i>22</i> 4
4	Finite Groups	227
	4.1 Cyclic and Dihedral Groups	
	4.2 Conjugate Subgroups	
	4.3 Orbits and Stabilizers	
	4.4 Regular Multiplicative Polygons	
	4.5 Similar Regular Multiplicative Polygons	
	4.6 Advanced Practical Problems	243
5	Multiplicative Geometry	245
	5.1 The Space E_+^3	
	5.2 The Multiplicative Cross Product	
	5.3 Multiplicative Orthonormal Bases	
	5.4 Multiplicative Planes	

CONTENTS ix

	5.5	Incidence Multiplicative Geometry	Λ
	5.6	The Multiplicative Distance	
	5.7	Multiplicative Motions on S_{\star}^2	6
	5.8	Multiplicative Orthogonal Transformations	
	5.9		
		Multiplicative Isometries	
		Multiplicative Segments	
		Multiplicative Rays	
		Multiplicative Spherical Trigonometry	
		A Multiplicative Congruence Theorem	
	5.15	Multiplicative Right Triangles	6
	5.16	Advanced Practical Problems	7
6	The	Projective Multiplicative Plane 28	9
	6.1	Definition. Incidence Properties	
	6.2	Multiplicative Homogeneous Coordinates	0
	6.3	The Desargues and Pappus Theorems	1
	6.4	The Projective Multiplicative Group	4
	6.5	The Fundamental Theorem	4
	6.6	Multiplicative Polarities	6
	6.7	Multiplicative Cross Product	1
	6.8	Advanced Practical Problems	4
7	The	Multiplicative Distance Geometry 30°	7
	7.1	The Multiplicative Distance	7
	7.2	Multiplicative Isometries	1
	7.3	Multiplicative Motions	4
	7.4	Elliptic Multiplicative Geometry	6
	7.5	Advanced Practical Problems	7
8		Hyperbolic Multiplicative Plane 31	
	8.1	<u>Introduction</u>	
	8.2	Definition of H_{\star}^2	6
	8.3	Multiplicative Perpendicular Lines	0
	8.4	Multiplicative Distance of H_{\star}^2	2
	8.5	Multiplicative Isometries	7
	8.6	Multiplicative Reflections of H_{\star}^2	8
	8.7	Multiplicative Motions	1
	8.8	Multiplicative Reflections	2
	8 9	Multiplicative Parallel Displacements 34	1

X	CONTENTS

	Multiplicative Translations								
8.11	Multiplicative Glide Reflections								349
	Multiplicative Angles								
8.13	Advanced Practical Problems								352
Bibliogr	aphy								355
Index									357

Chapter 1

The Field \mathbb{R}_{\star}

In this chapter, the field \mathbb{R}_{\star} is introduced and the basic multiplicative arithmetic operations: multiplicative addition, multiplicative subtraction, multiplicative multiplication and multiplicative division are defined and some of their properties are deduced. The basic elementary multiplicative functions are introduced and studied.

1.1 Definition

Let $\mathbb{R}_{\star} = (0, \infty)$.

Definition 1.1. *In the set* \mathbb{R}_{\star} *we define the multiplicative addition or* \star *addition* $+_{\star}$ *in the following manner*

$$a +_{\star} b = ab$$
, $a, b \in \mathbb{R}_{\star}$.

Example 1.2. *Let* a = 1, b = 3. *Then*

$$a +_{\star} b = 1 +_{\star} 3$$
$$= 1 \cdot 3$$
$$= 3.$$

Definition 1.3. *In the set* \mathbb{R}_{\star} *we define the multiplicative multiplication or* \star *multiplication* \cdot_{\star} *as follows*]

$$a \cdot b = e^{\log a \log b}$$
.

Example 1.4. Let a = 1 and b = e. Then

$$a \cdot b = e^{\log 1 \log e}$$

$$= 1.$$

Example 1.5. Let a = 2, $b = \frac{1}{3}$, c = 4. We will find

$$A = (a +_{\star} b) \cdot_{\star} c.$$

We have

$$a +_{\star} b = 2 \cdot \frac{1}{3}$$
$$= \frac{2}{3}.$$

Then

$$A = e^{\log(a+\star b)\log c}$$

$$= e^{\log\frac{2}{3}\log 4}$$

$$= e^{2\log 2\log\frac{2}{3}}.$$

Exercise 1.6. Let $a = e^3$, $b = e^4$, $c = e^{10}$. Find

$$A = (a +_{\star} b) \cdot_{\star} c.$$

Answer 1.7. $A = e^{70}$.

Definition 1.8. In the set \mathbb{R}_{\star} we define the multiplicative zero(\star zero) and multiplicative unit(\star unit) as follows

$$0_{\star} = 1$$
 and $1_{\star} = e$.

1.1. DEFINITION 3

Below, we will list some of the properties of the multiplicative addition and multiplicative multiplication.

1. Commutativity of \star Addition. Let $x,y \in \mathbb{R}_{\star}$ be arbitrarily chosen. Then

$$x +_{\star} y = xy$$

$$= yx$$

$$= y +_{\star} x.$$

2. Associativity of \star Addition. Let $x, y, z \in \mathbb{R}_{\star}$ be arbitrarily chosen. Then

$$x +_{\star} (y +_{\star} z) = x +_{\star} (yz)$$

$$= xyz$$

$$= (xy)z$$

$$= (x +_{\star} y)z$$

$$= (x +_{\star} y) +_{\star} z.$$

3. * Identity Element of * Addition. Let $x \in \mathbb{R}_{\star}$ be arbitrarily chosen. Then

$$x +_{\star} 0_{\star} = x +_{\star} 1$$

$$= x \cdot 1$$

$$= x.$$

4. * Inverse Elements of * Addition. Let $x \in \mathbb{R}_{\star}$ be arbitrarily chosen. Define

$$-_{\star}x = \frac{1}{x}.$$

Then

$$x +_{\star} (-_{\star} x) = x +_{\star} \left(\frac{1}{x}\right)$$

$$= x \cdot \frac{1}{x}$$

$$= 1$$

$$= 0_{\star}.$$

5. * Identity Element of * Multiplication. Let $x \in \mathbb{R}_{\star}$ be arbitrarily chosen. Then

$$x \cdot_{\star} 1_{\star} = x \cdot_{\star} e$$

$$= e^{\log x \log e}$$

$$= e^{\log x}$$

$$= x.$$

6. * Inverse Elements of * Multiplication. Let $x \in \mathbb{R}_{\star}$ be arbitrarily chosen. Take

$$x^{-1_{\star}} = e^{\frac{1}{\log x}}.$$

Then

$$x \cdot_{\star} x^{-1_{\star}} = x \cdot_{\star} \left(e^{\frac{1}{\log x}} \right)$$

$$= e^{\log x \log e^{\frac{1}{\log x}}}$$

$$= e^{\frac{\log x}{\log x}}$$

$$= e$$

$$= 1_{\star}.$$

1.1. DEFINITION 5

7. **Distributivity.** Let $x, y, z \in \mathbb{R}_{+}$ be arbitrarily chosen. Then

$$(x +_{\star} y) \cdot_{\star} z = (xy) \cdot_{\star} z$$

$$= e^{\log(xy) \log z}$$

$$= e^{(\log x + \log y) \log z}$$

$$= e^{\log x \log z + \log y \log z}$$

$$= e^{\log x \log z} e^{\log y \log z}$$

$$= (x \cdot_{\star} z) \cdot (y \cdot_{\star} z)$$

$$= (x \cdot_{\star} z) +_{\star} (y \cdot_{\star} z).$$

Definition 1.9. For any $x \in \mathbb{R}_{\star}$, the number

$$-\star x = \frac{1}{x}$$

will be called the multiplicative opposite number or \star opposite number of the number x.

We have

$$-_{\star}(-_{\star}x) = -_{\star}\left(\frac{1}{x}\right)$$
$$= \frac{1}{\frac{1}{x}}$$
$$= x$$

for any $x \in \mathbb{R}_{\star}$.

Definition 1.10. For $x, y \in \mathbb{R}_{\star}$, define multiplicative subtraction or \star subtraction $-_{\star}$ as follows

$$x -_{\star} y = x +_{\star} (-_{\star} y)$$

$$= x(-xy)$$

$$= x \cdot \frac{1}{y}$$

$$= \frac{x}{y}.$$

Definition 1.11. For $x \in \mathbb{R}_{\star}$, $x \neq 0_{\star}$, the number

$$x^{-1_{\star}} = e^{\frac{1}{\log x}}$$

will be called the multiplicative reciprocal or \star reciprocal of the number x.

We have

$$(x^{-1_{\star}})^{-1_{\star}} = \left(e^{\frac{1}{\log x}}\right)^{-1_{\star}}$$

$$= e^{\frac{1}{\log e^{\frac{1}{\log x}}}}$$

$$= e^{\log x}$$

$$= x$$

for any $x \in \mathbb{R}_{\star}$, $x \neq 0_{\star}$.

Definition 1.12. For $x, y \in \mathbb{R}_{\star}$, define multiplicative division or \star division $/_{\star}$ as follows

$$x/_{\star}y = x \cdot_{\star} (y^{-1_{\star}})$$

$$= x \cdot_{\star} \left(e^{\frac{1}{\log y}}\right)$$

$$= e^{\log x \log e^{\frac{1}{\log y}}}$$

$$= e^{\frac{\log x}{\log y}}.$$

Example 1.13. We will find

$$A = (2 +_{\star} 3) \cdot_{\star} 4 -_{\star} (3 +_{\star} 1) /_{\star} 5.$$

We have

$$A = (2 \cdot 3) \cdot_{\star} 4 -_{\star} (3 \cdot 1) /_{\star} 5$$

$$= 6 \cdot_{\star} 4 -_{\star} 3 /_{\star} 5$$

$$= e^{\log 6 \log 4} -_{\star} e^{\frac{\log 3}{\log 5}}$$

$$= e^{2 \log 6 \log 2 - \frac{\log 3}{\log 5}}.$$

Exercise 1.14. Find

1.
$$A = (3 - 5)/2 + (4 + 2) \cdot e$$
.

2.
$$A = 3 +_{\star} 2 -_{\star} 3 \cdot_{\star} (2 +_{\star} 4)$$
.

3.
$$A = 1 -_{\star} 3 +_{\star} 4 \cdot_{\star} (1 +_{\star} 5)$$
.

Answer 1.15. 1. $e^{\frac{\log \frac{3}{5}}{\log 2} + 3\log 2}$.

$$2. e^{\frac{\log 6}{3\log 3\log 2}}.$$

3.
$$\frac{1}{3}e^{2\log 2\log 5}$$
.

Theorem 1.16. For any $a,b \in \mathbb{R}_{\star}$, the equation

$$a +_{\star} x = b \tag{1.1}$$

has at least one solution.

Proof. Let

$$x = b - a$$
.

Then

$$a +_{\star} (b -_{\star} a) = a +_{\star} \left(\frac{b}{a}\right)$$

$$= a \cdot \frac{b}{a}$$

$$= b.$$

This completes the proof.

Corollary 1.17. Any solution $x \in \mathbb{R}_{\star}$ of the equation

$$a +_{\star} x = a, \quad a \in \mathbb{R}_{\star},$$
 (1.2)

is a solution of the equation

$$b +_{\star} x = b, \quad b \in \mathbb{R}_{\star}. \tag{1.3}$$

Proof. By Theorem 1.16, it follows that the equation (1.2) and the equation

$$a +_{\star} y = b$$

have at least one solution x and y, respectively. Then

$$b +_{\star} x = (a +_{\star} y) +_{\star} x$$

$$= a +_{\star} (y +_{\star} x)$$

$$= a +_{\star} (x +_{\star} y)$$

$$= (a +_{\star} x) +_{\star} y$$

$$= a +_{\star} y$$

$$= b.$$

i.e., x is a solution of the equation (1.3). This completes the proof.

Corollary 1.18. *The equation* (1.2) *has a unique solution.*

1.1. DEFINITION 9

Proof. By Theorem $\boxed{1.16}$ it follows that the equation $\boxed{1.2}$ has at least one solution. Assume that the equation $\boxed{1.2}$ has two solutions x and y. Then

$$a + x = a$$

and

$$a +_{\star} y = a$$
.

By Corollary 1.17, it follows

$$y +_{\star} x = y$$

and

$$x +_{\star} y = x$$
.

Hence,

$$y = y +_{\star} x$$
$$= x +_{\star} y$$
$$= x.$$

This completes the proof.

Remark 1.19. By Corollary 1.18 it follows that the multiplicative zero 0_{\star} is unique.

Corollary 1.20. For any $a, b \in \mathbb{R}_{\star}$, the equation (1.1) has a unique solution.

Proof. By Theorem $\boxed{1.16}$ it follows that the equation $\boxed{1.1}$ has at least one solution. Assume that the equation $\boxed{1.1}$ has two solutions x and y. Then

$$a +_{\star} x = b$$

and

$$a +_{\star} y = b$$
.

By Theorem 1.16, it follows that the equation

$$a +_{+} z = 0_{+}$$

has at least one solution. Hence,

$$y = y +_{\star} 0_{\star}$$

$$= y +_{*} (a +_{*} z)$$

$$= (y +_{*} a) +_{*} z$$

$$= (a +_{*} y) +_{*} z$$

$$= b +_{*} z$$

$$= (a +_{*} x) +_{*} z$$

$$= a +_{*} (x +_{*} z)$$

$$= a +_{*} (z +_{*} x)$$

$$= (a +_{*} z) +_{*} x$$

$$= 0_{*} +_{*} x$$

$$= x.$$

This completes the proof.

Theorem 1.21. For any $a \in \mathbb{R}_{\star}$, $a \neq 0_{\star}$, the equation

$$a \cdot_{\star} x = b \tag{1.4}$$

has a solution.

Proof. Let

$$x = b/_{\star}a$$
.

Then

$$a \cdot_{\star} x = a \cdot_{\star} (b/_{\star} a)$$
$$= a \cdot_{\star} e^{\frac{\log b}{\log a}}$$

1.1. DEFINITION 11

$$= e^{\log a \log e^{\frac{\log b}{\log a}}}$$

$$= e^{\log a \cdot \frac{\log b}{\log a}}$$

$$= e^{\log b}$$

$$= b.$$

This completes the proof.

Corollary 1.22. If $a \in \mathbb{R}_{\star}$, $a \neq 0_{\star}$, then any solution of the equation

$$a \cdot_{\star} x = a \tag{1.5}$$

is a solution to the equation

$$b \cdot_{\star} x = b, \quad b \in \mathbb{R}_{\star}.$$
 (1.6)

Proof. By Theorem [1.21] it follows that the equation (1.5) and the equation

$$a \cdot_{\star} y = b$$

have at least one solution x and y, respectively. Then

$$b \cdot_{\star} x = (a \cdot_{\star} y) \cdot_{\star} x$$

$$= a \cdot_{\star} (y \cdot_{\star} x)$$

$$= a \cdot_{\star} (x \cdot_{\star} y)$$

$$= (a \cdot_{\star} x) \cdot_{\star} y$$

$$= a \cdot_{\star} y$$

$$= b,$$

i.e., x is a solution to the equation (1.6). This completes the proof.

П

Corollary 1.23. Let $a \in \mathbb{R}_{\star}$, $a \neq 0_{\star}$. Then the equation (1.5) has a unique solution.

Proof. By Theorem $\boxed{1.21}$ it follows that the equation $\boxed{1.5}$ has at least one solution. Let x and y be two solutions to the equation $\boxed{1.5}$. By Corollary $\boxed{1.22}$, it follows that

$$y \cdot_{\star} x = y$$

and

$$x \cdot_{\star} y = x$$
.

Hence,

$$y = y \cdot_{\star} x$$
$$= x \cdot_{\star} y$$
$$= x.$$

This completes the proof.

Remark 1.24. By Corollary 1.23 it follows that the multiplicative unit is unique.

Corollary 1.25. Let $a \in \mathbb{R}_{\star}$, $a \neq 0_{\star}$. Then the equation (1.4) has a unique solution.

Proof. By Theorem $\boxed{1.21}$ it follows that the equation $\boxed{1.4}$ has at least one solution. Assume that the equation $\boxed{1.4}$ has two solutions x and y. By Theorem $\boxed{1.21}$ we have that the equation

$$a \cdot z = 1$$

has at least one solution. Then

$$y = y \cdot_{\star} 1_{\star}$$
$$= y \cdot_{\star} (a \cdot_{\star} z)$$
$$= (y \cdot_{\star} a) \cdot_{\star} z$$

$$= (a \cdot_{\star} y) \cdot_{\star} z$$

$$= b \cdot_{\star} z$$

$$= (a \cdot_{\star} x) \cdot_{\star} z$$

$$= (x \cdot_{\star} a) \cdot_{\star} z$$

$$= x \cdot_{\star} (a \cdot_{\star} z)$$

$$= x \cdot_{\star} 1_{\star}$$

$$= x.$$

This completes the proof.

Corollary 1.26. *Let* $a,b \in \mathbb{R}_{\star}$. *Then*

- 1. $0_{\star} = -_{\star}0_{\star}$.
- 2. $a -_{\star} 0_{\star} = a$.
- 3. $a_{\star} 0_{\star} = 0_{\star}$.
- 4. $(-_{\star}1_{\star})\cdot_{\star}a = -_{\star}a$.
- 5. $(-_{\star}1_{\star})\cdot_{\star}(-_{\star}1_{\star})=1_{\star}$.
- 6. $-_{\star}(a -_{\star} b) = b -_{\star} a$.

Proof. 1. We have that 0_{\star} is a solution to the equation

$$0_{\star} +_{\star} x = 0_{\star}. \tag{1.7}$$

Since

$$0_{\star} +_{\star} (-_{\star} 0_{\star}) = 0_{\star},$$

we obtain that $-_{\star}0_{\star}$ is also a solution of the equation (1.7). By Corollary [1.18] it follows that the equation (1.7) has a unique solution. Therefore

$$0_{+} = -_{+}0_{+}$$
.

2. We have

$$a -_{\star} 0_{\star} = a +_{\star} (-_{\star} 0_{\star})$$

$$= a +_{\star} 0_{\star}$$

$$= a +_{\star} 1$$

$$= a \cdot 1$$

$$= a.$$

3. We have

$$a \cdot_{\star} 0_{\star} = a \cdot_{\star} 1$$

$$= e^{\log a \log 1}$$

$$= 1$$

$$= 0_{\star}.$$

4. We have

$$(-_{\star}1_{\star})\cdot_{\star}a = (-_{\star}e)\cdot_{\star}a$$

$$= \frac{1}{e}\cdot_{\star}a$$

$$= e^{\log\frac{1}{e}\log a}$$

$$= e^{-\log a}$$

$$= \frac{1}{a}$$

$$= -_{\star}a.$$

5. We have

$$(-_{\star}1_{\star}) \cdot_{\star} (-_{\star}1_{\star}) = (-_{\star}e) \cdot_{\star} (-_{\star}e)$$

$$= \frac{1}{e} \cdot_{\star} \frac{1}{e}$$

$$= e^{\log \frac{1}{e} \log \frac{1}{e}}$$

$$= e$$

$$= 1_{\star}.$$

6. We have

$$-_{\star}(a -_{\star} b) = -_{\star}(a +_{\star} (-_{\star} b))$$

$$= -_{\star} \left(a +_{\star} \frac{1}{b}\right)$$

$$= -_{\star} \frac{a}{b}$$

$$= \frac{1}{\frac{a}{b}}$$

$$= \frac{b}{a}$$

$$= b -_{\star} a.$$

This completes the proof.

1.2 An Order in \mathbb{R}_{\star}

Definition 1.27. We say that a number $a \in \mathbb{R}_{\star}$ is multiplicative positive or \star positive if a > 1. We will write $a >_{\star} 0_{\star}$.

Example 1.28. 5 is \star positive.

Definition 1.29. A number $a \in \mathbb{R}_{\star}$ is said to be multiplicative negative or \star negative if it is not equal to 0_{\star} and it is not \star positive. We will write $a <_{\star} 0_{\star}$.

Example 1.30. $\frac{1}{2}$ is $a \star negative number.$

Definition 1.31. Let $a, b \in \mathbb{R}_{+}$. We say that a is multiplicative greater than b or \star greater than b and we will write $a >_{\star} b$ if $a -_{\star} b >_{\star} 0_{\star}$. We will denote $a \geq_{\star} b$ if $a >_{\star} b$ or a = b.

Remark 1.32. Let $a, b \in \mathbb{R}_{\star}$. Then

$$a >_{\star} b \iff a -_{\star} b >_{\star} 0_{\star} \iff \frac{a}{b} > 1 \iff a > b.$$

Definition 1.33. Let $a,b \in \mathbb{R}_{\star}$. We say that a is multiplicative less than b or \star less than b and we will write $a <_{\star} b$ if $a -_{\star} b <_{\star} 0_{\star}$. We will denote $a \leq_{\star} b$ if $a <_{\star} b$ or a = b.

Remark 1.34. Let $a, b \in \mathbb{R}_{\star}$. Then

$$a<_{\star}b\quad\Longleftrightarrow\quad a-_{\star}b<_{\star}0_{\star}\quad\Longleftrightarrow\quad \frac{a}{b}<1\quad\Longleftrightarrow\quad a< b.$$

Theorem 1.35. Let $a,b,c,d \in \mathbb{R}_{\star}$. If

$$a >_{\star} b$$
 and $c >_{\star} d$, (1.8)

then

$$a +_{\star} c >_{\star} b +_{\star} d$$
.

Proof. By (1.8), it follows that

$$a > b > 0$$
 and $c > d > 0$.

Then

$$a +_{\star} c = ac$$

$$> bd$$

$$= b +_{\star} d.$$

This completes the proof.

17

Theorem 1.36. Let $a, b, c, d \in \mathbb{R}_{\star}$. If

$$a >_{\star} b, \quad c >_{\star} d, \quad c >_{\star} 0_{\star}, \quad b >_{\star} 0_{\star}, \tag{1.9}$$

then

$$a \cdot c > b \cdot d$$
.

Proof. By (1.9), it follows that

$$a > b$$
, $c > d$, $c > 1$, $b > 1$.

Then

$$\log a > \log b$$
,

$$\log c > \log d$$
,

$$\log c > 0$$
,

$$\log b > 0$$
,

whereupon

$$\log a \log c > \log b \log c$$

$$> \log b \log d$$

and

$$e^{\log a \log c} > e^{\log b \log d}$$
.

i.e.,

$$a \cdot_{\star} c >_{\star} b \cdot_{\star} d$$
.

This completes the proof.

Theorem 1.37 (Chebyschev Multiplicative Inequality). *Let* $a_1, a_2, b_1, b_2 \in \mathbb{R}_{\star}$. *Then the inequality*

$$a_1 \cdot_{\star} b_1 +_{\star} a_2 \cdot_{\star} b_2 \leq_{\star} e^{\frac{1}{2}} \cdot_{\star} (a_1 +_{\star} a_2) \cdot_{\star} (b_1 +_{\star} b_2)$$

holds if and only if the inequality

$$\log \frac{a_2}{a_1} \log \frac{b_2}{b_1} \le 0$$

holds.

Proof. Note that

$$\log \frac{a_2}{a_1} \log \frac{b_2}{b_1} \le 0$$

if and only if

$$\log a_1 \log b_1 + \log a_2 \log b_2 \le \frac{1}{2} \log(a_1 a_2) \log(b_1 b_2)$$

if and only if

$$e^{\log a_1 \log b_1 + \log a_2 \log b_2} \leq e^{\frac{1}{2} \log(a_1 a_2) \log(b_1 b_2)}$$

$$= e^{\log e^{\frac{1}{2} \log(a_1 a_2) \log(b_1 b_2)}$$

if and only if

$$a_1 \cdot_{\star} b_1 +_{\star} a_2 \cdot_{\star} b_2 \leq_{\star} e^{\frac{1}{2}} \cdot_{\star} (a_1 +_{\star} a_2) \cdot_{\star} (b_1 +_{\star} b_2).$$

This completes the proof.

Theorem 1.38. *Let* $a, b, c, \lambda \in \mathbb{R}_{\star}$.

- 1. If $a >_{\star} b$, then $a +_{\star} c >_{\star} b +_{\star} c$.
- 2. If $a >_{\star} b$ and $b >_{\star} c$, then $a >_{\star} c$.
- 3. If $\lambda >_{\star} 0_{\star}$ and $a >_{\star} b$, then $\lambda \cdot_{\star} a >_{\star} \lambda \cdot_{\star} b$.
- 4. If $\lambda <_{\star} 0_{\star}$ and $a >_{\star} b$, then $\lambda \cdot_{\star} a <_{\star} \lambda \cdot_{\star} b$.

Proof. 1. Let $a >_{\star} b$. Then a > b and hence,

$$ac > bc$$
.

or

$$a +_{\star} c >_{\star} b +_{\star} c$$
.

- 2. Let $a >_{\star} b$ and $b >_{\star} c$. Then a > b and b > c. Hence, a > c and $a >_{\star} c$.
- 3. Let $\lambda >_{\star} 0_{\star}$ and $a >_{\star} b$. Then $\lambda > 1$ and $\log \lambda > 0$, and

$$\log a > \log b$$
.

$$\log \lambda \log a > \log \lambda \log b$$

and

$$e^{\log \lambda \log a} > e^{\log \lambda \log b}$$
,

or

$$\lambda \cdot_{\star} a >_{\star} \lambda \cdot_{\star} b$$
.

4. Let $\lambda <_{\star} 0_{\star}$ and $a >_{\star} b$. Then $\lambda \in (0,1)$ and

$$\log a > \log b$$
, $\log \lambda < 0$.

Hence,

$$\log \lambda \log a < \log \lambda \log b$$

and

$$e^{\log \lambda \log a} < e^{\log \lambda \log b}$$

or

$$\lambda \cdot_{\star} a <_{\star} \lambda \cdot_{\star} b$$
.

This completes the proof.

1.3 Multiplicative Absolute Value

In this section, we will define the multiplicative absolute value and we will deduce some of its properties.

Definition 1.39. Let $x \in \mathbb{R}_{\star}$. The multiplicative absolute value is defined as follows

$$|x|_{\star} = \left\{ \begin{array}{ll} x & \text{if} & x \geq_{\star} 0_{\star}, \\ \\ \frac{1}{x} & \text{if} & x \leq_{\star} 0_{\star}, \end{array} \right.$$

or

$$|x|_{\star} = \begin{cases} x & \text{if} \quad x \ge 1, \\ \\ \frac{1}{x} & \text{if} \quad x \le 1. \end{cases}$$

Example 1.40. *Let* x = 5. *Then* $|x|_{\star} = 5$.

Example 1.41. Let
$$x = \frac{1}{6}$$
. Then $|x|_{*} = 6$.

Below, we will deduce some of the properties of the multiplicative absolute value. Let $a,b\in\mathbb{R}_{\star}.$

1.
$$|a|_{\star} \geq_{\star} 0_{\star}$$
.

Proof. If $a \ge_{\star} 0_{\star}$, then $a \ge 1$ and

$$|a|_{\star} = a$$

$$\geq 1$$

$$\geq_{\star} 0_{\star}.$$

Let $a \leq_{\star} 0_{\star}$. Then $a \leq 1$ and

$$|a|_{\star} = \frac{1}{a}$$

$$\geq 1$$

$$\geq_{\star} 0_{\star}.$$

This completes the proof.

2.
$$|a|_{\star} = |-_{\star} a|_{\star}$$
.

Proof. We have

$$-_{\star}a = \frac{1}{a}.$$

Then

$$|a|_{\star} = \left\{ \begin{array}{ll} a & \text{if} & a \ge 1, \\ \\ \frac{1}{a} & \text{if} & a \le 1. \end{array} \right.$$

and

$$|-_{\star}a|_{\star} = \begin{cases} \frac{1}{a} & \text{if} \quad a \leq 1, \\ a & \text{if} \quad a \geq 1. \end{cases}$$